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Abstract. In this work we define a rational extensidfROEL(M, x)® T of
the low complexity description logiSROE L(M, x ), which underlies the OWL
EL ontology language. The logic is extended with a typigadperatorT, whose
semantics is based on Lehmann and Magidor’s ranked modelallaws for the
definition of defeasible inclusions. We consider both raientailment and min-
imal entailment. We show that deciding instance checkirdpaminimal entail-
ment is acoNP-hard problem while, under rational entailment, inséacteecking
can be computed in polynomial time. In particular, we depeldatalog materi-
alization calculus for instance checking under rationghiément.

1 Introduction

The need for extending Description Logics (DLs) with nonmimmic features has led,
in the last decade, to the development of several extensfdiss, obtained by combin-
ing them with the most well-known formalisms for nonmonatoreasoning [3, 36, 4,
14,22,16,29,11,8,13,35,6, 30,12, 26,5, 27] to deal wifeakible reasoning and in-
heritance, to allow for prototypical properties of conssatd to combine DLs with non-
monotonic rule-based languages under the answer set ses{di®, the well-founded
semantics [15], the MKNF semantics [35, 30], as well as inalag +/- [28]. Systems
integrating Answer Set Programming (ASP) [19, 18] and DLgehlaeen developed,
e.g., the DReW System for Nonmonotonic DL-Programs [37].

In this paper we study a preferential extension of the I&fiROEL(M, x), intro-
duced by Krotzsch [32], which is a low-complexity desdaptlogic of theE L family
[1] that includes local reflexivity, conjunction of rolescaooncept products and is at the
basis of OWL 2 EL. Our extension is based on Kraus, Lehmanrvamgldor (KLM)
preferential semantics [31], and, specifically, on rankedliets [34]. We call the logic
SROEL(M, x )BT and define notions of rational and minimal entailment for it.

The semantics of ranked interpretations for DLs was firstistliin [11], where a ra-
tional extension of4LC is developed allowing for defeasible concept inclusionthef
form CCD. In this work, following [23, 27], we extend the languageSlROE L (1, x)
with typicality concepts of the forrfi'(C'), whose instances are intended to be the typi-
cal C elements. Typicality concepts can be used to express defeaxlusions of the
form T(C) C D (“the typical C' elements areéD”). Here, however, as in [9, 21], we
allow for typicality concepts to freely occur in conceptlimions. In this respect, the
language with typicality that we consider is more generahtthe language with typi-
cality in [27], where the typicality operatdf(C') may only occur on the left hand side
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of inclusions as well as in assertions. For the languageih fRinimal ranked mod-
els have been shown to provide a semantic characterizatiatibnal closure for the
description logicALC, generalizing to DLs the rational closure by Lehmann andiMag
dor [34]. Alternative constructions of rational closure §4LC have been proposed in
[13,12]. All such constructions regard languages only aiminig strict or defeasible
inclusions.

We show that, for generdROEL (M, x )BT KBs, deciding instance checking un-
der minimal entailment is @oNP-hard problem. Furthermore, we define a Datalog
translation folSROE L (11, x )BT which builds on the materialization calculus in [32],
and, for typicality reasoning, is based on properties okednrmodels, showing that in-
stance checking faBROEL(, x )BT can be computed in polynomial time under the
rational entailment. This polynomial upper bound also eetgto subsumption, with the
consequence that a Rational Closure constructioSOE L (1, x )R T, based on the
definition in [27], can be computed in polynomial time. Howewthe minimal canoni-
cal model semantics does not provide a general semantiaatbaration of the rational
closure for the logiSROE L(N, x) with typicality, as a KB may have alternative min-
imal canonical models with incompatible rankings, or noard@oal model at all. An
extended abstract of this paper appeared in [20].

2 Avrational extension of SROEL(M, X)

In this section we extend the notion of conceptdROEL(M, x) adding typicality
concepts (we refer to [32] for a detailed description of thietax and semantics of
SROEL(M, x)). We letN¢ be a set of concept name€y, a set of role names and;

a set of individual names. A conceptdiROEL(M, x) is defined as follows:

C:=A|T|L|CNC|3R.C|3S.Self|{a}

whereA € N¢o andR,S € Ngi. We introduce a notion oéxtended concepfy as
follows:

whereC'is aSROEL(M, x) concept. Hence, any concept®ROEL(M, x) is also an
extended concept; a typicality concép(C) is an extended concept and can occur in
conjunctions and existential restrictions, but it canrehksted.

A KB is atriple (TBox, RBox, ABoz). TBoxz contains a finite set afeneral con-
cept inclusiongGCI) C' T D, whereC and D are extended concept&Boz (as in
[32]) contains a finite set able inclusionsof the formS C 7', Ro S C T, role con-
junctionsS; M Se C T, concept product axiomsndC' x D C T'andR C C x D,
whereC and D are concepts, an®, S, Sy, S, T are role names itNg. ABox con-
tainsindividual assertion®f the formC(a) and R(a,b), wherea,b € N;, R € Ng
and(C' is an extended concept. Restrictions are imposed on thefusées as in [32]
(and, in particular, all the roles occurring$elfconcepts and in role conjunctions must
be simple rolesroughly speaking, roles which do not include the compaositf other
roles).



Reasoning in a Rational Extension®ROE L(1, x) 3

We define a semantics f@ROEL(M, x)BT based on ranked models [34]. As
done in [27] for ALC, we define the semantics SFROEL(M, x)RT by adding to
SROEL(M, x) interpretations [32] greference relation< on the domain, which is
intended to compare the “typicality” of domain elementseTipical instances of a
concept”, i.e., the instances aF(C), are the instances @f that are minimal with re-
spect to<. The properties of the relation are defined in agreement with the properties
of the preference relation in Lehmann and Magideaisked modelé [34]. A seman-
tics for DLs with defeasible inclusions based on ranked riwd@s first proposed in
[11].

Definition 1. ASROEL(M, x)RT interpretationM is any structure A, <, -/) where:

— Alis adomain;! is an interpretation function that maps each concept naime
N¢ to asetd! C A, each role namek € Ng to a binary relationR! C A x A,
and each individual name € N; to an element’ € A. -! is extended to complex
concepts as usual:

T = A; 1= {a}! = {a'};
(CnD)=c!n DT,
ARCO) ={xecA|TFyecCl: (2,y) € R'};
(3R.Self)'={x € A| (z,2) € R"};
and the composition of role interpretations is defined a®¥as:
RIo R ={(x,2) | (x,y) € RI and(y, 2) € R}, for somey € A}
— < is anirreflexive, transitive, well-founded and modula@tén overA;
— the interpretation of concef®(C) is defined as follows:

(T(C))! = Min(CT)
whereMin.(S) = {u:u € Sandfz € Ss.t.z < u}.

Furthermore, an irreflexive and transitive relatians well-foundedf, for all S C A,
forall z € S, eitherz € Min.(S) or 3y € Min.(S) such thaty < x. It is modular
if, forall z,y,z € A, x < yimpliesz < z or z < y. The well-foundedness condition
guarantees that if, for a non-extended concgphere is a element inM, then there
is a minimalC element inM (i.e.,CT # () implies(T(C))! # 0).

In the following, we will refer toSROEL(M, x )BT interpretations asanked in-
terpretations Indeed, as in [34], modularity in preferential models carelquivalently
defined by postulating the existence of a rank functian : A — (2, wheref2 is a
totally ordered set. The preference relationan be defined frorhp as follows:z < y
if and only if kaq(z) < ka(y). Hence, in the following, we will assume that a rank
functionk , is always associated with any model. We also define theank k. (C)
of a concept in the modelM aska((C) = min{km(x) | x € C*} (if CT = 0, then
C has no rank and we writey, (C) = o).

Observe that semantics of the typicality operator definedals exactly the same
as the one introduced in [27] for the typicality operatordiC + T . Similarly to all
other concept constructors, the typicality operator candsel in TBox and ABox with
different restrictions, depending on the descriptiondo@ifferently from [27], where
T(C') can only occur on the left-hand side of concept inclusiorsr(aly, in typicality
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inclusions of the fornil'(C) C D) here, as in [9,21], we do not put restrictions on
the possible occurrences of typicality concepi{s”) in concept inclusions and in as-
sertions. Instead, as $IROEL(M, x ), we do not allow negation, union and universal
restriction which are allowed il LC. In the following, we callsimpleKBs the ones
which only allow typicality concepts to occur on the left kisside of typicality inclu-
sions. Given an interpretatiokt the notions of satisfiability and entailment are defined
as usual.

Definition 2 (Satisfiability and rational entailment). An interpretationM = (A, <
Ty satisfies:

a conceptinclusio@ C D if CT C D';

aroleinclusionS C T'if ST C T;

a generalized role inclusioR o S C T'if RT o ST C T7

arole conjunctionS; 1 S, C T'if S nsSi c 14

a concept product axio@ x D C T if ¢! x DI C T,

a concept product axiol® = C' x D if RT € C! x DT;

an assertiorC(a) if ! € C7;

an assertionR(a, b) if (a’,b’) € RL.

GivenaKBK = (TBox, RBox, ABox), aninterpretationM =(A, <, -1) satisfies
TBoz (resp.,RBozx, ABoz) if M satisfies all axioms irf'Box (resp.,RBox, ABoz),
and we writeM |= TBox (resp.,RBox, ABox). An interpretationM = (A, <,-1) is
a modelof K (and we writeM E K) if M satisfies all the axioms i'Boz, RBox
and ABoz.

Let a queryF be either a concept inclusiofi © D, whereC and D are extended
concepts, or an individual assertioR. is rationally entailed by, written K =5, oc1rt
F, if for all modelsM =(A, <,-I) of K, M satisfiesF. In particular, theinstance
checkingproblem (under rational entailment) is the problem of d@uidwhether an
assertion C'(a), T(C)(a) or R(a, b)) is rationally entailed byK .

Given the correspondence of typicality inclusions with ditional assertiong§’ |~

D, itcan be easily seen that each ranked interpretatiosatisfies the following seman-
tic conditions, corresponding to Lehmann and Magidor'sylases of rational conse-
quence relation [34] reformulated in terms of typicalithave, byT'(A) C B we mean
thatT(A4) C B is satisfied inM, by T(A) Z =B we mean thafl(A4) C —B is not
satisfied inM, and byA C B (or A = B) we mean thatl C B (or A = B) is satisfied
in M (a similar formulation of the semantic properties in terrhdefeasible inclusions
can be found in [11]):

(LLE) If A= BandT(A4) C CthenT(B) C C

(R ) fBC C andT(A) C BthenT(A)C C

(Refl) T(A) C

(An ) If T(A) EBandT( )C CthenT(A)C BN C
(Or) If T(A) C CandT(B) C C'thenT(AUB)C C
(CM) If T(A)C BandT(A) C CthenT(ATIB)C C
( A

‘M
RM) If T(A) C CandT(A) L -BthenT(ANB)C C
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It is easy to see that these semantic properties hold inetathked models. In particu-
lar, property (RM), can be reformulated as follows:

if (T(A)Mn B)! #0,then(T(AN B))! C (T(A))!
and, in this form, itis a rephrasing of prope(tfr — R), in the semantics with selection
function of the operatdT studied in [27] (Appendix A) fotdLC + Tg. This property
has a syntactic counterpart in the axi@bi.(T(A) N B) M T(AMN B) C T(A), which
holds in all the ranked models.

Consider the following example of knowledge base, statirag:ttypical Italians
have black hair; typical students are young; they hate matless they are nerd (in
which case they love math); all Mary’s friends are typicaldgints. We also have the
assertions stating that Mary is a student, that Mario isaiah student, and is a friend
of Mary, Luigi is a typical Italian student, and Paul is a tygliyoung student.

Example 1. T'Box:

a) T(Italian) C 3hasHair .{ Black}

) T(Student) = Young

) T(Student) T MathHater

) T(Student M Nerd) T MathLover

) 3hasHair.{Black} M 3hasHair {Blond} C L
) MathLover M MathHater C L

(9) IfriendOf {mary} C T(Student)

ABox:
Student(mary), friendOf (mario, mary), (Student M Italian)(mario),
T (StudentM Italian)(luigi), T(StudentN Young)(paul), T(Student Nerd)(tom)

The fact that concept¥'(C) can occur anywhere (apart from being nested in a
T operator) can be used, e.g., to state that typical workindestts inherit proper-
ties of typical studentsT(Student M Worker) T T(Student)), in a situation in
which typical students and typical workers have conflictprgperties (e.g., as re-
gards paying taxes). Also, we could state that there areaypiudents who are Italian:
T C 3U.T(Student N Italian), whereU is the universal role T x T C U).

Standard DL inferences hold f@& (C) concepts and'(C) = D inclusions. For
instance, we can conclude that Mario is a typical studen{¢byand young (by (b)).
However, by the properties of defeasible inclusions, Luidio is a typical Italian stu-
dent, and Paul, who is a typical young student, both inhiegitaroperty of typical stu-
dents of being math haters, respectively, by rational mamioity (RM) and by cautious
monotonicity (CM). Instead, as Tom is a typical nerd studant typical nerd student
are math lovers, this specific property of typical nerd stuslerevails over the less spe-
cific property of typical students of hating math. So we cansistently conclude that
Tom is aMathLover.

A normal form forSROEL (M, x)’RT knowledge bases can be defined. A KB in
SROEL(M, x)’RT is in normal formif it admits all the axioms of SROEL(, x)
KB in normal form:

R(a,b) AC L TCC AC{c}

(a)
ACC AMNBCC 3RACC AC3RB
{a} EC 3FR.Self CC AL JR.Self
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RCT RoSLCT RNSCT AxXBLCR RCCxD

(whereA, B,C,D € N¢, R, S, T € N anda,b,c € Ny) and, in addition, it admits
axioms of the formA C T'(B) and T'(B) C C with A, B,C € N¢. Extending the
results in [1] and in [32], it is easy to see that, giveSROEL(M, x )BT KB, a seman-
tically equivalent KB in normal form (over an extended sityma) can be computed in
linear time. In essence, for each conc@gt") occurring in the KB, we introduce two
new concept names{¢c andYq. A new KB is obtained by replacing all the occur-
rences ofI'(C) with X in all the inclusions and assertions, and adding the foligwi
additional inclusion axioms:

XcCT{Ye), TYe)C X, Ye OO, CC Y

Then the new KB undergoes the normal form transformatioSRIOE L (1, x) [32].
The resulting KB is linear in the size of the original one.

Example 2.Considering again the TBox in Example 1, inclusi@) T(ltalian) C
JhasHair { Black} is transformed in the following set of inclusions:

(a1) X1 C 3hasHair {Black}

(a2) X1 C T(Italian)

(as) T(ltalian) C X;

Inclusion(d) T(Student M Nerd) C MathLover is mapped to the set of inclusions:

(d1) Xsn & MathLover

(d2) Xsnv & T(Ysn)

(d3) T(Ysn)E Xsn
(d4) Student M Nerd C Ysgn

(ds) Ysny T Student M Nerd
Then(a,) is transformed further (the normal form transformation$®OE L(M, x))
into: (a}) X1 E 3hasHair.B (a}) B C {Black}

All the other axioms in the TBox, apart from (b) and (c), hawebe transformed
in normal form. Assertions are also subject to the normanhferansformation. For
instance, T'(Student M Nerd)(tom) becomesX sy (tom), where Xgy is one of the
concept names introduced above.

3 Minimal entailment

In Example 1, we cannot conclude that all typical young dtadi have black hair (and
that Luigi has black hair) using rational monotonicity, as &o not know whether there
is some typical Italian who is young. To supports such a geomonmonotonic infer-
ence, a minimal model semantics is needed to select thaspiatations where indi-
viduals are as typical as possible. Among models of a KB, wexsthe minimal ones
according to the followingreference relation< over the set of ranked interpretatians
An interpretationM =(A, <, I) is preferred toM’ = (A, <", ') (M < M) if:
A= A; 01 = ¢ forall non-extended concepts forall z € A, kg (z) < ke (),
and there existg € A such that i (y) < ka (y).

We can see that, in all the minimal models of the KB in Exampleiiyi is an
instance of the concepthasHair.{ Black} and the inclusioil'( Young M Italian) C
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JhasHair { Black} is satisfied, as nothing prevent§aung 1 Italian individual from
having ranlo.

In particular, we consider the notion of minimal canonicaldal defined in [27] to
capture rational closure of adLC KB extended with typicality. The requirement of
a model to be canonical is used to guarantee that modelsica@rtaugh individuals.
Given a KBK and a query, let S be the set of all the (non-extended) concepts (and
subconcepts) occurring iR or F' together with their complements (s finite). In the
following, we will assume that all concepts occurring in theery F* are included ink.

Definition 3 (Canonical models).A modelM = (A, <, I) of K is canonicalif, for
each set oBROEL(M, x )R T conceptd Cy, Cs, ..., C,} C S consistent withk (i.e.,
St K Fsroerrt C1MC2M...MC, £ 1), there exists (at least) adomain elemert A
suchthatr € (C; M Cay ... T1Cy)1.

Among canonical models, we select the minimal ones.

Definition 4. M is a minimal canonical modedf K if it is a canonical model of<
and it is minimal with respect to the preference relatien

Definition 5 (Minimal entailment). Given a queryF', F'is minimally entailed by,
written K |=,,4, F if, for all minimal canonical modeldA of K, M satisfiesF'.

We can show that the problem of instance checkingROEL(, x )R T under
minimal entailment isCONP-hard. The proof is based on a reduction from tautology
checking of propositional 3DNF formulae to instance chegkin SROEL(M, x)RT
and its structure has similarities with the proofo-NP-hardness faF £ subsumption
in [2] (Chapter 3, Theorem 3.2). Given an alphabet of prapw®il variablesl =
{p1,...,px}, lety = G1 V...V G,, be a propositional formula where each disjunct
G, =1} NIZ AT (i = 1,...,n) is the conjunction of three literals and each literal
l{ (j = 1,...,3) is either a variabley € L or its negation-p. The 3DNF tautology
problem, i.e. the problem of deciding whethgiis a tautology (in the propositional
calculus), is known to beoNP-complete [17].

Theorem 1. Instance checking iSROE L (M, x )BT under minimal entailmentisoN P-
hard.

Proof. (sketch)Given an alphabet of propositional variables= {pi,...,px} and a
propositional formula in 3DNF = G; Vv ... V G,, as defined above, we define a KB
K = (TBoz, RBox, ABoz) in SROEL(M, x)RT as follows. We introduce inN¢
two concept names),, P;, for each variabley, € L, a concept namé., associated
with the formulay and a new concept nanie Let R € Ny be arole name ande Ny

be an individual name. We defid¢ as follows:RBox = {P;, x P, C R,h = 1,...,k},
ABox = {T(P,NPy)(a),h =1,...,k} U{T(F)(a)}, and TBox contains the follow-
ing inclusions:

1) T(P)NT(P) C L,

(2)T(T)N3RT(T)C L
@) T(E)ncinec?nc C D, foreachG; =1} NIZAE
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whereh = 1,...,k and, foreach = 1,...,n andj € {1,2,3}, Of is defined as

follows: .
ci_ [ TP it ] = p
! JU(T(T)NT(Py)) ifll =-pp

Let us consider any modgl= (A, <,-’) of K. Observe that, as’ € P, 1 Py, o’
cannot have rank 0, otherwise it would be both a typiaand a typicalP,,, falsifying
(1). By the role inclusions eadh, element is in relatio with any P, element. Also,
by (2), there cannot be B, element: and aP;, elementy both with rank 0, otherwise
2 andy would be related by? and axiom (2) excludes that twB(T) elements are in
relation R. It is possible that, in a model df, there are nd?, elements with rank 0
and noP;, elements with rank 0. However, if we consider minimal canahmodels of
K, there must be either B, element or &), element with rank 0.

Remember that ,((C) is the rank of a concegt in a ranked modeM. It can be
seen that, in all the minimal canonical modelgofforallh = 1, ... k, the following
conditions hold:

(i) eitherkaq(Pr) = 0 or /CM(F}L) =0;
(i) kM(Ph I‘I?h) =1 andkM(aI) = 1.

As a consequence! is either a typicalP, element (when the rank @?, is 0) or a typ-
ical P;, (when the rank ofP, is 0). So there are alternative minimal canonical models
in which, for eachh, o’ is either aT'(P,), and in this case there exists a typi¢a) ele-
mentwith rank O; or is aT(Fh), and in this case there exists a typi€alelement with
rank 0. Therefore, in any minimal canonical modais of K: eithera! € (T(Py))!
ora’ € (QU.(T(T)MT(Py)))" (but not both). Then for’ the two concepts in the
definition of C/ are disjoint and complementary and the following can be gdov

K E=pin D+ (a) if and only if v is a tautology a

It is an open issue whether a similar proof can be done alssilfiqole knowledge
bases (i.e., faBROEL (M, x )BT knowledge bases where the typicality operator only
occurs on the left hand side of concept inclusi@ig’) C D). For simple KBs, it was
proved forALC + T g [27] that all minimal canonical models of the KB assign theea
ranks to concepts, namely, the ranks determined by thenedtosure construction.
This is clearly true, in particular, for the fragment&ROEL(M, x)RT included in
the language ofALC plus typicality (which however, does not contain nominatde
inclusions, and other constructs®ROE L(M, x)).

Note thatK, in the proof above, has alternative minimal canonical nedeéh in-
comparable rank assignments. The existence of alternaiinignal models for a KB
with free occurrences of typicality in the propositionakeavas observed in [9] for
Propositional Typicality logic (PTL). As an example of a KB SROEL(M, x )BT
with alternative minimal canonical models with incompdeatank assignments, con-
siderK’ = (TBox', RBoz', ABox'), whereRBox' = {P x P C R}, ABox' = {T(P
MP)(a)} andT Box contains the inclusio(P)1T(P) C L andT(T)N3R.T(T) C
L (meaning that two elements of rank 0 cannot be relate®}yConsider the follow-
ing two canonical modeldA,, M, of K’, over the domaimd = {x,y, z, w}, where,

fori = 1,2, Pl = {yaz}vﬁli = {Zaw}' Rl = {(z,z),(z,w),(y,z),(y,w)} and
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a'i = z. Furthermore, concerning the rankings, fot, ka, (v) = ki, (y) = 0,
ki, (2) = kg (w) = 15 for Mo, kag, (2) = kag, (w0) = 0, kary (2) = b, (y) = 1.
M and M, are both minimal canonical models &f and have incomparable rank-
ings, with P having rank 0 inM; and rank 1 inM,.

4 Deciding rational entailment in polynomial time

While instance checking IS ROEL(M, x )BT under minimal entailment isONP-
hard, in this section we prove that instance checking uratéral entailment can be
decided in polynomial time for normalized KBs, by defininganslation of a normal-
ized KB into a set of Datalog rules, whose grounding is potyiad in the size of the
KB. In particular, we extend the Datalog materializatiofcatus forSROEL(M, x),
proposed by Krotzsch [32], to deal with typicality concepnd with instance checking
under rational entailment iI§ROEL (M, x)RT.

The calculus in [32] uses predicatgsst(a, C') (whose meaning includes: the in-
dividual e is an instance of concept narag see [33] for details)iriple(a, R, b) (a is
in relation R with b), self (a, R) (a is in relationR with itself). To map aSROEL(M,
x)RT KB to a Datalog program, we add predicates to represent aémaindividual
a is a typical instance of a concept namep(a, C)); the ranks of two individuala
andb are the sames@meRank(a, b)); the rank ofa is less or equal than the one lof
(legRank(a, b)).

Besides the constants for individualsii (which are assumed to be finitely many),
the calculus in [32] exploits auxiliary constantsz*=7%¢ (one for each inclusion of
the form A C 3R. (') to deal with existential restriction. We also need to idtroe an
auxiliary constantuxzc for any concepfl'(C) occurring in the KB or in the query,
used as a representative typicglin caseC' is non-empty.

Given a normalized KBY = (TBoz, RBoz, ABox) and queny of the formC'(a)
or T(C)(a), whereC' is a concept name in the normalized KB, the Datalog program
for instance checking iISROEL(M, x )BT, i.e. for querying whetheét =q,cirt Q, is
a program/I (K), the union of:

1. IIk, the representation df as a set of Datalog facts, based on the input translation
in [32];

2. IR, the inference rules of the basic calculus in [32];

3. IIgy, containing the additional rules for reasoning with tyfitga in
SROEL(M, x)RT.

A query @ of the formT(C)(a), or C(a), is mapped to a goaky of the form
typ(a, C'), or inst(a, C). Observe that restricting queries to concept names is not a
severe restriction as an arbitrary quéryb) can be replaced by a qued(db) with A
new concept name, by addidig = A to the TBox [1] and, of course, this inclusion is
normalized when normalizing TBox.

We definelI (K') in such a way thaf?q, is derivable in Datalog fronif (K") (written
II(K) F Gg) ifand only if K |=gpcirt Q.

ITk includes the result of the input translation in section 338][wherenom(a),
cls(A), rol(R) are used fow € N; , A € N¢, R € Ng, and, for example:
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— subClass(a, C), subClass(A, ¢), subClass(A, C) are used foilC(a), A C {c},
ALCC,
— subFEzx(R, A, C)isused fodR.ALC C;

and similar statements represent other axioms in the nareddkKB.

The following is the additional mapping for the extended tayn of the
SROEL(M, x )BT normal form (note that no mapping is needed for asserflt(ids) (a),
as they do not occur in a normalized KB):

AC T(B) + supTyp(4, B)
T(B)CE C — subTyp(B, C)

Also, we need to adtbp(T) to the input specification.
Il contains all the inference rules from [32]

(z,2) «— nom(z)

self(:v,v) — nom(x), triple(z, v, x)

(z,2) « top(z ) inst(x, 2")

mst(m, y) < bot(z), inst(u, z), inst(x, z’), cls(y)

(z,2) < subClass(y, z), inst(z, y)
(z,2) « subConj(yl,y2, z), inst(z,yl), inst(z, y2)
(z,2) « SUbEI(U Y, 2 ) triple(z, v, z'), inst(z’, y)

I

) mst(a: ,2) — supEx(y, v, z,2"), inst(x, y)
) inst(x, z) — subSelf (v, z), self (z, v)

) self (x,v) « supSelf (y,v), inst(z,y)

) triple(x, w, ") < subRole(v, w), triple(z, v, ")

) self (z, w) — subRole(v, w), self (z, v)

) triple(z, w, © ) — subRChain(u, v, w), triple(z, u, z'), triple(z’, v, ")

) triple(z, w, a: — subRChain(u, v, w), self (x,u), triple(z, v, z")

) triple(z, w — subRChain(u, v, w), triple(x, u, "), self (x’, v)

) triple(x, w ) — subRChain(u, v, w), self (z,u), self (z, v)

) triple(x, w, ") «— subRConj(vl,v2, w), triple(z, vl, z"), triple(xz,v2, x")
) self (z, w) — subRConj(vl,v2, w), self (x,vl), self (z, v2)

) triple(z, w, ') «— subProd(y1,y2,w), inst(z, y1), inst(z’, y2)

) self (z, w) «— subProd(y1,y2,w), inst(z, yl), inst(z, y2)

) inst(x, z1) <« supProd (v, z1, 22), triple(z, v, ")

) inst( ) «— supProd (v, z1, 22), self (z, v)

) (z',22) « supProd (v, z1, 22), triple(z, v, x")

) inst(x, 22) < supProd (v, z1, 22), self (z, v)

) (y, z) « inst(z,y), nom(y), inst(z, z)

) (x, z) «— inst(z,y), nom(y), inst(y, z)

) z,u,y) «— inst(z,y), nom(y), triple(z, u, x)

T
3

bS]
s
9]

—

Y Here,u, v, z, y, z, w, possibly with suffixes, are variables.
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Note that “statementgust(a, b), with « andb individuals, encode equality af andb”
[33].

Iz, i.e. the set of rules to deal with typicality, is as follovitsgontains rules for
supTyp and subTyp axioms, and rules that deal with the rank of domain elemémts.
the rulesy,y, z, A, B, C are all Datalog variables.

(SupTyp) typ(z,z) < supTyp(y, ), inst(z, y)

(SubTyp) inst(x, z) — subTyp(y, ), typ(z, y)

(Refl) inst(z, y) — typ(z, y)

(A0) typ(auzc, C) «— inst(z, C)

(A1) leqRank(z,y) < typ(z, B), inst(y, B)

(A2) sameRank(z, y) «— typ(z, A), typ(y, A)

(A3) typ(x, B) < sameRank(z,y), inst(z, B), typ(y, B)

(A4) typ(x, B) « inst(z, A), supTyp(A, B)

(BI1) sameRank(a: z) <« sameRank(z,y), sameRank(y, z)

(B2) sameRank(z,y) < sameRank(y, x)

(B3) sameRank(x,x) «— inst(x, T)

(B4) leqRank(x, y) — sameRank(y, )

(B5) leqRank(x, z) «— leqRank(z, y), leqRank(y, z)

(B6) sameRank(x,y) < leqRank(z, y), leqRank(y, x)

(B7) sameRank(z,y) < nom(y), inst(z, y)

Rule (Refl) corresponds to the reflexivity property (see Section 2)eRW0) — (44)
encode properties of ranked models: if there S alement, there must be a typical
element 40); atypical B element has a rank less or equal to the rank of ayement
(A1); two elements which are both typicdlelements have the same rank?2); if z is
a B element and has the same rank as a tygicelement;: is also a typicalB element
(A3); if = is an A element and all’s are typicalB’s, thenx is a typical A (A4).
(B1) — (B7) define properties of rank order. In particular, {#¥7), two constants that
correspond to the same domain element have the same rank.

The semantic properties of rational consequence relatitonduced in Section 2
are enforced by the specification above. Consider, formestd CM ). Suppose that
subTyp(A, B) and subTyp(A, C) are inIlx (asT(A) C B, T(A) C C are inK)
and thatD is a concept name defined to be equivalentitol B in K. Suppose that
typ(a, D) holds. One can infetyp(a, A) and hencenst(a, C'), i.e., typicalA M B’s
inherit from typical A’s the property of bein@’’s (the inference forPaul in Exam-
ple 1). In fact,typ(a, A) is inferred showing that (who is a typicalD and anA,
as it is aD) andaux 4 (who is a typicalA, by (A1), and aD, since all the typical
A’s are alsoB’s and henced 1 B’s) have the same rank. In fact, usiwy ) twice,
one can conclude botleqRank(a, auzs) and legRank(auza, a) so that, by(B6),
sameRank(a, auxy). Then, by(ASZ), we infer typ(a, A). With rule (subTyp), from
typ(a, A) andsubTyp(A, C), we concludenst(a, C).

Reasoning in a similar way, one can see that also the prepéRiM ) and(LLE)
are enforced by the rules above. In particular, for (RM), ae show that: from the fact
that there is a domain elememtwho is aT(A) and aC' element (i.etyp(a, A) and
inst(a, C') hold), and from the fact that there isbavho is a typicalA 1 C' element
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(i.e. thattyp(b, D) holds, for some concef® equivalent toA M C), we can conclude
thatd is also a typicald element (i.etyp(b, A) holds). Inference ISROEL(M, x)
already takes care of the semantic properties of conjunctmsequencgsind) and
right weakening RW).

Theorem 2. For a SROEL(M, x)BT KB in normal formK, and a queryQ of the
formT(C)(a) or C(a), K Esocr Q ifandonly ifII(K) - Gg.

Proof. (sketch) For completeness, we procede by contraposition, simitarJ$3]. As-
sume thatinst(a, C') (respectivelytyp(a, C')) is not derivable fromiI(K). Let J be
the minimal Herbrand model of the Datalog prograik ); theninst(a, C') & J (resp.
typ(a, C') ¢ J). From.J we build a ranked modeM for K such thatC(a) (respec-
tively, T(C)(a)) is not satisfied inM. As in [33], we can build the domaid of M
from the setConst including all the name constantss N; occurring in the ASP pro-
gramlI(K) as well as all the auxiliary constants, then defining an edence relation
~ over constants and the domaihincluding the equivalence classes and, possibly,
additional domain elements for auxiliary constants, aséroof of Lemma 3 in [33].
J contains all the details about the interpretation of coteapd roles, from which an
interpretationM can be defined (for instance, fore Ny, [c] € AL iff inst(c, A) € J,
and similarly for other domain elements and for roles). HasvepredicatesameRank
andleqRank only provide partial information about the ranks of the domalements.
We define a relatior: overconstantslettingx < y iff there is a concept namé, s.t.
typ(z, C'), inst(y, C') € Jandtyp(y, C) & J and we show thats transitive closurés

a strict partial order. Also, we show thatis compatible witithe sameRank predicate
in J and with thex~ equivalence relation between constants so thaan be extended
to a modular partial order over the domahn First, a partial ordering over elements in
A is defined, lettingc] < [d] iff ¢ < d (where the definition does not depend on the
choice of the representative element in a class) and siynflardomain elements cor-
responding to auxiliary constants. Then the elementd are partitioned into the sets
Ranky, ..., Rank,, whereRank; (the set of domain elements of raif)ks defined by
induction oni, as follows:Ranky contains all the elementsc A such that there is no
y € Awithy < z; Rank; contains all the elemenise A — (RankoU...URank;_1)
such that there is ng € A — (Ranko U ... U Rank;_1) with y < x. We letn be the
least integer such that — (Ranko U ... U Rank,) = 0. It can be shown thatM is a
model of K and it does not satisfg¢'(a) (respectivelyT(C)(a)).

Proving the soundness of the Datalog encoding, requiresisgdhat, if I7(K) +
G, for a queryQ of the formT(C)(a) or C(a), then,Q is a logical consequence of
K. The proof is similar to the proof of Lemma 1 in [33]. First wesaciate to each
constant of the Datalog prograni/ (K') a concept expressiot(c) a follows:

if ¢ € Ny thenk(c) = {c};

if ¢ = aux®, fora = AC 3R.B, thenk(c) = BMN3R™.A4;

if ¢ = auxc, thenk(c) = T(C).

The following statements:

-if I(K) & inst(c, A), for A € N¢, thenK |f=gpoeirt K(¢) C A;

-if II(K) & inst(c,d), ford € Ny, thenK |=groeirt k(c) E {d};

-if II(K) & typ(a, A), thenK |=goeirt k() E T(A);



Reasoning in a Rational Extension®ROEL(M, x) 13

-if II(K) & triple(c, R, d), thenK Egocirt £(c) C IR.K(d);
-if II(K) & self (¢, R), for A € Ne, thenK Egrocirt £(c) E JR.Self;
-if II(K) - sameRank(c, d) then for all models\t of K, ka(c!) = kaq(dh);
-if I1(K) I leqRank(c, d) then, for all models\t of K, kaq(c!) < kaq(dl).
can be proved by induction on the height of the derivatioa teeach atom from the
programi/I (K). O

I1(K) contains a polynomial number of rules and exploits a polyiabnumber of
concepts in the size dk, hence instance checking 8ROEL (M, x )BT can be de-
cided in polynomial time using the calculus in Datalog. Theading can be processed,
e.g., in an ASP solver such as Clingo or DLV (with the propggitedization of vari-
ables); computation of the (unique, in this case) answetaket a negligible time for
KBs with a hundred assertions (half of them wilf.

Exploiting the approach presented in [32], a version of tlaaldg specification
where predicatesst, typ, triple andself have an additional parameter (and is there-
fore less efficient than the previous one, although polyadyntian be used to check
subsumption foSROEL(, x)RT.

For simpleSROEL(M, x )BT knowledge bases, i.e., for KBs where the typical-
ity operator only occurs on the left hand side of inclusidhs, materialization calcu-
lus for subsumption can be used to construct the rationauctoof TBox, adopting
the construction in [27] (Definitions 21 and 23). Such cangiobn can be rephrased
replacing the exceptionality check iIALC + T with the exceptionality check in
SROEL(M, x )BT and the entailment il LC + T r with the entailment ISROEL
(M1, x)®RT. In particular, inSROEL(M, x )R T one can define, for a simple KR, the
notion of exceptionality as follows? is exceptional wrik iff K = ocirt T(T)MNC C
L. This subsumption is not in the language of normalized KBs,itocan be replaced
by the subsumptiod C 1, addingT(T) C X andX 1 C C Ato K. The construction
requires a quadratic number of subsumption checks (in th&eu of typicality inclu-
sions in the KB, and, hence, in the size of the KB), each onairieg polynomial time,
using the above mentioned polynomial calculus for subsiampt

The correspondence between the rational closure conisimuaihd the canonical
minimal model semantics in [27], does not extend to all thestacts iINRSROEL(M,

x )BT and, specifically, the canonical model semantics is not@atedor dealing with
nominals. In particular, there are knowledge bases withammoical model and knowl-
edge bases with more than one minimal canonical model (aknivledge basd(’

at the end of Section 3). However, in many cases, the ratmaslire of a KB with no
canonical model is still meaningful. What has to be devisedm the one hand, a less
restrictive semantic requirement to give meaning also t@ K8ntaining nominals; on
the other hand, a syntactic condition to identify the KBsvibich the rational closure is
by itself meaningful and corresponds to the semantics.iépdper, we do not address
these issues and we leave them for further work.

5 Related Work

Among the recent nonmonotonic extensions of DLs are thedbsms for combining
DLs with logic programming rules, such as for instance, [H, [35], [30] and Dat-
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alog +/- [28]. DL-programs in [16, 15] support a loose conglof DL ontologies and
rule-based reasoning under the answer set semantics ard thiedwell-founded se-
mantics, where rules may contain DL-atoms in their bodiesiesponding to queries
to a DL ontology, which can be modified according to an inpattdif updates. In [30]
a general DL language is introduced, which exte§@&0Z Q with nominal schemas
and epistemic operators according to the MKNF semantick {@%ich encompasses
some of the most prominent nonmonotonic rule languagelsiding ASP. In [5] a non
monotonic extension of DLs is proposed based on a notion effriming, supporting
normality concepts and enjoying good computational prisggerin particular, it pre-
serves the tractability of low complexity DLs, includiggC ™ and D L-lite. In [10],
the CKR framework is presented, which is based5S®0OI1Q-RI_allows for defeasible
axioms with local exceptions and a translation to Datalotdhwiegation. It is shown
that instance checking over a CKR reduces to (cautiousjente under the answer
sets semantics.

Preferential extensions of low complexity DLs in tB€ and DL-lite families have
been studied In [24, 25], based on preferential interpgtatwhich are not required to
be modular, and tableaux-based proof methods have beelodegdor them. In [25],
for a preferential extension 612+ based on a minimal model semantics different from
the one in this paper, it is shown that minimal entailmentx®EIME-hard already for
simple KBs, similarly to what happens for circumscriptivB«([6].

6 Conclusions

In this paper we defined a rational extensi8SROE L (1, x )® T of the low complex-
ity description logicSROEL(M, x ), which underlies the OWL EL ontology language,
introducing a typicality operator. For general KBs, we halsewn that minimal entail-
ment inSROEL(M, x )BT is coNP-hard. When free occurrences of typicality con-
cepts in concept inclusions are allowed, alternative mathimodels may exist with
different rank assignments to concepts. In [9] this phenmnéhas been analyzed in
the context of PTL, considering alternative preferencati@hs over ranked interpreta-
tions which coincide over simple KBs but, for general onediné different notions of
entailment satisfying alternative and possibly incompatpostulates.

Building on the materialization calculus f&fROEL(M, x) in Datalog presented
in [32], a calculus for instance checking and subsumptiaenmational entailment is
defined, showing that these problems can be decided in polahtime.

This result also provides a polynomial upper bound for thestiction of the ra-
tional closure of a knowledge baseSROEL(1, x )R T. Although for the fragment of
SROEL(N, x )BT which is also included in the languagedLC + T in [27] the ra-
tional closure is semantically characterized by the mihzaaonical models of the KB,
a general semantic characterization of the rational ceofarrthe logicSROEL(M, x)
is still missing.

Future work may also include optimizations, based on madylas in [7], of the
calculus for rational entailment, and the development ¢¢ hased inference meth-
ods forSROEL (M, x )BT minimal entailment based on model generation in ASP. An
upper bound on the complexity of minimal entailment for gah&Bs has to be es-



Reasoning in a Rational Extension®ROEL(M, x) 15

tablished. A further issue to understand is whether a naiteation calculus can be
defined also for the preferential extensions of DLs in§lefamily in [24, 25], whose
interpretations are not required to be modular.

Apart from providing a complexity upper bound, the Datalog@&ding presented
in this paper is intended to provide a way to integrate theafisgROEL(T, x) KBs
under rational entailment with other kinds of reasoning t@m be performed in ASP,
and, by extending the encoding to deal with alternative risoafethe KB, also to allow
the experimentation of alternative notions of minimal @ntant, as advocated in [9].
The approach can be possibly integrated with systems likeR37], that already
exploits the mapping by Krotzsch for OWL 2 EL.
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