
Querying Semantic Web Data Cubes

Lorena Etcheverry1 and Alejandro Vaisman2

1 Instituto de Computación, Universidad de la República, Montevideo, Uruguay
lorenae@fing.edu.uy

2 Instituto Tecnológico de Buenos Aires,Buenos Aires, Argentina
avaisman@itba.edu.ar

Abstract. We address the problem of querying data cubes for Online
Analytical Processing (OLAP) analysis, directly on the Semantic Web
(SW). We �rst introduce CQL, a simple algebra for querying data cubes
at a conceptual level. Taking advantage of QB4OLAP metadata, we
automatically translate CQL queries into SPARQL ones, and propose
query optimization strategies that adapt, to the particular OLAP set-
ting, general-purpose techniques. A web application allows exploring and
querying OLAP cubes on the SW, using the machinery presented here.

1 Introduction

Data Warehouses (DW) integrate multiple data sources for analysis and deci-
sion support, representing data according to the Multidimensional Model (MD).
Typically, DWs and Online Analytical Processing (OLAP), had been used as
techniques for data analysis within organizations. However, initiatives such as
Open Data3, and the Linked Data4 paradigm, are encouraging organizations to
publish and share MD data, using Semantic Web (SW) standards like RDF5,
and the SPARQL6 query language. In this context, the BI community faces two
challenges: First, provide mechanisms to share MD metadata, essential to inter-
pret and reuse MD data; Second, enable OLAP analysis of SW data. On the
�rst direction, the RDF Data Cube Vocabulary (QB) [3], is the current W3C
standard for statistical data. However, QB does not include key features, e.g.,
dimension hierarchies, needed for OLAP analysis. To address this challenge, the
QB4OLAP vocabulary has been proposed [4], which allows reusing data already
published in QB, just by adding the needed MD schema semantics, and the
corresponding data instances. QB4OLAP also addresses the second challenge,
providing means to represent MD metadata needed, e.g., to automatically pro-
duce a SPARQL representation of the most usual OLAP operations.
Contribution. We address the second challenge above, proposing a simple al-
gebra for OLAP (denoted CQL, and standing for cube query language) whose

3 http://okfn.org/opendata/
4 http://linkeddata.org/
5 http://www.w3.org/TR/rdf-concepts/
6 http://www.w3.org/TR/sparql11-query/

http://okfn.org/opendata/
http://linkeddata.org/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/sparql11-query/

Geography
Time

Month

MonthNumber

MonthName

Citizenship

#applications : Sum

Asylum_applications Country

CountryCode

CountryName

Destination

Age

AgeGroupCode

AgeGroupDesc

Government

Government
Type

GovernmentType

Continent

ContinentCode

ContinentName

Sex

Sex

Application Type

ApplicationType

Year

Year

Fig. 1: Conceptual schema of the Asylum Applications cube

main data type is the data cube. We sketch a query simpli�cation strategy for
CQL, and propose algorithms to automatically translate CQL queries into equiv-
alent SPARQL ones over QB4OLAP data cubes, and a strategy to improve the
performance of those SPARQL queries. Preliminary results (discussed brie�y)
have shown that our strategies substantially speed up the query evaluation pro-
cess, outperforming other proposals. A web application allowing to explore and
query QB4OLAP cubes has been developed. We remark that our goal is to en-
able OLAP practitioners, without any knowledge of SPARQL or SW concepts, to
write e�cient queries using just operators well-known for any OLAP user, over
a conceptual MD model, regardless the underlying data model and data types.
Running Example. Throughout this paper we use an example based on statis-
tical data about asylum applications to the European Union, provided by Euro-
stat.7 The original data set consists of observations reporting the number of ap-
plications by month, sex, age, application type, country of origin, and destination
country. To show the potential of QB4OLAP, we enriched the existent data set
by building aggregation hierarchies. Figure 1 shows the conceptual schema of the
extended data cube, using the MultiDim notation [14]. The Asylum_applications
fact contains a measure (#applications) representing the number of applications.
There are six analysis dimensions: Sex and Age of the applicant, Time of the ap-
plication, the Application_type (tells if the applicant is a �rst-time applicant or a
returning one), and a geographical dimension that organizes countries into con-
tinents (Geography hierarchy) or according to its government type (Government
hierarchy). This dimension participates with two roles: the Citizenship of the
asylum applicant, and Destination country of the application.

In the remainder, Section 2 sketches the QB4OLAP vocabulary. Section 3
presents the CQLalgebra and the data model, for querying QB4OLAP data
cubes. In Section 4 we describe the CQL-to-SPARQL translation process. Sec-
tion 5 brie�y discusses related work, and we conclude in Section 6.

7 http://eurostat.linked-statistics.org/

http://eurostat.linked-statistics.org/

2 Representing cubes in QB4OLAP

We now use our running example to concisely show how data cubes, dimension
schemas and dimension instances can be represented using QB4OLAP.8 Like
in QB, the schema of a data set is speci�ed by means of the DSD. QB4OLAP
represents the structure of a data set (i.e., a cube) in terms of dimension levels

(introducing the class qb4o:LevelProperty), and measures. The pre�xes used
in this work are presented in Figure 2 in Appendix A.

Example 1. (QB4OLAP cube structure) Below we show the representation of
the structure of a data cube for the Eurostat example, using QB4OLAP.

schema:migr_asyappctzmQB4O rdf:type qb:DataStructureDe�nition ;
qb:component [qb4o:level property:age ; qb4o:cardinality qb4o:ManyToOne] ;
qb:component [qb4o:level sdmxd:refPeriod ; qb4o:cardinality qb4o:ManyToOne] ;

...
qb:component [qb4o:level property:citizen ; qb4o:cardinality qb4o:ManyToOne] ;
qb:component [qb:measure sdmx−measure:obsValue ; qb4o:aggregateFunction qb4o:sum] .

Note that dimension levels in this cube are the lowest levels in the dimension
hierarchies. Observations (in OLAP terminology, facts), represent points in an
MD space, complying with the schema given above. ut

The class qb4o:Hierarchy represents dimension hierarchies, attached to a di-
mension via the property qb4o:hasHierarchy. Class qb4o:HierarchyStep rep-
resents the parent-child relationship between two levels. Each step is associated
via qb4o:rollup with a custom property that implements the rollup relationship
at the instance level.

Example 2. (QB4OLAP dimensions) We now de�ne the Citizenship dimension
of Figure 1 (schema:citizenshipDim), and its Geography hierarchy.

Dimension de�nition
schema:citizenshipDim a qb:DimensionProperty; rdfs:label "Citizenship dimension"@en;
qb4o:hasHierarchy schema:citizenshipGeoHier, schema:citizenshipGovHier .

Hierarchy de�nition
schema:citizenshipGeoHier a qb4o:Hierarchy; rdfs:label "Citizenship Geo Hierarchy"@en;

qb4o:inDimension schema:citizenshipDim; qb4o:hasLevel property:citizen, schema:continent.
Base level
property:citizen a qb4o:LevelProperty; rdfs:label "Country of citizenship"@en;
qb4o:hasAttribute schema:countryName.

schema:countryName a qb4o:LevelAttribute;
rdfs:label "Country name"@en; rdfs:range xsd:string.

#Upper hierarchy levels
schema:continent a qb4o:LevelProperty; rdfs:label "Continent"@en;
qb4o:hasAttribute schema:continentName.

schema:continentName a qb4o:LevelAttribute;
rdfs:label "Continent name"@en; rdfs:range xsd:string.

#rollup relationships
schema:inContinent a qb4o:RollupProperty.
schema:hasGovernment a qb4o:RollupProperty.
#Hierarchy step
_:ih1 a qb4o:HierarchyStep;
qb4o:inHierarchy schema:citizenshipGeoHier;
qb4o:childLevel property:citizen; qb4o:parentLevel schema:continent;
qb4o:pcCardinality qb4o:OneToMany; qb4o:rollup schema:inContinent.

8 http://purl.org/qb4olap/cubes

http://purl.org/qb4olap/cubes

Note that levels property:citizen and schema:continent are de�ned, as well
as their attributes, e.g., schema:continentName. ut

Example 3. (Dimension Instances) Level members are attached to dimension
levels via the property qb4o:memberOf. Below we show dimension members cor-
responding to France, for dimension schema:citizenshipDim.

citizen:FR
qb4o:memberOf property:citizen ; schema:countryName "France"@en;
schema:inContinent citDim:EU ; schema:hasGovernment dbpedia:Unitary_state .

citDim:EU
qb4o:memberOf schema:continent ; schema:continentName "Europe" .

dbpedia:Unitary_state
qb4o:memberOf schema:governmentType ; schema:governmentName "Unitary state"@en .

ut

3 Querying QB4OLAP cubes

To allow users to query QB4OLAP cubes without dealing with SPARQL, we
propose an algebra, denoted CQL, based on [2]. To evaluate a query in CQL,
�rst, CQL queries are simpli�ed (i.e. to eliminate redundancy and reorder oper-
ations), and then translated into a single SPARQL expression, following a naïve

approach. Finally, we apply SPARQL optimization heuristics to improve the
performance of the naïve queries.

The CQL Language We next de�ne a formal data model for cubes, and
OLAP operators over this model. A cube expressed in this model can be rep-
resented using the QB4OLAP vocabulary. Due to space limitations, we only
present informally the main ideas, and refer the reader to [5] for details.

A dimension schema is a tuple 〈d,L,→,H〉 where d is the name of the di-
mension; L is a set of pairs 〈l,Al〉, where l is a level in L, and Al is a set of
attributes associated with l; `→' is a partial order between pairs of levels in L
with a unique bottom level and a unique level, denoted All; H is a set of pairs
〈hn, Lh〉, called hierarchies, where h identi�es the hierarchy, and Lh ⊆ L is the
set of levels in the hierarchy. Given a schema for dimension d, a dimension in-

stance Id for d is de�ned as follows: for each level l in d there is a set of tuples
Tl, and such that for each attribute ai ∈ Al there is a value from Dom(ai) in
Tl(ai). In addition, there is R, a �nite set of rollup relations, one for each pair of

levels in `→', denoted as follows: RUP
Lj

Li
, Li, Lj ∈ L, where Li → Lj , associating

elements in Tli with elements in Tlj .
A cube schema is a tuple 〈Cn,D,M,F〉 where Cn is the name of the cube;

D is a �nite set of dimension schemas; M is a �nite set of attributes called
measures; and F is a function mapping a measure m ∈ M to an aggregate
function. Given a cube schema with D dimensions andM measures, and a set of
levels VCb = {l1, l2, . . . , lD}, such that there are not two levels belonging to the

same dimension, a cuboid instance Cb is a partial function Cb : Tl1 ×· · ·×TlD →
Dom(m1) × · · · × Dom(mM), where mk ∈ M,∀k, k = 1, . . . ,M , where Tl1 are
the instances of level li ∈ Idi

. The elements in the domain of Cb are called cells,
and VCb it the set of levels of the cuboid.

The above allows us to de�ne a lattice of cuboids, provided that we de�ne an
order between cuboids, as follows. Two cuboids Cb1 and Cb2, that refer to the
same cube schema, are adjacent if their corresponding level sets VCb1 and VCb2

di�er in exactly one level belonging to the same dimension d. Given two adjacent
cuboids Cb1 and Cb2, such that VCb1 − VCb2 = {lc} and VCb2 − VCb1 = {lp},
and lc → lp ∈ d, then Cb1 � Cb2. Moreover, for each pair of adjacent cuboids

Cb1 � Cb2, if we assume that RUPlc
lp is a function, each cell in each cell Cb2 can

be obtained from the cells in Cb1, aggregating the measures along the dimension
d using such function, and the aggregation functions associated to each measure.
Finally, a Cube Instance is the lattice of all cuboids that share the same cube
schema. The bottom of this lattice is the original cube, and the top of the lattice
is the cuboid with just the All level for all the dimensions in the cube.

Now that we have the intuition of what a cube is, we are ready to give a
precise semantics for the operators composing the CQL algebra (see [5] for
details).

The Roll-up operator summarizes data to a higher level along a dimension
hierarchy; that is, it receives a cuboid Cb1 in a cube instance, and returns an-
other cuboid Cb2 in the same instance, such that Cb1 � Cb2. The Drill-down
operator does the inverse, i.e., it returns a cuboid Cb2 such that Cb2 � Cb1. It
is clear that a Drill-down over a dimension d can be obtained performing a
Roll-up over d from the bottom cuboid. We will use this result in the sequel.
Since Roll-up and Drill-down only imply a navigation across a lattice (and
do not modify it), we call them Instance Preserving Operators (IPO).

The Dice operator selects the cells in a cuboid that satisfy a boolean con-
dition φ, expressed over level member attributes, and/or measure values. The
Slice operator removes one of the dimensions or measures in the cube. We de-
note these operators Instance Generating Operators (IGO), since they induce a
new lattice (because they reduce the dimensionality of the cube, or because they
reduce the number of cells in the cuboid), whose bottom cuboid is the result of
the corresponding operation. Again, see [5] for details.

Example 4. (CQL syntax) Given the query: Total asylum applications submitted

by African citizens to France in 2013, by sex, time, age, and citizenship country ;
the CQL query below produces the answer.

$C1:= ROLLUP (migr_asyappctzm, timeDim, year);
$C2:= ROLLUP ($C1,citizenshipDim,continent);
$C3:= DICE ($C2,(citizenshipDim|continent|continentName = "Africa"));
$C4:= DICE ($C3,(destinationDim|geo|countryName = "France" AND timeDim|year|yearNum = 2013));
$C5:= DRILLDOWN ($C4,citizenshipDim,citizenship);
$C6:= SLICE ($C5,asylappDim);
$C7:= SLICE ($C6,destinationDim);

The notation of the DICE operation is (dimension|level|attribute). Note that
the ROLLUP to the continent level, is performed to allow selecting African

citizens. Note that the DRILLDOWN takes the cube down to the Citizenship level
(the applicant's country), and the two �nal SLICE operations remove dimensions
Application Type and Destination since they are not wanted in the result. ut

To restrict the problem to queries that can be evaluated without storing the
computation trace, we limit ourselves to consider the subset of CQL queries that
satisfy the following patterns, where Dicel and Dicem denote dicing operations
on level attribute or measure values, respectively:(a) (Slice∗|Dice∗|Roll-up∗)+;
(b)(Slice∗|Roll-up+|Drill-down+|Dice+l)

+
;

(c)(Slice∗|Roll-up+|Drill-down+|Dice∗l)
+
Dice

+
m.

CQL simpli�cation Since CQL is aimed at being used by non-experts, input
CQL queries may include unnecessary operations. Further, operations can be re-
ordered to reduce the size of the cuboid as early as possible. Thus, we devised the
following set of rewriting rules: (1) Remove all the Roll-up or Drill-down op-
erations with the same origin and target level; (2) Given a sequence of Roll-up
and/or Drill-down operations over a dimension d, without Dicel operations
in-between, and where l ∈ d, �nd the last level lD in the sequence, and if lD is
not the bottom level of d, replace the sequence with a single Roll-up from the
bottom to ld; Otherwise, remove all the operations in the group; (3) If there is
a Slice over a dimension d (respectively, a measure m), and no Dice operation
that considers level members of d (respectively, mentions m), move the Slice
to the beginning of the query; otherwise move it to the end; (4) If there is a
Slice over a dimension d, a sequence of Roll-up and Drill-down operations
over d, and no Dice operation mentions levels in d, remove all the Roll-up and
Drill-down operations, and keep only the Slice one.

It can be proved that, applying these rules produces a query such that: (a)
If there are no Dice operations in a CQL query, there is at most one Roll-up
and no Drill-down operation for each Dimension d; (b) Slice operations are
either at the beginning or at the end of the query, but not in the middle.

4 CQL to SPARQL translation

The next step in the process is the translation of CQL queries (expressed at
the conceptual level), into SPARQL expressions over QB4OLAP cubes (logical
level), avoiding the materialization of intermediate results. We present the ideas
by means of an example. Let us consider the query: Total asylum applications

per year submitted by Asian citizens to France or United Kingdom, where the

number of applications is > 5000, expressed in CQL as:

$C1 := ROLLUP (migr_asyappctzm, citizenshipDim,continent);
$C2 := ROLLUP ($C1, timeDim, year);
$C3 := DICE ($C2, (citizenshipDim|continent|continentName = "Asia"));
$C4 := DICE ($C3, (obsValue > 5000 AND (destinationDim|country|countryName = "France")

OR (destinationDim|country|countryName = "United Kingdom")));

The SPARQL query below, produced by our translation algorithms, imple-
ments Query 4. It contains a subquery, where aggregated values are computed,

and an outer query where the FILTER conditions that implement the Dice op-
erations are applied.

1 SELECT ?plm1 ?plm2 ?lm3 ?lm4 ?lm5 ?lm6 ?ag1
2 WHERE {
3 { SELECT ?plm1 ?plm2 ?lm3 ?lm4 ?lm5 ?lm6 (SUM(xsd:integer(?m1)) as ?ag1)
4 FROM loc−ins:migr_asyapp_clean
5 FROM loc−sch:migr_asyappctzmQB4O13
6 WHERE { ?o a qb:Observation . ?o qb:dataSet dt:migr_asyappctzm .
7 ?o sdmxm:obsValue ?m1 .
8 ?o property:citizen ?lm1 . ?lm1 qb4o:memberOf property:citizen .
9 ?lm1 schema:inContinent ?plm1 . ?plm1 qb4o:memberOf schema:continent .

10 ?o sdmxd:refPeriod ?lm2 . ?lm2 qb4o:memberOf sdmxd:refPeriod .
11 ?lm2 schema:inYear ?plm2 . ?plm2 qb4o:memberOf schema:year .
12 ?o property:geo ?lm3 . ?o property:sex ?lm4 .
13 ?o property:age ?lm5 . ?o property:asyl_app ?lm6 .
14 ?plm1 schema:continentName ?plm11 .
15 ?lm3 schema:countryName ?lm31 .
16 FILTER (?plm11="Asia" && ((?lm31="France"@en) || (?lm31="United Kingdom"@en)))
17 } GROUP BY ?plm1 ?plm2 ?lm3 ?lm4 ?lm5 ?lm6
18 } FILTER (?ag1 > 5000) }

Lines 8 and 9 implement the �rst roll-up (C1). Variable ?lm1 will be instan-
tiated with each member of the Country level in the Citizen dimension hierarchy,
related to an observation ?o. Then, we navigate the hierarchy up to the level
Continent, using the rollup property schema:inContinent. The variable ?plm1
will contain the continent corresponding to the country that instantiates ?lm1.
It is placed in the SELECT clause of the inner query (line 3), in the GROUP BY

clause of the inner query (line 18), and in the result of the outer query (line 1).
The navigation corresponding to the Rollup in C2 is performed analogously.
Lines 12 and 13 instantiate the level members of the remaining dimensions, and
variables are added to the GROUP BY and SELECT clauses of the inner and outer
queries, respectively. Line 7 retrieves the value of the measure in each observa-
tion, and the SUM aggregate function computes ?ag1 in line 3. The aggregated
value is added to result of the outer query (line 1) (measure values are converted
to integer before applying the SUM, due to format restrictions of Eurostat data).
Finally, to implement the Dice operation in statement C3, we need to obtain
the name of each continent (line 14) and then use a FILTER clause to keep only
the cells that correspond to �Asia� (line 16). Analogously, the restrictions on
country names are implemented in line 16 (country names are retrieved in line
15), while the restriction on the measure values must be performed after the
aggregation, and is implemented by the FILTER clause of the outer query (line
19).

SPARQL queries improvement To improve the performance of the queries
produced by the naïve algorithm, we adapted existing SPARQL optimization
techniques to the characteristics of MD data and QB4OLAP.

As a �rst strategy, we adapted to our setting the heuristics proposed by
Loizou et al. [9] From the �ve heuristics proposed, we choose two that are ap-
plicable (e.g., heuristics related to the OPTIONAL clauses do not apply, since the
SPARQL queries we produce do not use that clause), and have shown to improve
performance across di�erent triplestores. Concretely, we use two heuristics:

H1 - Use named graphs to localize SPARQL graph patterns. To take
advantage of this, we organize QB4OLAP data into two named graphs. The
schema graph stores the schema and dimension members, while the instance

graph stores only observations. Due to MD data nature, in most cases the size
of the instances graph will be considerably bigger than the schema graph. With
this organization we can ensure a bound on the number of graph patterns over
the instance graph, which will be at most 2+|D|+|M|, being D the set of dimen-
sions, and M the set of measures.
H2 - Specifying alternative URIs. Proposes to transform FILTER clauses
with disjunction (||) of equality constraints, using either the UNION of patterns,
or a VALUES expression. Since the reported results are not conclusive on which
of these strategies leads to better performant queries, we decided to try them
both in our experimental evaluation (not discussed in this paper).

As a second strategy, we considered the recommendations in [15], namely: (i)
Split conjunctive FILTER equality constraints into a cascade of FILTER equality
constraints; (ii) Replace FILTER equality constraints that compare a variable and
a constant with graph patterns.

We next show the result of applying these strategies to the SPARQL query
above. The application of H1 organizes graph patterns in the inner query in
two GRAPH clauses: one for the instance graph (lines 7 to 11), and another for
the schema graph (lines 12 to 19). Applying H2, the FILTER clause on country
names is replaced by a VALUES clause (line 19). Filter clauses are split, and the
FILTER clause on continent name is replaced by a graph pattern (line 15).

1 SELECT ?plm1 ?plm2 ?lm3 ?lm4 ?lm5 ?lm6 ?ag1
2 WHERE {
3 { SELECT ?plm1 ?plm2 ?lm3 ?lm4 ?lm5 ?lm6 (SUM(xsd:integer(?m1)) as ?ag1)
4 FROM NAMED loc−ins:migr_asyapp_clean
5 FROM NAMED loc−sch:migr_asyappctzmQB4O13
6 WHERE {
7 {GRAPH loc−ins:migr_asyapp_clean
8 {?o a qb:Observation . ?o qb:dataSet dt:migr_asyappctzm .
9 ?o sdmxm:obsValue ?m1 . ?o property:citizen ?lm1 .

10 ?o sdmxd:refPeriod ?lm2 . ?o property:geo ?lm3 .
11 ?o property:sex ?lm4 . ?o property:age ?lm5 . ?o property:asyl_app ?lm6 . }}.
12 {GRAPH loc−sch:migr_asyappctzmQB4O13
13 {?lm1 qb4o:memberOf property:citizen .
14 ?lm1 schema:inContinent ?plm1 . ?plm1 qb4o:memberOf schema:continent .
15 ?plm1 schema:continentName "Asia" .
16 ?lm2 qb4o:memberOf sdmxd:refPeriod . ?lm2 schema:inYear ?plm2 .
17 ?plm2 qb4o:memberOf schema:year .
18 ?lm3 schema:countryName ?lm31 .
19 VALUES ?lm31 {"France"@en "United Kingdom"@en} }}
20 } GROUP BY ?plm1 ?plm2 ?lm3 ?lm4 ?lm5 ?lm6
21 } FILTER (?ag1 > 5000) }

Finally, based on Stocker et. al [12], we propose to reorder triple patterns on
the schema graph to further improve the performance of SPARQL queries. This
optimization is based on graph pattern selectivity. The idea is to apply �rst
the most selective patterns. This requires to keep estimates on the selectivity
of each pattern. We take advantage of MD data characteristics to estimate the
selectivity of patterns beforehand: Since typically, RUP relationships between
level members are functions, each level member has exact one parent on the

level immediately above. Thus, for each pair of levels li and lj such that li → lj ,
|li| ≥ |lj |. Based on the above, we de�ne the following ordering criteria (OC) for
the graph patterns: (1) For each dimension appearing in the query, apply �rst the
patterns that correspond to higher levels (OC1); (2) For each dimension, apply
OC1. Then, reorder dimensions considering �rst, dimensions with conditions that
�x a certain member, then dimensions with conditions that restrain to a range of
members, and then the other dimensions (OC2); (3) For each dimension, apply
OC1, then OC2. If more than one dimension satisfy any of the criteria in OC2,
proceed as follows: If dimensions A and B �x members a and b at levels lA and
lB respectively, and |lA| ≥ |lB |, then dimension A goes before dimension B.

Below, we show the result of applying OC2 to reorder the triple patterns on
the second graph of the query. For each dimension, the graph patterns are ordered
from higher levels in the hierarchy to lower ones. The Citizenship dimension is
considered �rst since a member of the dimension is �xed to �Asia�. Then we
consider the Destination dimension because there is a restriction on members of
this dimension (�France� or �United Kingdom�).

GRAPH loc−sch:migr_asyappctzmQB4O13 {
?plm1 schema:continentName "Asia" .
?plm1 qb4o:memberOf schema:continent .
?lm1 schema:inContinent ?plm1 . ?lm1 qb4o:memberOf property:citizen .
?lm3 schema:countryName ?lm31 .
VALUES ?lm31 {"France"@en "United Kingdom"@en}
?plm2 qb4o:memberOf schema:year . ?lm2 schema:inYear ?plm2 .
?lm2 qb4o:memberOf sdmxd:refPeriod .}

Experimental results and implementation For the sake of space we
just report that comprehensive experiments have been run adapting the Star
Schema Benchmark (SSB) [10], with 132,000,000 triples, running the 13 queries
in the benchmark and applying di�erent combinations of our strategies. The
conclusions were that our proposal largely outperforms [6,7], and that some
combinations of optimization strategies improve the SPARQL query produced
by the naïve translation up to 10 times. In addition, a toolkit allowing exploring
and querying QB4OLAP cubes is publicly available.9

5 Related Work

Kämpgen et al. [6,7] attempt to override the lack of structure in QB by de�ning
an OLAP data model on top of QB using other vocabularies, to represent the
hierarchical structure of the dimensions. Further, in [6] the authors implement
some OLAP operators over those extended cubes, using SPARQL queries, re-
stricted to data cubes with only one hierarchy per dimension, and explore the use
of RDF aggregate views to improve performance. This approach requires special-
ized OLAP engines for analytical queries over RDF data, instead of traditional
triple stores. The use of SW technologies in OLAP is surveyed in [1].

Regarding SPARQL query processing, many works study the complexity of
query evaluation [11]. In [8] the authors focus on the static analysis of SPARQL

9 https://www.fing.edu.uy/inco/grupos/csi/apps/qb4olap/

https://www.fing.edu.uy/inco/grupos/csi/apps/qb4olap/

queries, in particular those that contain the OPTIONAL operator. Tsialimanis et.
al [13] propose a heuristic approach to the optimization for SPARQL joins, based
on the selectivity of graph patterns. All of these are general-purpose studies. On
the contrary, we take advantage of the characteristics of our data model (e.g.,
the OLAP operators, and the information provided by QB4OLAP metadata) to
de�ne optimization rules that may not apply to a more generic scenario.

6 Conclusion

We have described a simple algebra (CQL) over data cubes, that can be used
to express OLAP queries, and automatically translated into e�cient SPARQL
queries. First, we use QB4OLAP metadata to obtain a naïve translation of
CQL to SPARQL; then, we adapted general-purpose SPARQL optimization
techniques to the OLAP setting. Our experiments over a modi�ed SSB showed
that our techniques outperform other proposals, and suggested the best com-
binations of optimization strategies. An application to explore and query SW
cubes completes our contibutions. We think that these results can encourage
and promote the publication and sharing of MD data on the SW, and we plan to
continue working in this direction, extending CQL with other OLAP operations.

A Pre�xes de�nition

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX qb: <http://purl.org/linked−data/cube#>
PREFIX qb4o: <http://purl.org/qb4olap/cubes#>
PREFIX sdmxm: <http://purl.org/linked−data/sdmx/2009/measure#>
PREFIX sdmxd: <http://purl.org/linked−data/sdmx/2009/dimension#>
PREFIX property: <http://eurostat.linked−statistics.org/property#>
PREFIX citizen: <http://eurostat.linked−statistics.org/dic/citizen#>
PREFIX dt: <http://eurostat.linked−statistics.org/data/>
PREFIX loc−ins: <http://www.�ng.edu.uy/cubes/instances/>
PREFIX loc−sch: <http://www.�ng.edu.uy/cubes/schemas/>
PREFIX schema: <http://www.�ng.edu.uy/cubes/schemas/migr_asyapp#>
PREFIX citDim: <http://www.�ng.edu.uy/cubes/dims/migr_asyapp/citizen#>
PREFIX dbpedia: <http://dbpedia.org/resource/>

Fig. 2: RDF pre�xes used in this work

References

1. Abelló, A., Romero, O., Pedersen, T.B., Berlanga, R., Nebot, V., Aramburu, M.J.,
Simitsis, A.: Using semantic web technologies for exploratory OLAP: A survey.
IEEE TKDE 27(2), 571�588 (2015)

2. Ciferri, C., Ciferri, R., Gómez, L., Schneider, M., Vaisman, A., Zimányi, E.: Cube
algebra: A generic user-centric model and query language for OLAP cubes. IJDWM
9(2), 39�65 (2013)

3. Cyganiak, R., Reynolds, D.: The RDF Data Cube Vocabulary (W3C Recommen-
dation) (January 2014), http://www.w3.org/TR/vocab-data-cube/

4. Etcheverry, L., Vaisman, A.: QB4OLAP: A vocabulary for OLAP cubes on the
semantic web. In: Proc. of COLD. CEUR-WS.org, Boston, USA (2012)

5. Etcheverry, L., Gomez, S., Vaisman, A.: Modeling and querying data cubes on the
semantic web. arXiv preprint arXiv:1512.06080 (2015)

6. Kämpgen, B., Harth, A.: No size �ts all - running the star schema benchmark with
SPARQL and RDF aggregate views. In: The Semantic Web: Semantics and Big
Data, LNCS, vol. 7882, pp. 290�304. Springer (2013)

7. Kämpgen, B., O'Riain, S., Harth, A.: Interacting with Statistical Linked Data via
OLAP Operations. In: Proceedings of ESWC. CEUR-WS.org (2012)

8. Letelier, A., Pérez, J., Pichler, R., Skritek, S.: Static analysis and optimization of
semantic web queries. ACM TODS 38(4), 25 (2013)

9. Loizou, A., Angles, R., Groth, P.: On the formulation of performant SPARQL
queries. Web Semantics: Science, Services and Agents on the WWW 31, 1�26
(2014), http://linkinghub.elsevier.com/retrieve/pii/S1570826814001061

10. Neil, P.O., Neil, B.O., Chen, X.: Star Schema Benchmark (2009), http://www.cs.
umb.edu/{~}poneil/StarSchemaB.PDF

11. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. ACM
Transactions on Database Systems (TODS) 34(3), 1�45 (2009)

12. Stocker, M., Seaborne, A.: SPARQL Basic Graph Pattern Optimization Using
Selectivity Estimation. Proceedings of WWW'08 pp. 595�604 (2008)

13. Tsialiamanis, P., Sidirourgos, L., Fundulaki, I., Christophides, V., Boncz, P.:
Heuristics-based query optimisation for SPARQL. In: Proceedings of EDBT. pp.
324�335. ACM (2012)

14. Vaisman, A., Zimányi, E.: Data Warehouse Systems: Design and Implementation.
Springer (2014)

15. Vesse, R.: SPARQL Optimization 101, Tutorial at ApacheCon North Amer-
ica 2014 (2014), http://events.linuxfoundation.org/sites/events/files/

slides/SPARQL%20Optimisation%20101%20Tutorial.pdf

http://www.w3.org/TR/vocab-data-cube/
http://linkinghub.elsevier.com/retrieve/pii/S1570826814001061
http://www.cs.umb.edu/{~}poneil/StarSchemaB.PDF
http://www.cs.umb.edu/{~}poneil/StarSchemaB.PDF
http://events.linuxfoundation.org/sites/events/files/slides/SPARQL%20Optimisation%20101%20Tutorial.pdf
http://events.linuxfoundation.org/sites/events/files/slides/SPARQL%20Optimisation%20101%20Tutorial.pdf

	Querying Semantic Web Data Cubes

