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Abstract. This paper describes an algorithm that can be used to effec-
tively solve polynomial constraints over finite domains. Such constraints
are expressed in terms of inequalities of polynomials with integer coeffi-
cients whose variables are assumed to be defined over proper finite do-
mains. The proposed algorithm first reduces each constraint to a canon-
ical form, i.e., a specific form of inequality, then it uses the modified
Bernstein form of resulting polynomials to incrementally restrict the do-
mains of variables. No approximation is involved in the solving process
because the coefficients of the modified Bernstein form of the considered
type of polynomials are always integer numbers.

1 Introduction and Motivation

In this paper we study constraints written in terms of polynomials whose coef-
ficients are integer numbers and whose variables are defined over proper finite
subsets of integer numbers. Such constraints, that we call polynomial constraints
over finite domains, are ubiquitous in many areas of system analysis and veri-
fication (as discussed, e.g., in [1]) and they deserve specific treatment because
common finite-domain techniques cannot adequately process them, even in sim-
ple cases. The language of CLP(FD) is suitable to express polynomial constraints
over finite domains, but the fact that FD solvers are incomplete sometimes does
not allow to treat such constraints adequately. For example, if constraints are
expressed as non-linear polynomials, the FD solver that ships with SWI-Prolog
(version 6.6.6) may fail in completely reducing the domains of variables [6]. Con-
sider the constraint

X in -10..10, X^2 #>= 9

which involves only one variable over a finite interval, namely I = [−10..10].
It is easy to observe that such a constraint is satisfied only for values in the
interval IR = [−10..−3]∪ [3..10]. However, the FD solver exhibits its well-known
incompleteness and it rewrites the constraint as

X in -10..-1\/1..10, Y in 9..100, X^2 #= Y



which introduces an unneeded variable and counts {−2,−1, 1, 2} as admissible
values. Concerning non-linear constraints that involve more than one variable,
consider

X in -10..10, Y in -10..10, X*Y #>= 21

where both variables are over the finite domain I. Again, such a constraint is
satisfied only for values in IR for both variables, but the FD solver introduces
an unneeded variable and it also allows inadmissible values in the domains of
variables. As a matter of fact, the FD solver rewrites the constraint as

X in -10..-1\/1..10, Y in -10..-1\/1..10, Z in 21..100, X*Y #= Z.

In this paper we describe an algorithm to solve polynomial constraints over
finite domains that overcomes the well-known incompleteness of FD solvers. The
proposed algorithm ensures that the domains of variables after the solution pro-
cess contain only admissible values by a proper use of the specific form of allowed
constraints, namely polynomial inequalities. Polynomials with real coefficients
whose variables admit values in known intervals can always be rewritten in so
called Bernstein Form (BF ) (see, e.g., [4] or [5]) to effectively compute a lower
bound and an upper bound of their range. Such bounds can be used to effectively
verify polynomial inequalities, and they have been used extensively for optimiza-
tion problems. Unfortunately, even if a polynomial has only integer coefficients,
no guarantees can be provided that its equivalent in BF has integer coefficients.
Therefore, the BF has been traditionally used only with polynomials with real
or rational variables. In this paper we show how to use a variant of the BF,
that we call Modified Bernstein Form (MBF ), to process polynomial constraints
over finite domains with no involvement of rational or real numbers. Note that
the MBF is also known in the literature as scaled BF [2], but we adopted the
modified adjective since the introduced multiplicative factor is not the same for
all coefficients of the BF, and the resulting patch is not geometrically scaled. As
a matter of fact, if a polynomial has integer coefficients, its equivalent in MBF
always has integer coefficients. This property allows effective reasoning on poly-
nomial inequalities with integer coefficients. In details, even if the MBF does not
provide accurate bounds for the range of polynomials, it provides information
on the sign of suitable bounds, which is sufficient to reason on polynomial con-
straints over finite domains. The algorithm that we propose uses only such signs,
and the actual values of bounds are not used. The current implementation of the
proposed algorithm was used to validate all examples presented in this paper and
it is available for download (cmt.dmi.unipr.it/software/clppolyfd.zip).

The paper is organized as follows. Section 2 presents the proposed approach
and the underlying constraint language. Section 3 introduces the MBF and it
proves notable properties that allow using the coefficients of the MBF to compute
the signs of suitable lower and upper bounds of polynomials, as needed by the
proposed algorithm. Section 4 illustrates in details the behaviour of the proposed
algorithm by means of specific examples. Finally, Section 5 concludes the paper
and presents planned developments.



2 The Proposed Approach

The interesting characteristics of the constraint solving approach that we pro-
pose derive from the specific form of constraints that we address. Polynomial
constraints over finite domains are expressed in terms of inequalities of polyno-
mials with integer coefficients whose variables are defined over finite subsets of
integer numbers. The relative constraint language is described as follows.

2.1 The Constraint Language

The syntax of the language of polynomial constraints that we consider is defined,
as usual, by its signature Σ, a triple Σ =< V ,F , Π > where V is a denumerable
set of variable symbols, F is the set of constant and function symbols, and Π

is the finite set of constraint predicate symbols allowed in the language. The
set F of constant and function symbols is F = O ∪ Z, where O = {+, ∗} is the
set of function symbols representing binary operations over integer numbers, and
Z = {0, 1,−1, 2,−2, . . .} is the denumerable set of constants representing integer
numbers. The set Π of constraint predicate symbols is Π = {=, 6=, <,≤, >,≥},
and it contains only binary predicate symbols.

A primitive constraint is any atomic predicate built using the symbols from
signature Σ. A (non-primitive) constraint is a conjunction of primitive con-
straints. The semantics of the language defined over signature Σ is trivial and it
allows expressing systems of polynomial equalities, inequalities and disequalities
with integer coefficients.

Example 1 The following are primitive constraints expressed using signature
Σ with V = {x, y, z}:

x ∗ x ≥ 9

3 ∗ x ∗ x + 9 ≤ 5 ∗ y ∗ y + z

x 6= y + z.

Note that other common function symbols and predicate symbols are supported
in terms of syntactic abbreviations, as follows

v in a..b → (v + (−1) ∗ a) ∗ (v + (−1) ∗ b) ≤ 0 (1)

v nin a..b → (v + (−1) ∗ a) ∗ (v + (−1) ∗ b) > 0 (2)

−t → (−1) ∗ t (3)

t1 − t2 → t1 + (−1) ∗ t2 (4)

t0 → 1 (5)

tn → t ∗ t ∗ · · · ∗ t
︸ ︷︷ ︸

n>0

(6)

where v is a variable symbol, a and b are integer constant symbols such that
a ≤ b, and t, t1, and t2 are terms.



Note that the extended language introduced by the aforementioned syntactic
abbreviations does not increase the set of expressible constraints, and that we
allow operator precedence and parenthesized expressions in this language.

The following example is meant to clarify why v in a..b and v nin a..b (read
v not in a..b) are rewritten using the mentioned syntactic abbreviations.

Example 2 Syntactic rules rewrite the constraint x in 1..3 as

(x + (−1) ∗ 1) ∗ (x + (−1) ∗ 3) ≤ 0.

As a matter of fact, p(x) = (x−1)(3−x) represents a downward parabola whose
vertex is x = 2 (which corresponds to p(2) = 1) and whose intersections with the
x-axis are x = 1 and x = 3 (so that p(1) = p(3) = 0). For all values of x not in
[1..3] the values of the parabola p(x) are negative and it can then be concluded
that the rewritten constraint is equivalent to x in [1..3].

Analogously, syntactic rules rewrite the constraint x nin 1..3 as

(x + (−1) ∗ 1) ∗ (x + (−1) ∗ 3) > 0.

As a matter of fact, p(x) = (x − 1)(x − 3) represents an upward parabola whose
vertex is x = 2 (which corresponds to p(2) = −1) and whose intersections with
the x-axis are x = 1 and x = 3 (so that p(1) = p(3) = 0). For all the values of x

not in [1..3], instead, the values of the parabola p(x) are positive, so that it can
be concluded that the rewritten constraint is equivalent to x not in [1..3].

2.2 Constraints in Canonical Form

If a total order on variable symbols is fixed, any primitive constraint can be
rewritten to a canonical form. The chosen canonical form expresses any primitive
constraint as t ≥ 0, where t is a term in canonical form. We say that a term t

is in canonical form if it is a summation term (i.e., t = t1 + . . . + th) involving
only terms with the following structure

ti = k∗x1 ∗ x1 ∗ · · · ∗ x1
︸ ︷︷ ︸

n1

∗ x2 ∗ x2 ∗ · · · ∗ x2
︸ ︷︷ ︸

n2

∗ · · ·∗xm ∗ xm ∗ · · · ∗ xm
︸ ︷︷ ︸

nm

i ∈ [1..h]

where k is a constant symbol and the {xi}
m
i=1 are distinct variable symbols

arranged using the fixed total order. The fixed total order induces a lexicographic
order of product terms that is used to arrange the {ti}

h
i=1 in t. We can define

a function deg(v, t) on product terms by returning nv if variable symbol v is
repeated nv times in t. Function deg(v, t) allows writing product terms in a
compact form as

ti = k ∗ x1 ∗ x1 ∗ · · · ∗ x1
︸ ︷︷ ︸

deg(x1,ti)

∗ x2 ∗ x2 ∗ · · · ∗ x2
︸ ︷︷ ︸

deg(x2,ti)

∗ · · · ∗ xm ∗ xm ∗ · · · ∗ xm
︸ ︷︷ ︸

deg(xm,ti)

= k ∗ x1ˆdeg(x1, ti) ∗ x2ˆdeg(x2, ti) ∗ · · · ∗ xmˆdeg(xm, ti) i ∈ [1..h]



Besides ordinary algebraic manipulations and the total order of variable sym-
bols, the conversion to the canonical form uses the following ideas. First, observe
that any constraint of the form f(x) ⊙ g(x), where f(x) and g(x) are polyno-
mials with integer coefficients, x is the vector of variables of polynomials, and
⊙ ∈ Π , can be expressed in the form p(x) ⊙ 0, where p(x) = f(x)− g(x) is still
a polynomial with integer coefficients. Second, in order to convert constraints in
canonical form we use the following lemma, which holds for every polynomial
p(x) with integer coefficients.

Lemma 1 The following co-implications hold for every polynomial p(x) with
integer coefficients and variables x

p(x) ≤ 0 ⇐⇒ −p(x) ≥ 0 (7)

p(x) > 0 ⇐⇒ p(x) ≥ 1 ⇐⇒ p(x) − 1 ≥ 0 (8)

p(x) < 0 ⇐⇒ p(x) ≤ −1 ⇐⇒ −p(x) − 1 ≥ 0 (9)

p(x) = 0 ⇐⇒ p2(x) ≤ 0 ⇐⇒ −p2(x) ≥ 0 (10)

p(x) 6= 0 ⇐⇒ p2(x) > 0 ⇐⇒ p2(x) − 1 ≥ 0 (11)

The following illustrative examples are provided to exemplify how generic
constraints can be written in canonical form.

Example 3 Consider the following primitive constraints in the form (x1+x2)⊙0
where ⊙ ∈ Π.

1. The constraint x1 +x2 ≤ 0 can be written as −x1 −x2 ≥ 0 by co-implication
(7) of lemma 1, which is in canonical form.

2. The constraint x1+x2 > 0 can be written as x1+x2−1 ≥ 0 by co-implication
(8) of lemma 1, which is in canonical form.

3. The constraint x1 +x2 < 0 can be written as x1 +x2 ≤ −1 by co-implication
(9) of lemma 1, which corresponds to −x1 − x2 − 1 ≥ 0 in canonical form.

4. The constraint x1+x2 = 0 can be written as (x1 +x2)
2 ≤ 0 by co-implication

(10) of lemma 1, which is −x2
1 − x2

2 − 2x1x2 ≥ 0 in canonical form.
5. The constraint x1+x2 6= 0 can be written as (x1 +x2)

2 > 0 by co-implication
(11) of lemma 1, and it can be written as x2

1+2x1x2+x2
2−1 ≥ 0 in canonical

form.

2.3 The Constraint Solving Algorithm

The canonical form of primitive constraints has the interesting property of re-
ducing constraint solving to the study of the sign of polynomials with integer
coefficients whose variables are defined over finite subsets of integer numbers. In
the rest of this paper we assume that constraints are always written in canonical
form since the reformulation of constraints to their respective canonical forms
can be considered a simple preprocessing step.

As discussed in Section 1, we assume that the user provides initial bounds
for all variables, i.e., we can assume that before the solving process begins

xi ∈ [xi..xi] xi ∈ Z xi ∈ Z i ∈ [1..m] (12)



where {xi}
m
i=1 are all the variables involved in the constraints, {xi}

m
i=1 are their

lower bounds, and {xi}
m
i=1 are their upper bounds. The lower bounds and the

upper bounds identify a box in Z
m that can be used as an initial approximation

of the domain of variables. The constraint solving algorithm refines the initial
box and possibly breaks it into disjoint boxes until boxes are sufficiently refined
and the consistency of constraints can be certified in each of them. In details,
the algorithm considers all primitive constraints and it verifies if each constraint
is consistent in the current box. If no consistency can be certified, a variable is
selected and the current box is split into two disjoint boxes by splitting the cur-
rent domain of the selected variable. The obtained disjoint boxes are processed
recursively. The algorithms always terminates because the consistency of con-
straints can always be verified in a box formed by intervals that contain only one
element. The performances of the algorithm depend significantly on the details
of the subdivision, i.e., on the techniques adopted to select a variable and to
split a box into two disjoint boxes, and a large number of alternatives have been
studied in the literature (see, e.g., [3]). In the rest of this paper, we assume that
variables are selected using a fixed lexicographic order and that once a variable
xi is selected, its domain [xi..xi] is split at

si =

⌊
(xi + xi)

2

⌋

(13)

into two disjoint intervals [xi..si] and [(si + 1)..xi].
For each primitive constraint p(x) ≥ 0, the algorithm computes suitable

lower bound l and upper bound u, with l ≤ u, for the polynomial p(x) in the
current box, and it uses such values to verify if p(x) ≥ 0 in the current box. The
following procedure summarizes the core of the constraint solving algorithm:

1. If u < 0 the constraint is not consistent in the current box;
2. If l ≥ 0 the constraint is consistent in the current box;
3. Otherwise, the current box should be split and analysed recursively.

The following example shows how the proposed algorithm works for a simple
constraint under the assumption that suitable lower bounds and upper bounds
can be computed.

Example 4 Let us consider the constraint x − 3 ≥ 0 involving only variable x,
which is assumed to be defined in I = [0..5]. Using the notation introduced in
the algorithm described above, suitable values of the lower and upper bounds are
l = −3 and u = 2, respectively, so that none of the first two conclusive cases of
the algorithm applies. The interval I is then split into two subintervals, namely
IL = [0..2] and IR = [3..5]. First, consider IL with suitable values of the lower
and upper bounds as l = −3 and u = −1, respectively, so that case (1) holds, i.e.,
the constraint is not consistent in the current box IL. Then, consider IR, with
suitable lower and upper bounds as l = 0 and u = 2, respectively, so that case
(2) holds, i.e., the constraint is consistent in IR. The domain of the variable x

can then be set equal to IR, and Figure 1 shows how the initial approximation of
the domain is processed.



x ∈ [0..5]

l = −3, u = 2

x ∈ [0..2]

l = −3, u = −1

x ∈ [3..5]

l = 0, u = 2

Fig. 1. Description of the refinement of the domain of variable x in Example 4.

It is worth noting that we are only interested in the signs of l and u, and not
in their actual value. Any algorithm that allows the effective computation of the
signs of suitable l and u can be used to support the proposed algorithm. In the
following section we present a technique to effectively compute such signs using
the modified Bernstein form of polynomials.

3 The Modified Bernstein Form of Polynomials

In this section we introduce the Modified Bernstein Form (MBF ) of polynomials
and we explain how to use it to solve polynomial constraints over finite domains.
As an illustrative special case, we start by considering univariate polynomials.
Problems involving only polynomials in one variable are not relevant for typical
applications, however, they allow simplifying the notation and, therefore, they
allow the proposed approach to be explained in a simpler way.

3.1 Univariate Polynomial Constraints

We consider a single constraint expressed in canonical form as

p(x) ≥ 0 (14)

where

p(x) =

n∑

i=0

aix
i (15)

is a generic polynomial of degree n, x is the (unique) variable, {ai}
n
i=0 are the

coefficients relative to the canonical basis B given by the following set of mono-
mials

B = {1, x, x2, . . . , xn} (16)

and we assume that x is defined in a given interval I = [x..x]. In order to write
the explicit expression of the polynomial p(x) in the Bernstein basis, we first
need to consider a new variable t defined in [0, 1], which is related to x according
to the following affine transformation

x = x + (x − x)t. (17)



By substituting (17) in (15), one obtains

n∑

i=0

ai(x + (x − x)t)i =
n∑

i=0

i∑

k=0

ai

(
i

k

)

xi−k(x − x)ktk =
n∑

i=0

cit
i (18)

where the coefficients {ci}
n
i=0 are defined as

ci =
n∑

k=i

(
k

i

)

akxk−i(x − x)i i ∈ [0..n]. (19)

Observe that {ci}
n
i=0 are related to the coefficients {ai}

n
i=0 relative to the canon-

ical basis (16) and also to the extremes x and x of the interval I where p(x) is
defined. Moreover, since the coefficients {ai}

n
i=0 are integer numbers, it can be

concluded that also {ci}
n
i=0 are integer numbers. The coefficients {ci}

n
i=0 defined

in (19) are necessary to derive the MBF of p(x).

The Bernstein basis is given by the set of n+1 polynomials {Bn
i (x)}n

i=0, the
i-th of which is given by

Bn
i (x) =

(
n

i

)
(x − x)i(x − x)n−i

(x − x)n
i ∈ [0..n]. (20)

Using this Bernstein basis, the polynomial defined in (15) can be written as

p(x) =

n∑

i=0

biB
n
i (x) (21)

where the coefficients {bi}
n
i=0 are related to {ci}

n
i=0, and, hence, to {ai}

n
i=0,

according to

bi =
i∑

j=0

(
i

j

)

(
n
j

)cj i ∈ [0..n]. (22)

The coefficients {bi}
n
i=0 are useful to find a lower bound and an upper bound

of the polynomial p(x). As a matter of fact the following inequalities hold

min
i∈[0..n]

{bi} ≤ p(x) ≤ max
i∈[0..n]

{bi} x ∈ I. (23)

Observe that, even if the coefficients {ci}
n
i=0 are integer numbers, the co-

efficients {bi}
n
i=0 are not guaranteed to be integer because of the divisions by

binomial coefficients. For this reason, the treatment of the {bi}
n
i=0 requires rep-

resenting rational numbers, which often involves approximations. However, it is
possible to consider a modified Bernstein basis whose i-th element is given by

B̃n
i (x) =

(x − x)i(x − x)n−i

(x − x)n
i ∈ [0..n]. (24)



Each element B̃n
i (x) of the modified Bernstein basis is obtained from the corre-

sponding element Bn
i (x) of the Bernstein basis using the following equality

Bn
i (x) =

(
n

i

)

B̃n
i (x). (25)

From (21), the polynomial p(x) can be written in terms of the modified Bernstein
basis as

p(x) =
n∑

i=0

b̃iB̃
n
i (x) (26)

where the coefficients {b̃i}
n
i=0 are

b̃i =

(
n

i

)

bi i ∈ [0..n]. (27)

The right-hand side of (26) represents the MBF of polynomial p(x). The advan-
tage of considering the MBF of p(x) instead of its Bernstein form is that the
coefficients {b̃i}

n
i=0 are integer numbers and they can therefore be represented

with no approximation, provided that integer numbers can be represented with
arbitrary precision. As a matter of fact, since

(
n

i

) (
i

j

)

(
n
j

) =

(
n − j

i − j

)

(28)

the coefficients {b̃i}
n
i=0 can be written as

b̃i =

i∑

j=0

(
n − j

i − j

)

cj i ∈ [0..n] (29)

from which it can be easily deduced that they are integer numbers. It is worth
noting that binomial coefficients are integer numbers and they can be computed
without divisions. As a matter of fact, the following recursive formula holds for
binomial coefficients, when n ≥ j > 0

(
n

j

)

=

(
n − 1

j

)

+

(
n − 1

j − 1

)

. (30)

The recursion terminates because the binomial coefficient equals 1 for j = 0.

Observe that (23) holds for the coefficients {bi}
n
i=0 and not for {b̃i}

n
i=0. How-

ever, as previously discussed, we are only interested in the signs of the coefficients
{bi}

n
i=0, which are the same as that of corresponding {b̃i}

n
i=0 since they only dif-

fer by a positive multiplicative factor. For this reason, it is possible to focus only
on the integer coefficients {b̃i}

n
i=0.



3.2 Multivariate Polynomial Constraints

A more sophisticated notation needs to be introduced in the multivariate case.
We denote as {xj}

k
j=1 the considered variables where k ≥ 1 and j is an index

that we associate with each variable. We define the vector x of all variables

x = (x1, . . . , xk) (31)

and we define a multi-index I as I = (i1, . . . , ik), so that xI = xi1
1 · . . . · xik

k .
A k-variate polynomial p(x) with real coefficients can be written as

p(x) =
∑

I≤N

aIx
I (32)

where N = (n1, . . . , nk) is a multi-index, and operations on multi-indices are
defined component-wise. Observe that the inequality I ≤ N among multi-indices
is also component-wise, namely it corresponds to

ij ≤ nj j ∈ [1..k]. (33)

As in the univariate case, we start by considering a single constraint, namely

p(x) ≥ 0 (34)

and we assume that each variable is defined over a finite interval. More precisely,
we denote as x = (x1, . . . , xk) and x = (x1, . . . , xk) the extremes of the box
I = [x,x] where the polynomial p(x) is defined. In order to find the explicit
expression in the Bernstein basis of the polynomial p(x) defined in (32), it is
necessary to consider an affine change of variable between x and a new variable
t defined over the unit box [0, 1]k. Using the affine transformation

xi = xi + (xi − xi)ti (35)

it is possible to show that

p(x) =
∑

I≤N

aIx
I =

∑

I≤N

cIt
I (36)

where the coefficients cI are related to aI according to

cI =

N∑

L=I

aI

(
L

I

)

xL−I(x − x)I (37)

and (
L

I

)

=

(
l1

i1

)

· . . . ·

(
lk

ik

)

. (38)

Then, it is possible to write the polynomial p(x) defined in (32) as

p(x) =
∑

I≤N

bIB
N
I (x) (39)



where the polynomials {BN
I (x)}I≤N represent the Bernstein basis of the consid-

ered polynomial space with the following explicit expression

BN
I (x) = Bn1

i1
(x1) · B

n2

i2
(x2) · . . . · B

nk

ik
(xk) (40)

and

B
nj

ij
(xj) =

(
nj

ij

)
(xj − xj)

ij (xj − xj)
nj−ij

(xj − xj)
nj

ij ∈ {0, . . . , nj} j ∈ {1, . . . , k}.

The coefficients bI are related to cI (and, hence, to aI) according to

bI =
∑

J≤I

(
I

J

)

(
N
J

)cJ I ≤ N. (41)

Notably, the range of the polynomial p(x) satisfies

range(p) ⊆ [min
I≤N

{bI}, max
I≤N

{bI}]. (42)

As in the univariate case, such a well-known property of the Bernstein form is
useful to study polynomial constraints because it provides effective lower and
upper bounds of a polynomial, and it can be used to study its sign in a box.

We now aim at deriving the MBF of the polynomial p(x) starting from its
Bernstein form in (39). In order to do so, let us consider the modified Bernstein
basis given by the following set of polynomials

B̃N
I (x) = B̃n1

i1
(x1) · B̃

n2

i2
(x2) · . . . · B̃

nk

ik
(xk) (43)

where

B̃
nj

ij
(xj) =

(xj − xj)
ij (xj − xj)

nj−ij

(xj − xj)
nj

ij ∈ {0, . . . , nj} j ∈ {1, . . . , k}.

Using such a basis, the polynomial p(x) can be written as

p(x) =

n∑

i=0

b̃IB̃
N
I (x) (44)

where the coefficients {b̃I}I≤N are

b̃I =
∑

J≤I

(
N

I

) (
I

J

)

(
N
J

)cJ =
∑

J≤I

(
N − J

I − J

)

cJ I ≤ N. (45)

Observe that, since all factors involved in (45) are integer numbers, the coeffi-
cients {b̃I}I≤N of the polynomial p(x) in the MBF are integer numbers. More-
over, the binomial coefficients in (45) can be computed with no divisions using
(30). This allows evaluating the coefficients {b̃I}I≤N with no approximation.
As in the univariate case, even if condition (42) holds for only the coefficients
{bI}I≤N , we can focus on the coefficients {b̃I}I≤N since we are only interested
in their signs.



x ∈ [−10..10]

l̃ = −218, ũ = 91

x ∈ [−10..0]

l̃ = −18, ũ = 91

x ∈ [−10.. − 5]

∀i ∈ [0..2] b̃i ≥ 0

x ∈ [−4..0]

l̃ = −18, ũ = 7

x ∈ [−4.. − 2]

l̃ = −5, ũ = 7

x ∈ [−4.. − 3]

∀i ∈ [0..2] b̃i ≥ 0

x ∈ [−2]

∀i ∈ [0..2] b̃i < 0

x ∈ [−1..0]

∀i ∈ [0..2] b̃i < 0

x ∈ [1..10]

l̃ = −8, ũ = 91

x ∈ [1..5]

l̃ = −8, ũ = 16

x ∈ [1..3]

l̃ = −12, ũ = 0

x ∈ [1..2]

∀i ∈ [0..2] b̃i < 0

x ∈ [3]

∀i ∈ [0..2] b̃i ≥ 0

x ∈ [4..5]

∀i ∈ [0..2] b̃i ≥ 0

x ∈ [6..10]

∀i ∈ [0..2] b̃i ≥ 0

Fig. 2. Description of the refinement of the domain of variable x in (46)

4 Examples

The first motivating example proposed in Section 1 is

X in -10..10, X^2 #>= 9

and such a constraint can be rewritten in canonical form and interpreted as

p(x) = x2 − 9 ≥ 0 x ∈ [−10..10]. (46)

The trace of the solving process for such a constraint is shown in Figure 2 where
light blue nodes are non-terminal nodes, green nodes are terminal nodes with
consistent domains and red nodes are terminal nodes with inconsistent domains.
In non-terminal nodes, we denote as l̃ and ũ a negative value and a positive value
of {b̃i}

2
i=0, respectively. The figure shows that after 7 branches the algorithm

computes the correct answer

x ∈ [−10..− 3] ∪ [3..10]. (47)

The second motivating example shown in Section 1 is

X in -10..10, Y in -10..10, X*Y #>= 21

and such a constraint can be rewritten in canonical form and interpreted as

p(x) = xy − 21 ≥ 0 x ∈ [−10..10] y ∈ [−10..10]. (48)



x ∈ [1..2]

y ∈ [1..2]

z ∈ [1..2]

l̃ = −6, ũ = 0

x ∈ [1..1]

y ∈ [1..2]

z ∈ [1..2]

l̃ = −4, ũ = 0

x ∈ [1..1]

y ∈ [1..1]

z ∈ [1..2]

∀I b̃I < 0

x ∈ [1..1]

y ∈ [2..2]

z ∈ [1..2]

l̃ = −4, ũ = 0

x ∈ [1..1]

y ∈ [2..2]

z ∈ [1..1]

∀I b̃I < 0

x ∈ [1..1]

y ∈ [2..2]

z ∈ [2..2]

∀I b̃I < 0

x ∈ [2..2]

y ∈ [1..2]

z ∈ [1..2]

l̃ = −4, ũ = 0

x ∈ [2..2]

y ∈ [1..1]

z ∈ [1..2]

l̃ = −4, ũ = 0

x ∈ [2..2]

y ∈ [1..1]

z ∈ [1..1]

∀I b̃I < 0

x ∈ [2..2]

y ∈ [1..1]

z ∈ [2..2]

∀I b̃I < 0

x ∈ [2..2]

y ∈ [2..2]

z ∈ [1..2]

∀I b̃I < 0

Fig. 3. Description of the refinement of the domain of variable x, y and z of in (50).

The trace of the solving process is too complex to be shown because it counts 41
branches. After all such branches, the algorithm computes the correct answer

x ∈ [−10.. − 3] ∪ [3..10] y ∈ [−10..− 3] ∪ [3..10]. (49)

Finally, the following is a well-known example used to show that CLP(FD)
solver available in SWI-Prolog (version 6.6.6) sometimes does not capture incon-
sistent constraints

X in 1..2, Y in 1..2, Z in 1..2, X #\=Y, X #\=Z, Z #\=Y.

The expected result is false, but the solver does not change the constraint, even
if all different is used instead of the three inequalities. Such a constraint can
be written in canonical form and interpreted as

x2 − 2xy + y2 − 1 ≥ 0 x2 − 2xz + z2 ≥ 0 y2 − 2yz + z2 ≥ 0. (50)

Figure 3 shows the solving process of the proposed algorithm, where, after 5
branches, all terminal nodes are red, i.e., the constraint is inconsistent. In non-
terminal nodes, we denote as l̃ and ũ a negative value and a positive value of
{b̃I}I≤N , respectively, relative to a constraint.



5 Conclusion

In this paper we presented a solver for polynomial constraints over finite do-
mains. Such constraints are expressed as polynomials with integer coefficients
whose variables are defined over finite subsets of integer numbers. The proposed
algorithm uses the MBF of polynomials to effectively compute the signs of suit-
able lower and upper bounds of polynomials. It uses such signs to reason on
constraints and to remove inadmissible values from the domains of variables. It
is worth noting that the algorithm only involves algebraic manipulations over
integer numbers because the coefficients of the MBF of a polynomial with integer
coefficients are provably integer. The availability of arbitrary precision integer
arithmetic is therefore sufficient to ensure that no approximation is involved in
the solution process.

The proposed algorithm is open for further developments on possible opti-
mizations, at least, for two important choices that impact significantly on the
performances of the solution process. First, the choice of the variable for split-
ting the current box is crucial. Second, once a variable is selected, the choice of
simply halving the current box can be too simplistic. For both choices a number
of static and dynamic techniques can be found in the literature (see, e.g., [3]) and
we think that both choices could benefit from the peculiar form of constraints
that we address. In particular, we plan to investigate how the MFB could help in
the computation of the gradient of polynomials, which is a valuable information
for both such choices.

The current implementation of the proposed algorithm is available for down-
load (cmt.dmi.unipr.it/software/clppolyfd.zip) in terms of a reusable Java
library that is also usable as a drop-in replacement of the CLP(FD) solver that
ships with SWI-Prolog.
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