
Multi-Agent Dialogue Games and Dialogue
Sequents for Proof Search and Scheduling

Martin Sticht

University of Bamberg
martin.sticht@uni-bamberg.de

Abstract. Dialogical games as introduced by Lorenzen and Lorenz de-
scribe a reasoning technique mainly used for intuitionistic and classical
predicate logic: two players (proponent and opponent) argue about the
validity of a given formula according to predefined rules. If the pro-
ponent has a winning-strategy then the formula is proven to be valid.
The underlying game rules can be modified to have an impact on proof
search strategies and increase the efficiency of such a searching process.
In this paper, a multi-agent version of dialogical logic is introduced that
corresponds more to multi-conclusion sequent calculi for propositional
intuitionistic logic rather than single-conclusion ones which are more re-
lated to two-player dialogues. The rules lead us to a normalization of a
proof, let us focus on the proponents’ relevant decisions, and therefore
give explicit directives that increase compactness of the proof-searching
process. This allows us to perform parts of the proof in a parallel way.
Soundness and completeness of this multi-agent system is shown.

Keywords: dialogues, proof search, intuitionistic logic, game theories,
parallel reasoning

1 Multi-Agent Dialogues

In game-theoretic decision procedures, reasoning happens by means of a play,
where usually one player tries to verify (called verifier or proponent) a formula,
while the other player’s aim is to falsify it (therefore called falsifier or opponent).
Considering games as calculi is interesting for two major reasons: first, they
provide a different view on the reasoning process and another account to certain
systems, e.g., Lorenzen introduced dialogical games with the aim of giving an
alternative justification for intuitionistic logic than Brouwer’s original attempt
[20, 19]. Second, modifying the game rules of such systems may lead to new
logics, e.g., the semantics of independence-friendly logic (IF) [23], is based on
the so-called Hintikka games [15], while there is also an extension with more
than two players leading to special multi-player semantics [1].

Hintikka games are used to valuate the truth of a formula in a fixed model in
which the truth values are assigned to atomic formulas. By contrast, in dialogical
systems, the subject is the model-independent truth of a formula [15]. As we are
more interested in the latter kind of validity, we discuss dialogical games in

the following. They have been invented and developed by Paul Lorenzen and
Kuno Lorenz [20, 18, 21] especially as a reasoning technique for intuitionistic
and classical logic, between the late 1950s and the mid 1970s. The main idea is
that the proponent (P) states an assertion, the hypothesis (usually in terms of
a logical formula), which is challenged by the opponent (O). A dispute starts:
every player performs one move each time, either an attack against the other
player’s assertion or a defence of an attacked assertion. The game rules define
which moves are allowed in which situation. At the end, the proponent has a
winning strategy1 if and only if the hypothesis, he stated at the beginning, is
valid.

As P tries to show validity of the hypothesis, he can be considered as an agent
searching for a proof which corresponds to his winning-strategy. Galmiche et al.
[12] point out that putting certain restrictions on possible moves due to game
rules can modify this searching process. For example, one can put restrictions
on allowed repetitions as proposed by Rahman and Keiff [24]. Constructing such
rules might improve efficiency of the proof searching process. Alama suggests
strategy-preferences for P, but constraining P strictly in this way leads to wrong
results in certain cases [2].

Having P as a searcher who takes proof-relevant decisions, it makes sense to
supply him with further colleagues to help him finding the proof. We introduce
a syndicate of agents that indicates that a proponent has different possibilities
when reacting on moves by O, but we still keep two parties (P and O). The re-
sulting parallelism allows concurrent reasoning and joint problem solving among
agents. So whenever a proponent agent has different choices to react on a move
performed by O, he splits into two or more agents, each doing his own job.
Thereby, we obtain a better overview of possibilities for the proponents to ana-
lyze the strategies. A similar approach is proposed by Fermüller and Ciabattoni
[10, 11] to obtain reasoning systems for intermediate logics, where proponents
may fork arbitrarily and join later to share their information. In our approach,
all agents have a global view at any time and fork in a more systematic fashion. In
this way, we develop the game-theoretic view to normalize reasoning procedures
for propositional intuitionistic logic and simplify proof searches.

We define structural game rules for multi-proponent dialogues and introduce
a sequent-based system DiaSeqI which implements these rules in a concrete
way. The system is then shown to be sound and complete. At the end, we discuss
briefly how to extend it further.

2 From Dialogues to Sequents and Back

In a two-player dialogue, both players take turns one after another. When it is a
player’s turn, he can either attack a formula stated by the other player, or defend
against such an attack. In an early work, Lorenzen proposed that the proponent
may perform several moves at the same time [19]. However this idea is given
1 This means that the proponent is always able to win, no matter how the opponent
behaves.

O P
A ∨ ¬A

? ¬A
? A —

Fig. 1. A Standard Intuitionistic Dialogue (Excluded Middle)

up in following publications. When looking at intuitionistic dialogues as finally
developed by Lorenzen and Lorenz, one notices similarities to Gentzen’s sequent
calculus LJ [13]: a game state can be interpreted as a sequent Φ ⇒ Ψ where
Φ contains assertions by O and Ψ assertions by P. In intuitionistic dialogues, P
may only defend against the last open attack, i.e., the last attack for which he
has not already defended. In LJ-sequents, we always have at most one formula
in Ψ which enforces intuitionism.

Figure 1 shows such a dialogue where P tries to prove the law of the excluded
middle A ∨ ¬A in an intuitionistic setting (first shown in a similar way in [19]).
This endeavour is doomed to fail, because – as widely known – that formula is not
valid in intuitionistic logic. In the first line, P states the hypothesis A∨¬A. This
statement is attacked by O (indicated by symbol ?). P can now defend stating
either the left or the right disjunct. However, in Lorenzen’s original rules, P is
not allowed to state atomic formulas which have not yet been stated by O herself.
So he must not defend with A and therefore defends with ¬A. O attacks this
by stating the opposite of the negation, namely assertion A. It is not possible
to defend against attacks on negations in Lorenzen games and attacking atomic
formulas is also not allowed. As this was the last (open) attack performed by O,
P is not allowed to repeat the defence of the second row. He loses, because he is
not able to perform another move.2

Now, when we compare single-conclusion and the more efficient [9] multi-
conclusion sequent calculi (originally introduced in [22]) the idea of more agents
on the P side comes up, where each of these agents states another formula.

A ⇒ ¬R⇒ ¬A ∨R⇒ A ∨ ¬A

A ⇒ ¬R⇒ A,¬A
∨R⇒ A ∨ ¬A

⇒ A | A⇒ ⊥
¬R⇒ A | ⇒ ¬A

∨R⇒ A ∨ ¬A | ⇒ A ∨ ¬A
EC⇒ A ∨ ¬A

Fig. 2. Excluded Middle in LJ, LJmc and HLI’

Figure 2 shows a proof attempt in the single-conclusion sequent calculus LJ
(left side). The reason for the failing is that one has to decide to keep either
A or ¬A when the ∨R-rule is applied, while the other disjunct vanishes. In the
2 In dialogues following classical logic, P may defend against any attack more often,
so it would be possible to defend against the disjunction-attack with A in the last
line, because this atom has just been stated by O herself.

multi-conclusion version LJmc3 (in the middle of the figure), the decision can
be postponed until the critical rule (¬R in this case) is applied. The attempt on
the right side is discussed in the next section.

3 Setting up a Focusing Multi-Proponent System

Fermüller [10] presents a variant of Lorenz and Lorenzen’s dialogues by introduc-
ing multiple players on the proponent’s side. The proponents are then allowed to
fork, i.e., they clone themselves and each proponent follows his own strategy. In
classical logic they are then allowed to merge again, to collect their information.
Allowing different levels of merging leads to different intermediate logics [10].

Fermüller’s system is very flexible. A proponent may fork when it is his
turn, and perform an additional move (attack or defence). This leads to parallel
games. In each of them, a proponent fights against another opponent with other
concessions. These parallel games build proof attempts which correspond to
single-conclusion hypersequents [10]. As a counterpart for intuitionistic logic,
the hypersequent system HLI’ [10, 4] is used, where – roughly spoken – rule EC
(for external contraction) clones a sequent.

Rule EC of HLI’ corresponds to P’s fork: reading the proof attempt of Figure
2 (right side) from bottom to top, assume that O attacks P’s statement A∨¬A
and P splits into two proponents (EC). So, every concurrent game corresponds
to a sub-sequent of a hypersequent and for each of these, O can commit herself
to other concessions. For classical and intermediate logics, the proponents can
merge the contexts again to combine concessions which O committed herself to
towards different Ps.

We construct game rules that define concretely in which cases such a fork
is allowed. As it turns out, it is not necessary to separate O’s commitments to-
wards the different P-agents when we compare the game with a multi-conclusion
sequent system. Parallelism is still possible through an extra scheduling mecha-
nism: we extend the idea of forking proponents by a technique for proof searches
in sequent calculi called focusing, that goes back to Andreoli [3] who introduced
it for linear logic. Focused calculi enforce a normalization of sequent-proofs.

Focused single-conclusion sequent calculi for intuitionistic logic have been
proposed in [17, 25]. The focused multi-conclusion calculus LJQ∗ for intuitionis-
tic propositional logic is presented by Dyckhoff and Lengrand [8] as a variant of
LJQ∗ by Herbelin [14]. Roughly said, in such a calculus, we can have different
sorts of sequents, e.g., an ordinary sequent Φ ⇒ Ψ for antecedent-rules and a
focused sequent Φ → Ψ , in which succedent-rules can be applied on a single
focused formula (called stoup).

We use such a focus on the proponents’ decisions (without stoup) which are
significant for the success or failure of the proof. Obviously, such a technique
is helpful for proof searches. The combination of multi-proponent games and
focusing results in a scheduled and synchronized parallel proof system.
3 In the following, we use the calculus as it is described in [9]. In literature, it is also
often called “m-G3i”, e.g. c.f [26].

Γ,A⇒ B
⊃R

Γ ⇒ A ⊃ B,∆
Γ,A⇒

¬R
Γ ⇒ ¬A,∆

Fig. 3. Critical Rules in LJmc

Based on the set of structural rules provided by Rahman and Keiff [24] and
Barth and Krabbe (constructive Λ-dialectics, CΛD) [5], we construct our new
set of rules which can deal with multiple proponent games. A single proponent
player is called P-agent. All P-agents together form a party which fights a single
O-agent (or simply O), who is the only member of the other party.4

1. At the beginning of a dialogue, a single P-agent states the hypothesis.
2. A round is a sequence of moves performed by O followed by the moves of the

P-agents. A dialogue consists of a sequence of such rounds where the first
round starts after the statement of the hypothesis.

3. Each agent must perform a move if he can. A P-agent may postpone a move
if he is forced to react to a critical attack (see rule 6).

4. A dialogue is won by the P-agents iff O cannot react on any of the Ps’ moves
of the previous round. O wins iff no P-agent can react to any of O’s statement
of the same round (either with an attack or a defence).

5. Only O may attack atomic formulas. P-agents may defend against these
attacks when O has stated the atom herself towards an P-agent who is not
deactivated in the same round.

6. Attacks on negations and implications are considered to be critical attacks.
7. Whenever a P-agent reacts to a critical attack, all other proponent players

are immediately deactivated and excluded for the rest of the dialogue.
8. A P-agent may repeat a critical attack on the same statement only after any

P-agent reacted on a critical attack performed by O. No other repetitions
are allowed.

The last three rules implement intuitionism and build the relation to multi-
conclusion sequent calculi. Some reader might consider it unnatural to have
rules like rule number 6, which refers directly to logical operators. It is usually
desired that the rules should be independent of the syntactic elements of the
formulas. However, this principle is given up here to increase the flexibility of
our system. We can add other connectives to the critical set as well, or remove
them and therefore generate other logical systems. The concept of critical attacks
is based on the non-invertible rules ⊃R and ¬R of LJmc, where formulas vanish
from the succedent by forced weakening (Figure 3). The usage of these rules is
the significant part of the focusing process as, for the proponents, it is highly
relevant for winning or losing the game.

To make the rules complete, we need a set of particle rules5 which define
how to attack and defend assertions according to the corresponding logical oper-
4 Note that semantics for dialogical logic are usually defined informally as game rules.
We follow that tradition. Formal rules are provided for a special sequent calculus in
Section 4.

5 originally “allgemeine Spielregeln” [18], also called “strip rules” in [5].

Assert A ∧B A ∨B A ⊃ B ¬A ⊥ a

Attack ?L ?R ? A A ? ?
Defence A B A B B — — !!

Fig. 4. Particle Rules Based on [18] and [5]

ators (Figure 4). These rules are the same for both single-proponent and multi-
proponent dialogues.

When attacking a conjunction, the attacker may ask for the left or right con-
junct. For the disjunction, the defender may choose the disjunct. Attacking an
implication means stating the antecedent. It is defended with the consequent.
Attacks on negations or ⊥ cannot be defended. Note that a represents an ar-
bitrary atomic formula. The double exclamation mark (!!) represents the ipse
dixisti (“you said it yourself”) remark [5] which allows the Ps to defend against
atomic attacks.

As widely known, a negation ¬A can also be interpreted as implication A ⊃ ⊥
in intuitionistic logic, so actually the negation rule is redundant. However, the
¬ - rule can be seen as a shortcut and therefore we keep it as particle rule.

4 The Calculus DiaSeqI

Barth and Krabbe [5] constructed a sequent system that follows (a variant of) the
two-player game rules explicitly. We introduce a sequent-style calculus DiaSeqI
that implements the multi-proponent dialogues.

Definition 1 (Dialogue Game). A dialogue game is a path in a DiaSeqI
sequent tree read from bottom to top.

We refer to the proponent agents via labels of some set Propo ⊆ {pi | i ∈
N}. An augmented sequent has the form Φ `X Ψ where X is an element of
{O,PN,PD} indicating the current phase of the game (or proof), and Φ and Ψ
represent multi-sets of signed formulas:

Φ ⊆ {op : ϕ, op : ϕ, opL : ϕ, op
R : ϕ, õp : ϕ | p ∈ Propo, ϕ ∈ Form} (1)

Ψ ⊆ {p : ϕ, p : ϕ, pL : ϕ, pR : ϕ | p ∈ Propo, ϕ ∈ Form} (2)

Signed formulas are standard propositional formulas (also called assertions; we
use the set Form as an infinite set of all possible propositional formulas) extended
by announcer labels (o for opponent and p ∈ Propo for proponents) with an
optional mark which is either a horizontal bar or a tilde above the label. For the
opponent-label o, we further add an addressee as index to indicate the current
communication partner. This is not needed for the proponents, as their only
communication partner is o.

For example, the signed formula op1 : A∧B means that the opponent stated
formula (or assertion) A ∧B towards proponent agent p1. A bar over the label
op1 means that the corresponding assertion has been attacked by p1 and not yet

`O

`PD

`PN

cO

O?,O!,O∗

P!⊃,P∗¬PN

P?,P!cP

Fig. 5. Proof Cycle in DiaSeqI

been defended. When a conjunction is attacked, we add an L or R referring to
the left or right conjunct, because when a player attacks a conjunction, he may
ask for the left conjunct (op1L : A ∧ B) or the right one (op1R : A ∧ B). As an
extra marker, we use the tilde õp1 to indicate that the statement is blocked and
can therefore not be attacked or defended. This is used to avoid unnecessary
attacks to be carried out by the proponents (see rule 8 from above).

Definition 2 (Round). A round is a section of a dialogue game that starts
with an application of cP and ends when another cP is applied or when the end
of the game is reached.

The three turnstile symbols `O, `PD and `PN denote the current phase. Every
round consists of a sequence of these phases (illustrated in Figure 5). In phase
`O, it is the opponent’s turn who reacts on all of the Ps’ moves of the previous
round. If O cannot react on all proponents, she loses. In the following `PD phase
(D stands for decision), the proponents decide together who of them is going
to defend in case that an implication or negation is attacked. This corresponds
to the non-invertible rules (⊃R, ¬R) of LJmc. In the last phase `PN (N for
normal), the remaining proponent agents react on O’s previous moves, each
proponent performing at most one move. As soon as no proponent can take a
turn, the opponent wins.

A dialogue normally starts with some proponent p0 stating the hypothesis ϕ,
so the initial situation is interpreted as sequent `PN p0 : ϕ. Note that the first
applied rule would then always be cP which, we omit in the following (start of
first round). So our base sequent has the form `O p0 : ϕ.

Figure 6 shows the rules of DiaSeqI. Every rule application, read from bot-
tom to top, represents a possible move. For every logical connective, there are
at least four rules, which are in each case two more than in standard sequent
calculi. The reason is that we have for both parties rules for attacks and rules for
defences. Notice that most attacking rules simply add the bar above the label.
Instead of O!⊃, we have a so-called trigger-rule O∗⊃ which combines both the
defence against an implication-attack and the possibility of a counter-attack, as
an extra assertion is added to the proponent-side, i.e., to the right side of the
sequent. Because it is not possible to defend against attacks on negations, we
also introduce trigger rules for these (O∗¬, P∗¬).

O-rules

Φ `O Ψ, p : A ⊃ B
O?⊃

Φ `O Ψ, p : A ⊃ B
õp : A ⊃ B, Φ `O Ψ, p : A op : B, Φ `O Ψ

O∗⊃
op : A ⊃ B, Φ `O Ψ

Φ `O Ψ, p : ¬A
O?¬

Φ `O Ψ, p : ¬A
õp : ¬A, Φ `O Ψ, p : A

O∗¬
op : ¬A, Φ `O Ψ

Φ `O Ψ, p : A ∨B
O?∨

Φ `O Ψ, p : A ∨B
op : A, Φ `O Ψ op : B, Φ `O Ψ

O!∨
op : A ∨B, Φ `O Ψ

Φ `O Ψ, pL : A ∧B Φ `O Ψ, pR : A ∧B
O?∧

Φ `O Ψ, p : A ∧B

op : A, Φ `O Ψ
O!∧L

op
L : A ∧B, Φ `O Ψ

op : B, Φ `O Ψ
O!∧R

op
R : A ∧B, Φ `O Ψ

Φ `O Ψ, p : A
O?A

Φ `O Ψ, p : A

A is an atom

Φ `O Ψ
O?⊥

Φ `O Ψ, p : ⊥

Φ `PD Ψ
cO

Φ `O Ψ
only applicable if no other

rule application is possible

P-rules – decide phase

oq : A, Φ
δ `PN p : B

P!⊃
Φ `PD Ψ, p : A ⊃ B

op : A, Φδ `PN ∅
P∗¬

Φ `PD Ψ, p : ¬A
Φ `PN Ψ

PN
Φ `PD Ψ

Φδ =df (Φ \ {õp : f | p ∈ Propo, f ∈ Form}) ∪ {oq : f | õp : f ∈ Φ, p ∈ Propo, f ∈ Form},
q is a new agent.

P-rules – normal phase

op : A ⊃ B, Φ `PN Ψ
P?⊃

op : A ⊃ B, Φ `PN Ψ

Φ `PN Ψ, p : A
P!∧L

Φ `PN Ψ, pL : A ∧B

op
L : A ∧B, oqR : A ∧B, Φ `PN Ψ

P?∧
op : A ∧B, Φ `PN Ψ

Φ `PN Ψ, p : B
P!∧R

Φ `PN Ψ, pR : A ∧B

op : A ∨B, Φ `PN Ψ
P?∨

op : A ∨B, Φ `PN Ψ

Φ `PN Ψ, p : A, q : B
P!∨

Φ `PN Ψ, p : A ∨B

P!!
or : A, Φ `PN Ψ, p : A, Ψ

P?⊥
op : ⊥, Φ `PN Ψ, r : A

Φ `O Ψ
cP

Φ `PN Ψ
only applicable if no other rule application is possible

and a P-agent performed an attack or defence in the current round

q is a new agent in each case.

Fig. 6. DiaSeqI Rules

op1 : A `PN
P∗¬

`PD p0 : A, p1 : ¬A
cO

`O p0 : A, p1 : ¬A
O?¬

`O p0 : A, p1 : ¬A
O?A`O p0 : A, p1 : ¬A
cP`PN p0 : A, p1 : ¬A
P!∨

`PN p0 : A ∨ ¬A
PN

`PD p0 : A ∨ ¬A
cO

`O p0 : A ∨ ¬A
O?∨`O p0 : A ∨ ¬A

P!!
õp3 : ¬(A ∨ ¬A), op2 : A `PN p3 : A, p4 : ¬A

co,PN
õp3 : ¬(A ∨ ¬A), op2 : A `O p3 : A, p4 : ¬A

O?A,O?¬
õp3 : ¬(A ∨ ¬A), op2 : A `O p3 : A, p4 : ¬A

cP
õp3 : ¬(A ∨ ¬A), op2 : A `PN p3 : A, p4 : ¬A

P!∨
õp3 : ¬(A ∨ ¬A), op2 : A `PN p3 : A ∨ ¬A

cO,PN
õp3 : ¬(A ∨ ¬A), op2 : A `O p3 : A ∨ ¬A

O?∨
õp3 : ¬(A ∨ ¬A), op2 : A `O p3 : A ∨ ¬A

O∗¬
op3 : ¬(A ∨ ¬A), op2 : A `O

cP
op3 : ¬(A ∨ ¬A), op2 : A `PN

P?¬
op3 : ¬(A ∨ ¬A), op2 : A `PN

P∗¬
õp1 : ¬(A ∨ ¬A) `PD p1 : A, p2 : ¬A

cO
õp1 : ¬(A ∨ ¬A) `O p1 : A, p2 : ¬A

O?A,O?¬
õp1 : ¬(A ∨ ¬A) `O p1 : A, p2 : ¬A

cP
õp1 : ¬(A ∨ ¬A) `PN p1 : A, p2 : ¬A

P!∨
õp1 : ¬(A ∨ ¬A) `PN p1 : A ∨ ¬A

cO,PN
õp1 : ¬(A ∨ ¬A) `O p1 : A ∨ ¬A

O?⊥,O?∨
õp1 : ¬(A ∨ ¬A) `O p0 : ⊥, p1 : A ∨ ¬A

O∗¬
op1 : ¬(A ∨ ¬A) `O p0 : ⊥

cP
op1 : ¬(A ∨ ¬A) `PN p0 : ⊥

P!⊃
`PD p0 : ¬(A ∨ ¬A) ⊃ ⊥

cO
`O p0 : ¬(A ∨ ¬A) ⊃ ⊥

O?⊃
`O p0 : ¬(A ∨ ¬A) ⊃ ⊥

Fig. 7. Two Examples of DiaSeqI-Proofs

A dialogue can then be simply seen as an augmented sequent tree where each
branching corresponds to another O-strategy. Every sequent can be interpreted
as a state of the dialogue game.

We consider two examples. The first is the law of the excluded middle again,
this time in DiaSeqI (Figure 7, left side). The dialogue is read from the bottom
to the top. At the beginning, O attacks the thesis stated by p0 (O?∨) and then
it is the proponents’ turn (cO, decide phase). The proponents (we currently have
only one) can now decide whether they defend against critical attacks or skip
such defences. As there is no such attack, we proceed directly to normal phase
(PN). Agent p0 may now decide to defend with the left or right disjunct, so
he calls p1 as a supporter, defends herself with A and lets p1 defend with ¬A.
There is nothing to attack on the O-side, so it is the opponent’s turn again (cP).
O has to react to all P-agents. So p0’s atom A is attacked (O?A), as well as
p1’s negation ¬A (O?¬) and it is the proponents’ turn again (cO). One of O’s
attacks was critical, so they have to decide whether to react on this or not. As
it is not possible to defend against the atomic attack in this round (O has not
stated A), p1 decides to react and triggers this decision (P∗¬) which adds A
to O’s concessions. However, p0 is deactivated thereby (he vanishes) and is not

able to defend anymore. Agent p1 is not allowed to attack atoms and therefore
cannot react on O’s previous attack with a counter-attack. The proponents lose.

When applying ⊃L or ¬L in LJmc, the principal formula may not be re-
moved from the sequents. The resulting duplication problem can be avoided by
replacing the corresponding rules by several others [7]. In DiaSeqI, we reduce
the possibilities of repeating such attacks again and again by blocking implica-
tions and negations on the O-side after an attack, until a critical attack has been
answered on the P-side.

The right DiaSeqI-proof of Figure 7 makes clear, how this blocking mecha-
nism works: first, O attacks the implication and p0 defends by stating ⊥, while
his colleague p1 counter-attacks the negation. O reacts to this attack by trigger-
ing and counter-attacking p1’s disjunction (O∗¬, O?∨). O’s negation is blocked
and cannot be attacked for now. When p0’s ⊥ is attacked, it disappears. Agent
p1 introduces p2 who states the right disjunct (P!∨). Both p1’s and p2’s asser-
tions are then attacked by O. Agent p2 defends against the critical attack which
deactivates p1 and triggers O’s concession A. Thereby, O’s blocked assertion is
unlocked and can be attacked again what is done immediately by a new agent
p3. O triggers p3’s assertion A ∨ ¬A and counter-attacks it. Agent p3 defends
with A, his new colleague p4 with ¬A. Both are attacked by O in the next round,
but as O has A in her concessions, p3 can defend (P!!) and the proponents win.

5 Equivalence of LJmc and DiaSeqI

In this section, soundness and completeness proofs for DiaSeqI are shown due
to a transformation of closed DiaSeqI sequent trees to closed LJmc sequent
trees and vice versa. Closed means that at all leaves of a sequent tree, a closing
rule (ax or ⊥ax in LJmc; P!! or P?⊥ in DiaSeqI) is applied.

Theorem 1 (DiaSeqI Soundness). Every closed DiaSeqI proof tree can be
transformed to a closed LJmc proof tree.

Proof. This can be achieved quite easily, as we simply have to remove the
announcer-labels and all applications of attacking rules that do nothing more
than adding the bars above the labels. We also remove the rules that change
the phases. The only exceptions are attacked conjunctions on the P-side which
cause a branching in DiaSeqI-trees. They are replaced directly, i.e., pL : A ∧B
becomes A, and pR : A ∧B becomes B. The defences against these conjunctive
attacks are then simply removed, as they do not add any new information to the
trees. ut

The completeness theorem is more complex. Our aim is to rearrange the rule
applications in such a way that we have the round structure of a game. This is
not trivial, as rule applications might depend on each other and it is probably
necessary to add further applications which are not relevant in the LJmc proof.

We first need some definitions for LJmc sequent trees6: in an LJmc-sequent
Γ ⇒ ∆, Γ and ∆ are multi-sets of formulas, where Γ is called antecedent and ∆
6 The definitions commonly used can be traced back to [16].

succedent. A rule can be applied on an antecedent-formula (called left-rule) or a
succedent-formula (right-rule). Here, we see the left-rule for disjunctions.

Γ,A⇒ ∆ Γ,B ⇒ ∆
∨L

Γ,A ∨B ⇒ ∆

A rule consists of zero, one or two sequents above the line, called premises, and
one sequent below, called conclusion. The formula that is concerned by the rule
in the conclusion (A ∨B) is called principal, the corresponding sub-formulas in
the premises (A and B) are called side formulas.

Definition 3 (Rule Application). A rule application is a pair (r, ϕ) where
r is a rule name and ϕ (the instance) of some principal formula in an LJmc
proof, on which r is applied.

Definition 4 (Formula Introduction and Reinitialization). Let t be an
LJmc sequent tree. Reading the tree from bottom to top, in each branch, a sequent
s can be found, where some formula ϕ occurs for the first time in the branch.
This happens with a rule application a or ϕ is already in the root sequent of the
tree. We say that ϕ is introduced in sequent s with the root or with application
a. When a critical rule (¬R, ⊃R) is applied, all implications and negations in
the antecedent of the premise are called reinitialized.7

Now, the movement of a rule application a below another one a′ is only possible
if a does not depend on a′.

Definition 5 (Rule Application and Dependencies). A rule application
a1 = (r1, ϕ1) depends directly on another application a2 = (r2, ϕ2), written
a1 X a2, iff both r1 and r2 are applied in the same path of the tree and ϕ1 is
introduced with a2 or reinitialized with a2.

A rule application a1 depends on an application a2, written a1 ∝ a2, iff
a1 X a2, or there is some application a′ such that a1 X a′ and a′ ∝ a2, i.e., ∝ is
the transitive closure of X.

For example, assume we have a section of an LJmc-tree:

Γ ⇒ A,B,C ∧D
∨R

Γ ⇒ A ∨B,C ∧D

If there is an application a of ∧R on C∧D above this shown application a′, then
a is independent of a′, because C ∧D also appears in the shown conclusion, so
a′ can already be applied there instead of a.

By contrast, if ∨R is applied on a formula A∨(C∧D), then a later application
of ∧R on C ∧D depends on the former one, which must be done first.

When a non-invertible (i.e., critical) rule is applied, formulas of the succedent
vanish. These are therefore critical positions we focus on in the decision phases
of dialogues. Parts of the proof tree above and below these applications are

7 This corresponds to the unblocking mechanism in DiaSeqI.

summarized to macro blocks. Within these macro blocks, we collect rule appli-
cations which are independent of each other. The movement of rule applications
within these micro blocks is possible without problems. Micro-blocks correspond
to rounds of the dialogue that is constructed.

Definition 6 (Macro Block and Micro Block). A macro block is a maximal
path of an LJmc proof tree that contains only non-critical rule applications.

A micro block is a non-empty section of a macro block with only non-critical
rule applications, in which every rule application is independent of any other rule
application in the same micro block. The first rule application that depends on
some other application within a macro block, is the start of a new micro block.

Definition 7 (Block Height). The macro block height (MBH) of an LJmc
sequent tree is the maximal number of macro blocks of all paths from the root of
the tree to its leaves. The micro block height (mbh) of an LJmc sequent tree is
the maximal number of micro blocks from the root of the tree to its leaves.

In the following, we assume that an LJmc sequent tree is closed if the same
formula appears in the antecedent and succedent of some sequent, but addition-
ally we assume that this formula is an atom. If this is not the case for some
sequent tree t, it can easily be extended to some tree t′ by the way of further
rule applications, such that the closing rules of t′ (usually called ax) are only
applied on atoms.

Lemma 1 (Rule Application Redundancy). Let t be a closed LJmc proof
tree. Then t can be transformed to another tree t′ such that for all of its macro
blocks M , every rule application appears at most once in M .

Proof (by induction on the MBH of t). Only the rules ⊃l and ¬l are interesting as
these cause duplication. One has to show that a duplication is not relevant within
the same macro block. The application of a critical rule at the end of the macro
block makes duplications in succedents vanish, and only after those applications,
the implications and negations in the antecedent become interesting again. ut

We can now show by induction that a rule application in level n can be moved
in any LJmc sequent tree towards the root as long as it is independent of the
rule application below, e.g.,

— t —
Γ,A⇒ C,D,∆

∨R
Γ,A⇒ C ∨D,∆

— t′ —
?

Γ,B ⇒ C ∨D,∆
∨L

Γ,A ∨ B ⇒ C ∨D,∆

— t —
Γ,A⇒ C,D,∆

— t′′ —
Γ,B C,D,∆

∨L
Γ,A ∨ B ⇒ C,D,∆

∨R
Γ,A ∨ B ⇒ C ∨D,∆

So this makes an arbitrary exchange of rule applications within a micro block
possible. It is also possible to move applications of left-rules beyond applications
of critical rules, as long as the applications are independent of each other. So
independent rule applications from one macro block can be moved down to
another one (proven by induction on the level of application in sequent tree).
The base sequent never changes and tree closure is preserved.

Next, we have to normalize the macro and the micro blocks, because every
player must perform a move whenever this is possible. We have to enrich the

LJmc-trees by further rule applications or by moving rule applications from one
block down to another one so that the blocks are finally saturated.

Definition 8 (Macro-Normalized Proof Tree). Let t be an LJmc proof
tree, then t is macro-normalized iff for all non-atomic φ ∈ Φ which appear in
a sequent Φ ⇒ Ψ of t (antecedent), if φ is introduced or reinitialized in macro
block b and a rule is applied on this φ then this application happens in the same
macro block b.

Lemma 2 (Macro-Normalization). Every LJmc proof tree t can be macro-
normalized to a tree t′. If t is closed then t′ is also closed. The MBH of t is the
same as that of t′.

Proof (by induction on MBH h of proof tree t). In the inductive step, considering
the macro blocks starting at the root sequent of t, we have to examine the
frontiers to the macro blocks above.

...
...

...
— t1 — rc1
Γ1 ⇒ ∆1

...
...

...
...

...
— t2 — rc2
Γ2 ⇒ ∆2

...
...

...
. . .

...
...

...
— tn —

rcn
Γn ⇒ ∆n

...
...

...
ΓB ⇒ ∆B

After macro-normalizing all tis which are not empty (hypothesis) we cut out
the section containing Γi ⇒ ∆i together with t′i for each i, and move all left-rule
applications, that appear in macro level 1 of this section, below ci. The resulting
tree that starts in Γi ⇒ ∆i is again macro-normalized and called t′′i . We obtain
an LJmc tree with the following structure:

—t′′i1— rci
Γi1 ⇒ ∆i1

...

· · · · · ·
...

—t′′im—
rci

Γim ⇒ ∆im

...
Γi ⇒ ∆i

...

Now for each path i starting in the lowest macro-block, we collect all formulas
which are introduced on the left-hand side within this block and store them in
a list Γ ∗i ⊆ Γi, i.e., Γ ∗i contains all these fresh formulas of branch i. For each
φik of Γ ∗i , we check whether a corresponding rule application appears in t′′i , i.e.,
above Γi ⇒ ∆i. If it does not, we do not need to do anything with φik and can
proceed with the next formula of Γ ∗i . Otherwise, it must be independent of the
rules between it and Γi ⇒ ∆i. As t′′i is also macro-normalized, it must appear
below the ci’s. The application on φik together with all left-hand applications
that depend on this and which do not depend on any ci, are already in the new
single macro sequent section starting in the base sequent. ut

Definition 9 (Micro Block Saturation). A micro block with Φ⇒ Ψ as root
sequent is saturated iff non-critical and non-closing rules are applied on all

formulas φ of Φ and ψ of Ψ for which φ is not atomic and ψ is not atomic and
not a negation or implication. A sequent tree is micro-saturated iff all the micro
blocks on all of its paths are saturated.

Lemma 3 (Micro Block Saturation in LJmc Proof Trees). Let t be a
closed LJmc proof tree of micro block height h. Then t can be transformed so
that it is micro-saturated. If t is closed then it is still closed after the transfor-
mation. Its micro block height h is not increased.

Proof (by induction on mbh h of t). Use Lemma 2 to macro-normalize t. Micro-
saturation can be achieved by pulling down independent applications from upper
micro-blocks or introducing irrelevant rule applications that are not necessary
to close the proof tree but which are needed for saturation. ut

Lemma 4 (Rule Movement in Saturated Single-Block Sequent Trees).
In a saturated single-micro-block section of an LJmc-tree, any non-closing rule
application in any level can be moved down within the section any possible number
of steps without changing the base sequent, nor the leafs. The micro block height
is not increased.

Proof. As we have already seen, the base sequent never changes because the rule
applications are all independent of each other. The rest is done by induction on
the height n of the section. ut

These lemmas make it possible to prove the completeness theorem.

Theorem 2 (DiaSeqI Completeness). Every closed LJmc proof tree can
be transformed to a closed DiaSeqI proof tree.

Proof. We have seen that we can take any LJmc proof tree t and macro-
normalize it (Lemma 2). The resulting sequent tree t′ can then bemicro-saturated
(Lemma 3). So then for each micro block, considering the non-critical and non-
atomic formulas, we have a rule application in the block. Now the applications of
the rules we want to have at the bottom can be pulled down within these micro
blocks (Lemma 4). So we can fix an order for the rule applications in each micro
block, e.g., ∧r,∨r,¬l,⊃l,∧l,∨l. Each branch of the resulting tree has then the
desired form we need: the initial round starts with an attack performed by O.
Afterwards, for each micro block, we have a PN-phase followed by an O-phase.
This is repeated until the macro-block is finished. Then a critical rule is applied
(PD-phase) and the next micro-block starts and so on. The announcer labels can
then be simply added. ut

As we have seen, we can rearrange the moves within one micro block and
therefore within one phase; the result is always the same. Additionally, once a
proponent agent is introduced, he is independent of the other P-agents as long
as his moves take place in the PN-phase. So, as long as there is no reaction on
a critical attack, the proponents may argue with O in parallel. There is finally
a synchronization taking place when one critically attacked P-agent reacts to
that attack. Such a parallelism makes it possible to implement a concurrent and
synchronized reasoning procedure for different logics.

6 Conclusion and Further Steps

We have seen a sound and complete game-theoretic proof system which is based
on dialogical logic. We introduce more proponent players to parallelize the proof
searching process. Further restrictions on the proponents’ strategies let us focus
on the players’ decisions which are significant for winning or losing the game
(decide phase). This is a normalization of standard multi-conclusion calculi for
intuitionistic logic (such as LJmc), similar to sequent systems with focus. The
extra normal phase of DiaSeqI gives hints of how right-hand rules can be ap-
plied in parallel. Besides, the presented game-theoretic approach suggests to
implement a concurrent reasoning procedures and provides a highly flexible cal-
culus which can be easily extended due to a modification of the structural rules,
to improve efficiency.

Currently, termination of the proof search is not guaranteed, as the repetition
rule (rule 8) is still too weak. An elegant way to enforce termination would be
a restriction that corresponds to the a fortiori rule of sequent system IG by
Corsi and Tassi [6]. A suitable structural rule would be “If a P-agent reacted on
a critical attack against some assertion, then, if O attacks the same assertion
again, a P-agent may only defend non-critically against this attack ”.

An extension would be to consider first-order predicate logic or modal logic
instead of propositional logic. Van Dun [27] proposes a system, where a reasoning
procedure for modal logic is implemented due to multiple opponents, each oppo-
nent representing another Kripke world. Our next step is to combine DiaSeqI
with Van Dun’s approach to obtain a flexible system which has a considerable
potential for proof searches in modal logics. Further extensions for public an-
nouncement logics or hybrid logics are possible and fit very well the idea of this
dialogical setting.

Acknowledgements

I want to thank Chris Fermüller and Michael Mendler for their comments on an
earlier version of the presented work, and especially the CILC’16-reviewers for
their helpful comments and remarks.

References

1. Abramsky, S.: A compositional game semantics for multi-agent logics of partial
information. In: van Benthem, J., Gabbay, D., Löwe, B. (eds.) Interactive Logic.
pp. 11–47. Amsterdam University Press (2007)

2. Alama, J.: Dialogues for proof search. In: Benzmüller, C., Otten, J. (eds.) ARQNL
2014. Automated Reasoning in Quantified Non-Classical Logics. EPiC Series in
Computing, vol. 33, pp. 65–70 (2015)

3. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. Journal of
Logic and Computation 2(3), 297–347 (1992)

4. Avron, A.: Hypersequents, logical consequence and intermediate logics for concur-
rency. Annals of Mathematics and Artificial Intelligence 4(3), 225–248 (1991)

5. Barth, E.M., Krabbe, E.C.: From Axiom to Dialogue: A philosophical study of
logics and argumentation. Walter de Gruyter (1982)

6. Corsi, G., Tassi, G.: Intuitionistic logic freed of all metarules. The Journal of Sym-
bolic Logic 72, 1204–1218 (12 2007)

7. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. The Journal
of Symbolic Logic 57(3), 795–807 (1992)

8. Dyckhoff, R., Lengrand, S.: LJQ: A Strongly Focused Calculus for Intuitionistic
Logic, pp. 173–185. Springer Berlin Heidelberg (2006)

9. Egly, U., Schmitt, S.: On intuitionistic proof transformations, their complexity, and
application to constructive program synthesis. Fundamenta Informaticae 39(1-2),
59–83 (1999)

10. Fermüller, C.G.: Parallel dialogue games and hypersequents for intermediate logics.
Springer (2003)

11. Fermüller, C.G., Ciabattoni, A.: From Intuitionistic Logic to Gödel-Dummett Logic
via Parallel Dialogue Games. In: In Proceedings of the 33rd IEEE International
Symposium on Multiple-Valued Logic (2003)

12. Galmiche, D., Larchey-Wendling, D., Vidal-Rosset, J.: Some remarks on relations
between proofs and games. Construction-Festschrift for Gerhard Heinzmann (2010)

13. Gentzen, G.: Untersuchungen über das logische Schließen. I. Mathematische
Zeitschrift 39, 176–210 (1935)

14. Herbelin, H.: Séquents qu’on calcule: de l’interprétation du calcul des séquents
comme calcul de lambda-termes et comme calcul de stratégies gagnantes. Ph.D.
thesis, Université Paris-Diderot-Paris VII (1995)

15. Hintikka, J.: Logic, language-games and information: Kantian themes in the phi-
losophy of logic. Oxford Univ Press (1973)

16. Kleene, S.C.: Introduction to Metamathematics. North Holland (1952)
17. Liang, C., Miller, D.: Focusing and polarization in intuitionistic logic. In: Computer

Science Logic. pp. 451–465. Springer (2007)
18. Lorenz, K.: Arithmetik und Logik als Spiele. Ph.D. thesis, Christian-Albrechts-

Universität zu Kiel (1961), excerpts reprinted in [21]
19. Lorenzen, P.: Ein dialogisches Konstruktivitätskriterium. In: Infinistic Methods.

Proceeding of the Symposium on Foundations of Mathematics. pp. 193–200 (1961),
reprinted in [21]

20. Lorenzen, P.: Logik und Agon. In: Atti del XII Congresso Internazionale di
Filosofia. vol. 4, pp. 187–194 (1958), reprinted in [21]

21. Lorenzen, P., Lorenz, K.: Dialogische Logik. Wissenschaftliche Buchgesellschaft
(1978)

22. Maehara, S.: Eine Darstellung der intuitionistischen Logik in der klassischen.
Nagoya mathematical journal 7, 45–64 (1954)

23. Mann, A.L., Sandu, G., Sevenster, M.: Independence-Friendly Logic – A Game-
Theoretic Approach. London Mathematical Society lecture note series, Cambridge
Univ. Press (2011)

24. Rahman, S., Keiff, L.: On how to be a dialogician. In: Vanderveken, D. (ed.) Logic,
Thought and Action, Logic, Epistemology, and the Unity of Science, vol. 2, pp.
359–408. Springer Netherlands (2005)

25. Simmons, R.J.: Structural focalization. ACM Transactions on Computational Logic
(TOCL) 15(3), 21 (2014)

26. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge Univ. Press,
second edn. (2000)

27. Van Dun, F.: On the modes of opposition in the formal dialogues of P. Lorenzen.
Logique et analyse 15, 103–136 (1972)

