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Abstract. As often observed in the literature, cancer evolution follows
a path that is unique to each patient; therefore, classical analysis based
on the identification of typical mutations, provides little insight in the
understanding of the general rules that drive cancer genesis and evolu-
tion. Recent genome sequencing pipelines allow researchers to retrieve
rich genetic and epigenetic information from sampled tissues. Analyzing
and comparing the evolution of cancer cells for each patient over a large
time span can provide some accurate information and relationships. This
paper presents a project for a logic programming based analysis that pro-
cesses time-related genomic information.
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1 Introduction

Modern sequencing techniques applied to genomic studies are now capable of
producing high-throughput data related to specific individuals. With fast and
inexpensive methods, it is possible to retrieve accurate information about a DNA
sequence, its methylation (used for epigenetic studies), histones modifications,
and gene and protein expression. The process can be repeatedly applied to the
same sample over years, for instance, before and after a set of pharmacological
therapies. The evolution of an organism and/or a specific sample of cells at
genomic scale can be tracked when observing such biological properties. The
cancer cells include features such as fast changing genome and cross combination
of different offsprings of tumoral cells.

The classical theory of gene mutation, used since the 70s, defines the can-
cer evolution as a Darwinian process, where the cells compete for survival and
the mutations accumulated over time may produce the insurgence of a tumor.
However, the search for specific markers and pathways did not produce a clear
understanding for many cases. More flexible models could capture the large vari-
ability of DNA mutations observed in the same type of tumors among patients.
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Compared to previous models, where a simple gene mutation was assumed dur-
ing cancer evolution, new data allows a more precise investigation and suggests
new models based on evolution principles. In particular, the temporal dimension
is taken into account in the genomic and epigenomic analysis [29]. This novel
paradigm is reflected in the growing literature on Cancer genome evolution[18]:
this research direction considers the genetic material as a global and detailed
source of information. The changes among cells generations during the develop-
ment of a tumor can be tracked and explained by looking at the global properties
over time.

The goal of our study is to employ Answer Set Programming (ASP) [26,
24] to model new mining techniques, that search for relevant time-dependent
relationships. In particular, differently from classical algorithms, where statisti-
cal analysis is used to identify strong peaks over a noise threshold, we focus on
mixing evolutionary analysis and mutation analysis. The combination of the two
techniques allows us to produce a rich and flexible model. The use of logic pro-
gramming helps in the definition of a declarative model that merges two distinct
aspects: the haplotype identification problem and phylogenetic reconstruction.
The literature has already offered separate logic programming models of these
two problems. In our case, the evolution of cancer genome can provide uniform
input to both problems, namely the search for descriptors of mutations that are
correlated over time.

Along with the modeling of this novel perspective, another challenge is the
size of the data to be analyzed, requiring the use of modern ASP solving tech-
nologies and motivating the exploration of novel resolution models, such as those
based on the use of parallel programming techniques (e.g., GPU programming,
as recently explored in [27, 5, 7, 2, 3]). This paper provides a preliminary report
describing the activities of an ongoing GNCS-2016 project, focused on the anal-
ysis of genome evolution in cancer, and outlining the potential of this research.

2 Background

We assume that the reader is familiar with Answer Set Programming (see, e.g.,
[26]). In this section, we briefly introduce the formalization of two well-known
problems in bioinformatics. The first problem is the haplotype inference prob-
lem [16], i.e., the problem of identifying the minimal set of mutations that explain
those observed on a population-wide genome sequencing. The second problem
considered is the classical problem of phylogenetic inference: the reconstruction
of a tree that summarizes the mutations over time for a set of species.

ASP is particularly suited to the modeling and resolution of these classes of
problems, because of its flexibility in the modeling phase, its elaboration tol-
erance, and the fast prototyping cycle. In the literature, there are examples of
ASP encoding of the haplotyping problem [10] and phylogenetic tree reconstruc-
tion problem [25, 9] (along with other uses of ASP to support phylogenetic data,
e.g., to support complex queries on phylogenetic repositories [4]). These prob-
lems have also been addressed using alternative logic-based and constraint-based



paradigms—the readers are referred to, e.g., [1, 28] for additional references.
However there are no applications nor combinations of these techniques in the
study of genome evolution in cancer.

2.1 Phylogenetic Inference

Phylogenies are artifacts that describe the relationships among entities (e.g.,
proteins or genomes) derived from a process of evolution. We often refer to the
entities studied in a phylogeny as taxonomic units (TUs) or taxa.

The field of Phylogenetics developed from the domain of biology as a powerful
instrument to investigate similarities and differences among entities as a result
of an evolutionary process. Evolutionary theory provides a powerful framework
for comparative biology, by converting similarities and differences into events
reflecting causal processes. As such, evolutionary-based methods provide more
reliable answers than the traditional similarity-based methods, as they employ
a theory (of evolution) to describe changes instead of relying on simple pattern
matching. Indeed, evolutionary analyses have become the norm in a variety of
areas of biological analysis. Evolutionary methods have proved successful, not
merely in addressing issues of interest to evolutionary biologists, but in regard
to practical problems of structural and functional inference [32]. Evolutionary
inference of pairing interactions determining ribosomal RNA structure [35] is a
clear case in which progress was made by the preferential use of an evolutionary
inference method, even when direct (but expensive and imprecise) experimental
alternatives were available. Eisen and others [31, 8] have shown how an explic-
itly evolutionary approach to protein “function” assignment eliminates certain
categories of error that arise from gene duplication and loss, unequal rates of
evolution, and inadequate sampling. Other inference problems that have been
addressed through evolutionary methods include studies of implications of SNPs
in the human population [31], identification of specificity-determining sites [14],
inference of interactions between sites in proteins [34], interactions between pro-
teins [33], and inferences of categories of sets of genes that have undergone
adaptive evolution in recent history [23].

Phylogenetic analysis has also found applications in domains that are outside
of the realm of biology; for example, a rich literature has explored the evolution
of languages (e.g., [12, 30, 6]). The definitions and techniques employed are the
same; of course the notion of “observable property” can be different. Starting
from genes one notices differences using string matching algorithms. But dif-
ferences (to be analyzed and explained) can be more macroscopic such as the
presence/absence of a tail in an animal or the way one say “father” in a language.

Modeling. Let us consider the problem of phylogenetic tree reconstruction,
namely: given a set of data characterizing the entities being studied (e.g., species,
genes, languages), we wish to identify a phylogeny that accurately describes the
evolutionary lineages among the given entities. We start with the notion of phy-
logenetic tree and then we give the notion of compatibility of characters.

A phylogenetic tree (or simply a phylogeny) is typically a labeled binary tree
(V,E, L, T ,L) where:



Fig. 1. A Sample Phylogeny (left), compatible (center–Coelom) and incompatible
(right–Dark) characters

• The leaves L represent the taxonomic units being compared;

• The internal nodes V \ L represent the (hypothetical) ancestral units; in rare
cases, the internal nodes correspond to concrete entities (e.g., fossils);

• The edges E of the tree describe evolutionary relationships; the structure of
the edges describe the processes that hypothetically led to the evolution of the
TUs, e.g., biological processes of speciation, gene duplication, and gene loss;

• Commonly, each TU is described by a collection of finite domain properties,
referred to as characters. In the formalization, T = (C,D, f) is the description
of such properties, where

− C = {c1, . . . , ck} is a finite set of characters;

− D = (Dc1 , . . . , Dck) associates a finite domain to each character;

− f : L×C →
⋃

c∈C Dc is a function that provides the value of each character
for each TU being studied.

• We are often interested in the length of the branches of a phylogeny and/or
the assignment of dates to the internal nodes of the phylogeny; if this feature
is present, then we will describe it as a function L : E → R+.

Whenever we do not have information about the length of the branches, we omit
the component L from the description of the phylogeny.

For presentation simplicity, we focus on one example with macroscopic ob-
servable properties. Fig. 1 (left) shows a phylogenetic tree for the TUs L =
{Mollusca, Annelida, Arthopoda, Echinodermata, Chordata}. In this example, the
set of characters is C = {Coelom,Dark}—Coelom denotes the presence/absence
of coelom (a body cavity between the intestine and the body walls), while Dark
denotes the phenotypical character of having dark color. In this example, these
are both binary characters, i.e., DCoelom = DDark = {0, 1}. The function f
describing the five TUs is given by the table underneath each TU in the figure—
e.g., f(Annelida,Coelom) = 0 and f(Annelida,Dark) = 0.

The key point in the phylogenetic tree reconstruction problem is how to define
what does it mean to “accurately describe”, i.e., what measure of accuracy is
used to compare plausible trees. A variety of measures have been proposed, and
various phylogenetic reconstruction methods have been proposed based on the
specific measure being used to assess quality of the phylogeny. A common method



used in deriving phylogenies is based on the idea of character compatibility—a
principle derived from Le Quesne’s idea of uniquely derived characters [21, 22].

The intuitive idea of compatibility is as follows: a character c is compatible
with a phylogeny if the TUs that present the same value for such character are
connected by a subtree within the phylogeny. More formally, given a phylogeny
P = (V,E, L, T ,L), with T = (C,D, f), a character c ∈ C is compatible with P
if there is a mapping hc : V → Dc such that:

• For each t ∈ L we have that hc(t) = f(t, c);

• For each i ∈ Dc, the projection of the graph (V,E) on the set of nodes
V c
i = {t ∈ V | hc(t) = i} has a subgraph that has V c

i as nodes and it is a
rooted tree.

A character that is not compatible with a phylogeny P is said to be incompatible.
The above (sub-tree) requirement implicitly states that when a character changes
(during evolution) it never goes back to the previous value. This is referred to
as the Camin-Sokal requirement; moreover, it also accounts for the requirement
that the “change” occurs in a unique place, known as the Dollo requirement.

In the example of Fig. 1, the character Coelom is compatible with the given
phylogeny—as shown in Fig. 1(middle). On the other hand, the character Dark
is not compatible with this phylogeny (as shown in Fig. 1(right)).

The goal, in phylogeny reconstruction, is to determine a phylogeny that max-
imizes the number of characters that are compatible with it. This problem has
been often referred to as the k-incompatibility problem [11]. Formally, the k-
incompatibility problem is the problem of deciding, given a set L of TUs, a
character description T = (C,D, f) of L, and an integer n ∈ N, whether there
is a phylogeny (V,E, L, T ) that has at most k incompatible characters.

2.2 Haplotype Inference

The differences between two organisms of the same species are derived from
differences in some peculiar points of their DNA sequences. We present here
the problem of reconstructing the connection between a set of diploid organisms
(such as humans), given some information about such specific DNA locations.

The DNA of diploid organisms is organized in pairs of not completely iden-
tical copies of chromosomes. The sequence of nucleotides from a single copy is
called haplotype, while the conflation of the two copies constitutes a genotype.
Each person inherits one of the two haplotypes from each parent. The most
common variation between two haplotypes is a difference in a single nucleotide.
Using statistical analysis within a population, it is possible to describe and an-
alyze the typical points where these mutations occur. Each of such differences
is called a Single Nucleotide Polymorphism (SNP). In other words, a SNP is a
single nucleotide site, in the DNA sequence, where more than one type of nu-
cleotide (usually two) occur with a non-negligible population frequency. We refer
to such sites as alleles.

Considering a specific genotype, a SNP site where the two haplotypes have
the same nucleotide is called an homozygous site, while it is heterozygous other-
wise. Research has confirmed that SNPs are the most common and predominant



form of genetic variation in DNA. Moreover, SNPs can be linked to specific
traits of individuals and with their phenotypic variations within their popula-
tion. Consequently, haplotype information in general, and SNPs in particular,
are relevant in several contexts, such as, for instance, in the study and diagnosis
of genetic diseases, in forensic applications, etc. This makes the identification
of the haplotype structure of individuals, as well as the common part within a
population, of crucial importance. In practice, biological experiments are used to
collect genotype data instead of haplotype data, mainly due to cost or technolog-
ical limitations. To overcome such limitations, accurate computational methods
for inferring haplotype information from genotype data have been developed
during the last decades (for a review, the reader is referred to [17, 15, 16]).

Modeling. The haplotype inference problem can be formulated as follows. First,
we apply an abstraction and represent genotypes and haplotypes by focusing on
the collection of ambiguous SNPs sites in a population. Moreover, let us denote,
for each site, the two possible alleles using 0 and 1, respectively. Hence, an
haplotype will be represented by a sequence of n components taken from {0, 1}.
Each genotype g, being a conflation of two (partially) different haplotypes h1

and h2, will be represented as a sequence of n elements taken from {0, 1, 2},
such that 0 and 1 are used for its homozygous sites, while 2 is used for the
heterozygous sites. More specifically, following [20], let us define the conflation
operation g = h1 ⊕ h2 as follows:

g[i] =

{
h1[i] if h1[i] = h2[i]
2 otherwise

where g[i] denotes the ith element of the sequence g, for i = 1, . . . , n.
We say that a genotype g is resolved by a pair of haplotypes h1 and h2 if

g = h1 ⊕ h2. A set H of haplotypes explains a given set G of genotypes, if for
each g ∈ G there exists a pair of haplotypes h1, h2 ∈ H such that g = h1 ⊕ h2.

Given a set G of m genotypes, the haplotype inference problem consists of
determining a set H of haplotypes that explains G. The cardinality of H is
bound by 2m but, in principle, each genotype having k ≤ n ambiguous sites, can
be explained by 2k−1 different pairs of haplotypes. For instance, the singleton
G = {212} (i.e., k = 2) can be explained in two ways, namely by choosing
H = {011, 110} or H = {010, 111} (see also Fig. 2). Hence, in general, there
might be an exponential number of explanations for a given set G. All of them
are, from the combinatorial point of view, “equivalent” and a blind algorithm—
not exploiting any biological insights—may result in inaccurate, i.e., biologically
improbable, solutions. What is needed is a genetic model of haplotype evolution
to guide the algorithm in identifying the “right” solution(s).

Several approaches have been proposed, relying on the implicit or explicit
adoption of assumptions reflecting general properties of an underlying genetic
model. We focus on one of such formulations, namely parsimony. The main un-
derlying idea is the application of a variant of Ockham’s principle of parsimony:
the minimum-cardinality possible set H of haplotypes is the one to be chosen
as explanation for a given set of genotypes G. For instance the set G in Fig. 2



Fig. 2. The set G = {212, 121} and two possible explanations

admits two explanations. The one at the bottom, i.e., {010, 111, 101}, is prefer-
able by the parsimony principle. In this formulation, the haplotype inference
problem has been shown in [20] to be APX-hard, through a reduction from the
node-covering problem.

3 Methods

The basic idea is to use ASP to model the genome analysis. In particular, as first
approximation of the problem, we focus on mutations that took place in specific
locations of the DNA (Single Nucleotide Polymorphism). These mutations are
tracked at different moments in time for the same individual and tissue, opposed
to traditional techniques that search for these mutations across a large set of
individuals. Since the data is enriched by time information, it is possible to
integrate haplotype search with phylogenetic structure of tumoral fingerprints.
In fact, cell offspring relationships are strongly related to an evolutionary tree
for species. In our case, it is possible to model different snapshots of the genome
at different points in time, and correlate mutations over time as in the classical
phylogenetic inference. The algorithms for the construction of a phylogenetic
tree need to be modified to capture the evolutionary properties of the various
genomes collected from the same patient. Similar approaches have appeared in
the literature (e.g., [13]), though not based on logic programming. The goal is
to use the combination of haplotyping and phylogenetic tree reconstruction to
reconstruct the mutations over time, and provide an evolutionary map of cancer
haplotypes. The ASP framework allows us to prototype the models and have a
fast feedback about their quality.

3.1 Modeling

The evolutionary haplotype inference problem can be formulated by extending
the formalization presented for the haplotype inference problem. We define a
linear timeline T = t0, t1, . . . , tk−1, whose time-steps are associated to each input
genotype. Formally a timed genotype is a pair (g, ti) made of a genotype g and
a time-step ti ∈ T . A timed haplotype is a haplotype associated to a time step:
formally (h, ti) where h is a haplotype and ti ∈ T .



We say that a timed genotype (g, ti) is resolved by a pair of timed haplotypes
(h1, tj) and (h2, tk) if g = h1⊕h2, ti ≥ tj and ti ≥ tk. A set H of timed haplotypes
explains a given set G of timed genotypes, if for each g ∈ G there exists a pair
of timed haplotypes such that they resolve g.

We need to introduce the notion of haplotype persistence: given a set H
of timed haplotypes, (h, ti) ∈ H is persistent if for any tj , such that ti ≤ tj ,
(h, tj) ∈ H. In other words, persistent haplotypes in H are defined at specific
time-steps and they will explain any timed genotypes at times greater or equal to
ti. A set H of timed haplotypes is persistent if every haplotype in H is persistent.

The last notion we introduce is the preference over two persistent sets H1 �
H2. Intuitively, we prefer timed haplotypes that appear as late as possible: this
reflects the fact that the occurrence of an haplotype cannot be delayed anymore
and therefore captures some relevant properties in the timed genomes (e.g., con-
sequences of a therapy). On the other hand, any haplotype at a certain time
ti can be introduced at previous time-steps, without violating any properties.
Therefore, a preference that captures the late occurrence of haplotypes reflects a
more accurate characterization of the set H. Note that any solution for the orig-
inal haplotype inference problem can be extended to a timed haplotype solution
by adding the time step t0 to each haplotype.

Formally, given two persistent haplotypes (h, ti) ∈ H1 and (h, tj) ∈ H2,
we say that (h, ti) � (h, tj) if ti ≥ tj . We extend the preference to persistent
haplotype sets: H1 � H2 reflects the fact that the set H1 is preferred to H2,
namely there is no pair (h, ti) ∈ H1 and (h, tj) ∈ H2 such that (h, ti) 6� (h, tj).

Given a set G of timed genotypes, the evolutionary haplotype inference prob-
lem consists of determining sets H of persistent timed haplotypes that explain G
such that there is no other solution H1 � H.

This model introduces only time information to available genotype. It is pos-
sible to extend it to other facts that are annotated with the samples. For example,
the clinical condition of the patient can provide information about therapies and
other physiological parameters. The timed genotypes can be enriched by a tuple
of properties that could help in the comparison between solutions of evolution-
ary haplotype inference problem for different patients. This information can be
retrieved from public/controlled access databases (see, e.g., the cancer genome
atlas cancergenome.nih.gov).

4 Conclusion

In this work-in-progress paper, we briefly discussed the initial modeling of the
evolutionary haplotype inference problem; the problem is tied to investigation of
genome evolution in cancer (e.g., as result of pharmacological interventions). The
problem is combinatorial in nature, and suitable for modeling and analysis using
logic programming techniques. The project is in its infancy and will proceed
through the integration of the proposed haplotype inference with techniques
to reconstruct an associate evolutionary tree (with techniques borrowed from
phylogenetic analysis).
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