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Abstract. Research in Machine Learning (ML) has traditionally fo-
cussed on designing effective algorithms for solving particular tasks. How-
ever, there is an increasing interest in providing the user with a means
for specifying what the ML problem in hand actually is rather than let-
ting him struggle to outline how the solution to that problem needs to
be computed. This corresponds to a model+solver approach to ML, in
which the user specifies the problem in a declarative modeling language
and the system automatically transforms such models into a format that
can be used by a solver to efficiently generate a solution. In this paper, we
propose a model+solver approach to Concept Learning problems which
combines the efficacy of Description Logics (DLs) in conceptual modeling
with the efficiency of Answer Set Programming (ASP) solvers in dealing
with constraint satisfaction problems. In particular, the approach con-
sists of a declarative modeling language based on second-order DLs under
Henkin semantics, and a mechanism for transforming second-order DL
formulas into a format processable by ASP solvers.

1 Introduction

The goal of Machine Learning (ML) is the design and development of algorithms
that allow computers to evolve behaviors based on empirical data [27]. The
automation of the inductive inference plays a key role in ML algorithms, though
other inferences such as abduction and analogy are also considered. Ideally, the
ML task is to discover an operational description of a target function f : X → Y
which maps elements in the instance space X to the values of a set Y . The target
function is unknown, meaning that only a set D (the training data) of points of
the form (x, f(x)) is provided. However, it may be very difficult in general to
learn such a description of f perfectly. In fact, ML algorithms are often expected
to acquire only some approximation f̂ to f by searching a very large space H of
possible hypotheses (the hypothesis space) which depend on the representation
chosen for f (the language of hypotheses). The output approximation is the one
that best fits D according to a scoring function score(f,D). It is assumed that
any hypothesis h ∈ H that approximates f well w.r.t. a large set of training
cases will also approximate it well for new unobserved cases. Summing up, given



a hypothesis space H and a training data set D, ML algorithms are designed to
find an approximation f̂ of a target function f s.t.:

1. f̂ ∈ H;

2. f̂(D) ≈ f(D); and/or

3. f̂ = argmaxf∈Hscore(f,D).

These notions have been mathematically formalized in computational learning
theory within the Probably Approximately Correct (PAC) learning framework
[32]. It has been recently stressed that the first two requirements impose con-
straints on the possible hypotheses, thus defining a Constraint Satisfaction Prob-
lem (CSP), whereas the third requirement involves the optimization step, thus
turning the CSP into an Optimization Problem (OP) [9]. We shall refer to the
ensemble of constraints and optimization criteria as the model of the learning
task. Models are almost by definition declarative and it is useful to distinguish
the CSP, which is concerned with finding a solution that satisfies all the con-
straints in the model, from the OP, where one also must guarantee that the found
solution be optimal w.r.t. the optimization function. Examples of typical CSPs
in the ML context include variants of so-called Concept Learning (see Chapt. 2
in [27] for an introduction).

Research in ML has traditionally focussed on designing effective algorithms
for solving particular tasks. However, there is an increasing interest in providing
the user with a means for specifying what the ML problem in hand actually
is rather than letting him struggle to outline how the solution to that problem
needs to be computed. This corresponds to a model+solver -based approach to
ML, in which the user specifies the problem in a declarative modeling language
and the system automatically transforms such models into a format that can
be used by a solver to efficiently generate a solution. In this paper, we propose
a model+solver approach to Concept Learning which combines the efficacy of
Description Logics (DLs) [1] in conceptual modeling with the efficiency of Answer
Set Programming (ASP) solvers (see [5] for an overview) in dealing with CSPs.
The approach consists of a declarative modeling language based on second-order
DLs under Henkin semantics, and a mechanism for transforming second-order
DL formulas into a format processable by ASP solvers. This paper completes the
work reported in [23]. In particular, it elaborates more on the modeling of one of
the variants of the Concept Learning problem discussed in [23] (more precisely,
the CSP version of the problem variant called Concept Induction), and provide a
substantial contribution to the solver part which was left as future work in [23].

The paper is structured as follows. Section 2 is devoted to preliminaries
on DLs, ASP, and Concept Learning. Section 3 introduces a case study from
Concept Learning in DLs which is of interest to this paper. Section 4 describes
our model+solver approach to the case being studied. Section 5 discusses related
work. Section 6 summarizes the contributions of the paper and outlines directions
of future work.



Table 1. Syntax and semantics of some typical DL constructs.

bottom (resp. top) concept ⊥ (resp. >) ∅ (resp. ∆I)
atomic concept A AI ⊆ ∆I

role R RI ⊆ ∆I ×∆I

individual a aI ∈ ∆I

nominals {a1, . . . , an} {aI1 , . . . , aIn}
concept negation ¬C ∆I \ CI

concept intersection C1 u C2 CI
1 ∩ CI

2

concept union C1 t C2 CI
1 ∪ CI

2

value restriction ∀R.C {x ∈ ∆I | ∀y (x, y) ∈ RI → y ∈ CI}
existential restriction ∃R.C {x ∈ ∆I | ∃y (x, y) ∈ RI ∧ y ∈ CI}

Self concept ∃R.Self {x ∈ ∆I | (x, x) ∈ RI}
qualified 6 n R.C {x ∈ ∆I | #{y ∈ CI | (x, y) ∈ RI} ≤ n}

number restriction > n R.C {x ∈ ∆I | #{y ∈ CI | (x, y) ∈ RI} ≥ n}

concept inclusion axiom C v D CI ⊆ DI

concept equivalence axiom C ≡ D CI = DI

role inclusion axiom R1 ◦ . . . ◦Rn v S RI
1 ◦ . . . ◦RI

n ⊆ SI

concept assertion a : C aI ∈ CI

role assertion 〈a, b〉 : R (aI , bI) ∈ RI

equality assertion a
.
= b aI = bI

inequality assertion a 6 .= b aI 6= bI

2 Preliminaries

2.1 Description Logics

DLs are a family of decidable First Order Logic (FOL) fragments that allow
for the specification of structured knowledge in terms of classes (concepts), in-
stances (individuals), and binary relations between instances (roles) [1]. Let NC ,
NR, and NO be the alphabet of concept names, role names and individual names,
respectively. Complex concepts can be defined from atomic concepts and roles
by means of constructors. The syntax of some typical DL constructs is reported
in Table 1. A DL knowledge base (KB) K = (T ,A) consists of a so-called termi-
nological box (TBox) T and a so-called assertional box (ABox) A. The TBox is
a finite set of axioms which represent either is-a relations (denoted with v) or
equivalence (denoted with ≡) relations between concepts, whereas the ABox is
a finite set of assertions (or facts) that represent instance-of relations between
individuals (resp. couples of individuals) and concepts (resp. roles). DLs pro-
vide logical foundations to the W3C Web Ontology Language (OWL) [19]. Thus,
when a DL-based ontology language is adopted, an ontology is nothing else than
a TBox, and a populated ontology corresponds to a whole DL KB (i.e., encom-



passing also an ABox). In particular, SROIQ [18] is the logical counterpart of
OWL 2. 1 A distinguishing feature of SROIQ is that it admits inverse roles.

The semantics of DLs can be defined directly with set-theoretic formaliza-
tions as shown in Table 1 or through a mapping to FOL as shown in [2]. An
interpretation I = (∆I , ·I) for a DL KB K consists of a domain ∆I and a map-
ping function ·I . Under the Unique Names Assumption (UNA) [31], individuals
are mapped to elements of ∆I such that aI 6= bI if a 6= b. However UNA does
not hold by default in DLs. An interpretation I is a model of K iff it satisfies all
axioms and assertions in T and A. In DLs a KB represents many different inter-
pretations, i.e. all its models. This is coherent with the Open World Assumption
(OWA) that holds in FOL semantics. A DL KB is satisfiable if it has at least one
model. An ABox assertion α is a logical consequence of a KB K, written K |= α,
if all models of K are also models of α.

The main reasoning task for a DL KB K is the consistency check which tries
to prove the satisfiability of K. This check is performed by applying decision
procedures mostly based on tableau calculus. The subsumption check aims at
proving whether a concept is included in another one according to the subsump-
tion relationship. Another well known reasoning service in DLs is instance check,
i.e., the check of whether an ABox assertion is a logical consequence of a DL
KB. A more sophisticated version of instance check, called instance retrieval,
retrieves, for a DL KB K, all (ABox) individuals that are instances of the given
(possibly complex) concept expression C, i.e., all those individuals a such that
K entails that a is an instance of C. All these reasoning tasks support so-called
standard inferences and can be reduced to the consistency check. Besides the
standard ones, additional so-called non-standard inferences have been investi-
gated in DL reasoning [21].

When reasoning in DLs, models can be of arbitrary cardinality. In many
applications, however, the domain of interest is known to be finite. This is,
e.g., a natural assumption in database theory. In finite model reasoning [24],
models have a finite yet arbitrary, unknown size. Even more interesting from
the application viewpoint is the case where the domain has an a priori known
cardinality, more precisely, when the domain coincides with the set of named
individuals mentioned in the KB. In their proposal of bounded model reasoning,
Gaggl et al. [11] refer to such models as bounded models. Also, they argue that
in many applications this modification of the classical DL semantics represents
a more intuitive definition of what is considered and expected as model of some
KB. In fact, OWL is often “abused” by practicioners as a constraint language
for an underlying fixed domain.

2.2 Answer Set Programming

Based on the stable model (answer set) semantics [12], ASP is an alternative
logic programming paradigm oriented towards difficult search problems [3]. ASP
solvers (see [5] for an overview) are indeed powerful systems especially designed

1 http://www.w3.org/TR/2009/REC-owl2-overview-20091027/



to enumerate all solutions. In the following we give a brief overview of the syntax
and semantics of disjunctive logic programs in ASP.

Let U be a fixed countable set of (domain) elements, also called constants,
upon which a total order ≺ is defined. An atom α is an expression p(t1, . . . , tn),
where p is a predicate of arity n ≥ 0 and each ti is either a variable or an element
from U (i.e., the resulting language is function-free). An atom is ground if it is
free of variables. BU denotes the set of all ground atoms over U . A (disjunctive)
rule r is of the form

a1 ∨ . . . ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm

with n ≥ 0, m ≥ k ≥ 0, n + m > 0, where a1, . . . , an, b1, . . . , bm are atoms, or
a count expression of the form #count{l : l1, . . . , li} ./ u, where l is an atom
and lj is a literal (i.e., an atom which can be negated or not), 1 ≥ j ≥ i, u a
non-negative integer, and ./∈ {≤, <,=, >,≥}. Moreover, “not” denotes default
negation. The head of r is the set head(r) = {a1, . . . , an} and the body of r is
body(r) = {b1, . . . , bk, notbk+1, . . . , notbm}. Furthermore, we distinguish between
body+(r) = {b1, . . . , bk} and body−(r) = {bk+1, . . . , bm}. A rule r is normal if
n ≤ 1 and a constraint if n = 0. A rule r is safe if each variable in r occurs in
body+(r). A rule r is ground if no variable occurs in r. A fact is a ground rule
with body(r) = ∅ and |head(r)| = 1. An (input) database is a set of facts. A
program is a finite set of rules. For a program Π and an input database D, we
often write Π(D) instead of D ∪Π. If each rule in a program is normal (resp.
ground), we call the program normal (resp. ground).

For any program Π, let UΠ be the set of all constants appearing in Π.
Gr(Π) is the set of rules rσ obtained by applying, to each rule r ∈ Π, all
possible substitutions σ from the variables in r to elements of UΠ . For count-
expressions, {l : l1, . . . , ln} denotes the set of all ground instantiations of l,
governed through l1, . . . , ln. An interpretation I ⊆ BU satisfies a ground rule
r iff head(r) ∩ I = ∅ whenever body+(r) ⊆ I, body−(r) ∩ I = ∅, and for each
contained count-expression, N ./ u holds, where N is the cardinality of the
set of ground instantiations of l, N = |{l|l1, . . . , ln}|, for ./∈ {≤, <,=, >,≥}
and u a non-negative integer. I satisfies a ground program Π, if each r ∈ Π
is satisfied by I. A non-ground rule r (resp., a program Π) is satisfied by an
interpretation I iff I satisfies all groundings of r (resp., Gr(Π)). I ⊆ BU is an
answer set of Π iff it is a subset- minimal set satisfying the Gelfond-Lifschitz
reduct ΠI = {head(r)← body+(r)|I∩body−(r) = ∅, r ∈ Gr(Π)}. For a program
Π, we denote the set of its answer sets by AS(Π).

2.3 Concept Learning

Concept Learning deals with inferring the general definition of a category based
on members (positive examples) and nonmembers (negative examples) of this
category [27]. Here, the target is a Boolean-valued function f : X → {0, 1}, i.e.
a concept. When examples of the target concept are available, the resulting ML
task is said supervised, otherwise it is called unsupervised. The positive examples



are those instances with f(x) = 1, and negative ones are those with f(x) = 0.
In Concept Learning, the key inferential mechanism for induction is generaliza-
tion as search through a partially ordered space of inductive hypotheses [26].
Hypotheses may be ordered from the most general ones to the most specific
ones. We say that an instance x ∈ X satisfies a hypothesis h ∈ H if and only if
h(x) = 1. Given two hypotheses hi and hj , hi is more general than or equal to
hj (written hi �g hj , where �g denotes a generality relation) if and only if any
instance satisfying hj , also satisfies hi. Note that it may not be always possible
to compare two hypotheses with a generality relation: the instances satisfied by
the hypotheses may intersect, and not necessarily be subsumed by one another.
The relation �g defines a partial order (i.e., it is reflexive, antisymmetric, and
transitive) over the space of hypotheses.

A hypothesis h that correctly classifies all training examples is called consis-
tent with these examples. For a consistent hypothesis h it holds that h(x) = f(x)
for each instance x. The set of all hypotheses consistent with the training ex-
amples is called the version space with respect to H and D. Concept Learning
algorithms may use the hypothesis space structure to efficiently search for rel-
evant hypotheses, e.g., they may perform a specific-to-general search through
the hypothesis space along one branch of the partial ordering, to find the most
specific hypothesis consistent with the training examples. An important issue
in Concept Learning is associated with the so-called inductive bias, i.e. the set
of assumptions that the learning algorithm uses for prediction of outputs given
previously unseen inputs. These assumptions represent the nature of the target
function, so the learning approach implicitly makes assumptions on the correct
output for unseen examples. A distinguishing feature of Inductive Logic Pro-
gramming (ILP) [29] with respect to other forms of Concept Learning is the use
of prior knowledge of the domain of interest, called background knowledge (BK),
during the search for hypotheses.

3 The case study

Concept Learning in DLs has been paid increasing attention over the last decade.
Notably, algorithms such as [22] have been proposed that follow the generaliza-
tion as search approach by extending the methodological apparatus of ILP to DL
languages. In [23], we formally defined three variants of the Concept Learning
problem in the DL setting. The variants share the following two features:

1. The background knowledge is in the form of a DL KB K = (T ,A), and
2. The target theory is a set of DL concept definitions, i.e. concept equivalence

axioms having an atomic concept in the left-hand side.

but differ in the requirements that an induced concept definition must fulfill in
order to be considered as a correct (or valid) solution. The variant we consider
in this paper is the supervised one. It is the base for the other variants being
introduced in [23]. In the following, the set of all individuals occurring in A and
the set of all individuals occurring in A that are instance of a given concept C
w.r.t. K are denoted by Ind(A) and RetrK(C), respectively.



Fig. 1. Michalski’s example of eastbound (left) and westbound (right) trains (illustra-
tion taken from [25]).

Definition 1 (Concept Induction - CSP version). Let K = (T ,A) be a DL
KB. Given:

– a (new) target concept name C
– a set of positive and negative examples Ind+C(A) ∪ Ind−C(A) ⊆ Ind(A) for C
– a concept description language DLH

the CSP version of the Concept Induction (CI-CSP) problem is to find a concept
definition C ≡ D with D ∈ DLH such that

Completeness K |= (a : D) ∀a ∈ Ind+C(A) and
Consistency K |= (b : ¬D) ∀b ∈ Ind−C(A)

Here, the sets of positive and negative examples are defined as follows

– Ind+C(A) = {a ∈ Ind(A) | (a : C) ∈ A} ⊆ RetrK(C)
– Ind−C(A) = {b ∈ Ind(A) | (b : ¬C) ∈ A} ⊆ RetrK(¬C)

These sets can be easily computed by resorting to instance retrieval inference
services usually available in DL systems.

Example 1. For illustrative purposes throughout the paper, we choose a very
popular learning task in ILP proposed 20 years ago by Ryszard Michalski [25]
and illustrated in Figure 1. Here, 10 trains are described, out of which 5 are
eastbound and 5 are westbound. The aim of the learning problem is to find the
discriminating features between these two classes.

For the purpose of this case study, we have considered an ALCO ontology,
trains2, encoding the original Trains data set 2 and distributed with the DL-
Learner system. 3 The ontology encompasses 345 logical axioms, 32 classes, 5
object properties and 50 individuals. With reference to trains2 (which therefore
will play the role of K as in Def. 1), we might want to induce a SROIQ con-
cept definition for the target concept name C = EastTrain from the following
positive and negative examples:

2 http://archive.ics.uci.edu/ml/datasets/Trains
3 http://dl-learner.org/Projects/DLLearner



– Ind+EastTrain(A) = {east1, . . . , east5}
– Ind−EastTrain(A) = {west6, . . . , west10}

We remind the reader that the examples are chosen from the sets RetrK(EastTrain)
and RetrK(¬EastTrain), respectively. Note that the 5 positive examples for
EastTrain are negative examples for WestTrain and viceversa.

4 The approach

The proposed approach consists of a declarative modeling language based on
second-order DLs under Henkin semantics (see Sect. 4.1), and a mechanism for
transforming second-order DL formulas into a format processable by ASP solvers
(see Sect. 4.2). In particular, the transformation is a two-stage process. Second-
order DL formulas are instantiated, then encoded as answer set programs.

4.1 Modeling with Second-Order DLs

Let DL be any DL with syntax (NC ,NR,NO). In order to write second-order
formulas, we introduce a set NX = {X0, X1, X2, . . .} of concept variables, which
we can quantify over. We denote by DLX the language of concept terms obtained
from DL by adding NX .

Definition 2 (Concept term). A concept term in DLX is a concept formed
according to the specific syntax rules of DL augmented with the additional rule
C −→ X for X ∈ NX .

Since we are not interested in second-order DLs in themselves, we restrict our
language to particular existential second-order formulas of interest to this paper,
i.e. formulas involving concept subsumptions and concept assertions.

Definition 3 (Second-order concept expression). Let a1, . . . , ak ∈ DL be
individuals, C1, . . . , Cm, D1, . . . , Dm ∈ DLX be concept terms containing concept
variables X0, . . . , Xn. A concept expression γ in DLX is a conjunction

(C1 v D1) ∧ . . . ∧ (Cl v Dl) ∧ (Cl+1 6v Dl+1) ∧ . . . ∧ (Cm 6v Dm)∧
(a1 : D1) ∧ . . . ∧ (aj : Dl) ∧ (aj+1 : ¬Dl+1) ∧ . . . ∧ (ak : ¬Dm)

(1)

of (negated or not) concept subsumptions and concept assertions with 1 ≤ l ≤ m
and 1 ≤ j ≤ k.

Definition 4 (Second-order formula). A formula φ in DLX has the form

∃X.γ (2)

where γ is a concept expression of the form (1) and X is a concept variable.



We use General Semantics, also called Henkin semantics [17], for interpret-
ing concept variables. A nice feature of the Henkin style is that the expressive
power of the language actually remains first-order. In such a semantics, variables
denoting unary predicates can be interpreted only by some subsets among all

the ones in the powerset of the domain 2∆
I

- instead, in Standard Semantics
a concept variable could be interpreted as any subset of ∆I . Adapting General
Semantics to our problem, the structure we consider is exactly composed by the
sets interpreting concepts in DL, i.e. the interpretation XI of a concept variable
X ∈ DLX must coincide with the interpretation EI of some concept E ∈ DL.
The interpretations we refer to in the following definition are of this kind.

Definition 5 (Satisfiability of second-order concept expressions). A con-
cept expression γ of the form (1) is satisfiable in DL iff there exist a concept
E ∈ DL such that, extending the semantics of DL for each interpretation I,
with: (X)I = (E)I , it holds that

1. for each j = 1, . . . , l, and every I, (Cj)
I ⊆ (Dj)

I and (aj)
I ∈ (Dj)

I , and
2. for each j = l+ 1, . . . ,m, there exists an interpretation I s.t. (Cj)

I 6⊆ (Dj)
I

and (aj)
I ∈ (¬Dj)

I

Otherwise, γ is said to be unsatisfiable in DL.

Definition 6 (Solution for a second-order concept expression). Let γ
be a concept expression of the form (1). If γ is satisfiable in DL, then E is a
solution for γ.

Definition 7 (Satisfiability of second-order formulas). A formula φ of the
form (2) is true in DL if there exist at least a solution for γ, otherwise it is false.

The fragment of Second-Order DLs just introduced can be used as a declara-
tive modeling language for Concept Learning problems in DLs. Following Def. 1,
we assume that Ind+C(A) = {a1, . . . , am} and Ind−C(A) = {b1, . . . , bn}. A concept
D ∈ DLH is a correct concept definition for the target concept name C w.r.t.
Ind+C(A) and Ind−C(A) iff it is a solution for the following second-order concept
expression:

γCI-CSP := (a1 : X) ∧ . . . ∧ (am : X) ∧ (b1 : ¬X) ∧ . . . ∧ (bn : ¬X) (3)

that is, iff D can be an assignment for the concept variable X. The CI-CSP
problem can be modeled with the following second-order formula

φCI-CSP := ∃X.γCI-CSP (4)

The solvability of a CI-CSP problem is therefore based on the satisfiability of the
second-order formula being used for modeling the problem.

Definition 8 (Solvability of CI-CSP problems). A CI-CSP problem P is
solvable if φCI-CSP is true in DLH. Otherwise, the problem is not solvable. If D
is a solution for γCI-CSP, then C ≡ D is a solution for P.



Example 2. According to (3), the intended CI-CSP problem of Example 1 corre-
sponds to the following second-order concept expression γEastTrain:

(east1 : X) ∧ . . . ∧ (east5 : X) ∧ (west6 : ¬X) ∧ . . . ∧ (west10 : ¬X) (5)

The problem is then solvable if the following second-order formula:

φEastTrain := ∃X.γEastTrain (6)

is true in SROIQ, i.e., if there exists a solution to γEastTrain in SROIQ.

4.2 Solving with ASP

In order to solve the problems modeled with the second-order concept expres-
sions introduced in the previous section we need mechanisms for generating and
evaluating candidate solutions.

How to generate candidate solutions The CI-CSP problem statement re-
ported in Def. 1 mentions a concept description language DLH among its inputs.
It is the language of hypotheses and allows for the generation of concept defi-
nitions in any DL according to some declarative bias. It can be considered as a
generative grammar.

The concept expressions generated from DLH can be organized according to
the concept subsumption relation v. Note that v is a reflexive and transitive
binary relation, i.e. a quasi-order. Thus, (DLH,v) is a quasi-ordered set of
DL concept definitions which defines a search space to be traversed either top-
down or bottom-up by means of suitable refinement operators according to the
generalization as search approach in Mitchell’s vision.

Definition 9 (Refinement operator in DLs). Given a quasi-ordered search
space (DLH,v)

– a downward refinement operator is a mapping ρ : DLH → 2DLH such that

∀C ∈ DLH ρ(C) ⊆ {D ∈ DLH | D v C}

– an upward refinement operator is a mapping δ : DLH → 2DLH such that

∀C ∈ DLH δ(C) ⊆ {D ∈ DLH | C v D}

Note that there is an infinite number of generalizations and specializations
in a given (DL,v). Usually one tries to define refinement operators that can
traverse efficiently the hypothesis space in pursuit of one of the correct definitions
(w.r.t. the examples that have been provided).

Example 3. Let us assume that the language of hypotheses allows for the gen-
eration of SROIQ concept expressions starting from the atomic concept and
role names occurring in trains2 (except, of course, for the target concept name).
Among the concepts (instantiations of X) satisfying γEastTrain, there is

> 3 hasCar.(¬JaggedCar) (7)



which describes the set of trains composed by at least three cars that are not
jagged. It provides a correct concept definition for EastTrain w.r.t. the given
examples, i.e., the following concept equivalence axiom

EastTrain ≡> 3 hasCar.(¬JaggedCar) (8)

is a solution for the CI-CSP problem in hand.

How to evaluate candidate solutions The choice of the solver is a critical
aspect in any model+solver approach. In our case the use of a second-order
modeling language does not necessarily imply the use of a second-order solver.
Indeed, the Henkin semantics paves the way to the use of first-order solvers.
Once instantiated, concept expressions of the kind (3) are just first-order DL
conjunctive queries. However, the CSP nature of the problem in hand should
not be neglected. This led us to assume the bounded model semantics for the
instantiated concept expressions instead of the classical one.

As already mentioned in Section 2.1, Gaggl et al. [11] modify the modelhood
condition by restricting the domain to a finite set of bounded size, induced by the
named individuals occurring in the given OWL ontology (denoted as NO(K)).
This means that, under the bounded model semantics, there is a one-to-one
correspondence between interpretations and sets of ground facts, if one assumes
the set of domain elements fixed and known. In other words, ABoxes can used
as representations of models.

Definition 10 (Bounded model semantics [11]). Let K be a SROIQ KB.
An interpretation I = (∆I , ·I) is said to be individual-bounded w.r.t. K, if all
of the following holds:

1. ∆I = {a|a ∈ NO(K)},
2. for each individual a ∈ NO(K)}, aI = a.

Accordingly, an interpretation I is an (individual-)bounded model of K, if I is
an individual-bounded interpretation w.r.t. K and I |= K holds.

Also, K is called bm-satisfiable if it has a bounded model.
We say that K bm-entails an axiom α (written K |=bm α) if every bounded

model of K is also a model of α.

The benefits of bounded model semantics are manifolded.
First, this non-classical semantics is computationally advantageous. Indeed,

while reasoning in OWL under the classical semantics is N2ExpTime-complete
[20], reasoning under the bounded model semantics is merely NP-complete [11].

Second, an arbitrary SROIQ KB K can be encoded into an answer set
program Π(K), such that the set of answer sets AS(Π(K)) coincides with the
set of bounded models of the given KB [11]. The rules for transforming SROIQ
concept expressions into ASP are reported in Table 2. Here, Oa is a new concept
name unique for the individual a. Also, ar(r,X, Y ) is defined as follows:

ar(r,X, Y ) :=

{
R(X,Y ) if R is an atomic role

S(Y,X) if R is an inverse role and R = S−



Table 2. Translation of SROIQ concept expressions into ASP (adapted from [11]).

C trans(C)

A not A(X)
¬A A(X)
{a} {not Oa(X)}, {Oa(X)}
∀R.A {not A(YA), ar(r,X, YA)}
∀R.(¬A) {ar(r,X, YA),A(YA)}
∃R.Self not ar(r,X,X)
¬∃R.Self ar(r,X,X)
> n R.A #count{ar(r,X, YA) : A(YA)} < n
> n R.(¬A) #count{ar(r,X, YA) : not A(YA)} < n
6 n R.A #count{ar(r,X, YA) : A(YA)} > n
6 n R.(¬A) #count{ar(r,X, YA) : not A(YA)} > n

The translation into ASP requires a KB to be in the so-called normalized form
(see [28] for details) which can be obtained however by an easy syntactic trans-
formation. The encoding turns out to be a more effective alternative to the
axiomatization, since existing OWL reasoners struggle on bounded model rea-
soning, due to the heavy combinatorics involved.

Last, but not least, we particularly emphasize OWL as modeling language
for typical CSPs.

Example 4. Let γ′EastTrain be the first-order concept expression obtained by in-
stantiating the unique second-order variable in γEastTrain with the concept (7)
generated by some refinement operator for SROIQ. It can be encoded in ASP
under bounded model semantics. The resulting ASP program can be then checked
for satisfiability by any ASP solver.

5 Related Work

The model+solver approach to ML/DM has been promoted by De Raedt et
al. [9,10] and successfully applied to one of the most popular DM tasks: Constraint-
based pattern mining [30,14,15,16]. Along this line, Guns et al. [13] introduce
MiningZinc, a general framework for constraint-based pattern mining. It consists
of two key components: a language component and a toolchain component. The
language allows for high-level and natural modeling of mining problems, such
that MiningZinc models closely resemble definitions found in the data mining
literature. It is inspired by the Zinc family of languages and systems and sup-
ports user-defined constraints and optimization criteria. The toolchain allows for
finding solutions to the models. It ensures the solver independence of the lan-
guage and supports both standard constraint solvers and specialized data mining
systems. Automatic model transformations enable the efficient use of different
solvers and systems. The combination of both components allows one to rapidly



model constraint-based mining problems and execute these with a wide variety
of methods.

Bruyonooghe et al. [4] suggest that predicate logic can be useful as a mod-
eling language and show how to model and solve ML and DM problems with
IDP3. The core of IDP3 is a finite model generator that supports FOL enriched
with types, inductive definitions, aggregates and partial functions. It offers its
users a modeling language that is a slight extension of predicate logic and allows
them to solve a wide range of search problems. Apart from a small introductory
example, applications are selected from problems that arose within ML/DM re-
search. These research areas have recently shown a strong interest in declarative
modeling and constraint solving as opposed to algorithmic approaches. The pa-
per illustrates that the IDP3 system can be a valuable tool for researchers with
such an interest.

Colucci et al. [7] have proposed a unified framework for non-standard reason-
ing services in DLs. The framework is based on the use of second-order sentences
in DLs [6]. It applies to so-called constructive inferences, i.e., those non-standard
inferences that deal with finding (or constructing) a concept. More precisely, it
provides a unifying definition model for all those constructive reasoning tasks
which rely on specific optimality criteria to build up the objective concept. In-
deed, constructive reasoning tasks can be divided into two main categories: Tasks
for which we just need to compute a concept (or a set of concepts) and those for
which we need to find a concept (or a set of concepts) according to some mini-
mality/maximality criteria. In the first case, we have a set of solutions while in
the second one we also have a set of sub-optimal solutions to the main problem.
For instance, the set of sub-optimal solutions in the Least Common Subsumer
(LCS) problem is represented by the common subsumers. In [7], Colucci et al.
provide also a sound and complete procedure for solving constructive reasoning
problems in DLs, which combines a tableaux calculus for DLs with rules for the
substitution of concept variables in second-order concept expressions. However,
the procedure does not terminate in all cases, since some of the above prob-
lems are known to be undecidable. More recently, Colucci and Donini [8] have
presented a modular Prolog prototype system aimed at proving the feasibility
of their unified framework for non-standard reasoning in DLs. The prototype
supports only some constructive reasoning problems, e.g. LCS, and two simple
DLs (EL and ALN ).

6 Summary and Directions of Future Work

In this paper we have carried on the work reported in [23] by studying in more
depth the case of Concept Induction, the basic case of Concept Learning in DLs
which can be naturally reformulated as a CSP. In particular, we have proposed
a model+solver approach to Concept Induction which consists of a declarative
modeling language based on second-order DLs under Henkin semantics, and a
mechanism for transforming second-order DL formulas into a format processable
by ASP solvers. The transformation is possible under bounded model semantics,



a non-standard model-theoretic semantics for DLs which has been recently pro-
posed in order to correctly address CSPs in OWL.

In the future, we plan to implement the approach. Also we intend to inves-
tigate how to express optimality criteria such as the information gain function
within the second-order concept expressions.
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