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Abstract
We specialize an efficient while linguistically savvy
constraint solving model of grammar induction-
Womb Grammars (WG) -, into an interesting spe-
cific application: that of inferring the grammar of
an under-resourced language -Yorùbá- from that
of English, through grammatical model transfor-
mation. The model represents both the known
grammar and the grammar to be inferred in terms
of constraints, or properties, between pairs of
constituents. This allows us to view parsing as
constraint solving, and to use the parser’s out-
put (namely, the information of which constraints
failed and which were satisfied) as a guideline on
how to transform the known grammar model of
English into the (unknown to the system) gram-
mar model of Yorùbá. Interesting extensions to the
original Womb Grammar model are presented, mo-
tivated from the specific needs of Yorùbá and sim-
ilar tonality infused languages. Our methodology
is implemented in Constraint Handling Rule Gram-
mars (CHRG) and has been used so far for inducing
the grammar model of a useful subset of Yorùbá
noun phrases.

1 Introduction
Grammar induction has met with reasonable success using
different models of grammar: a) as a parametrized, genera-
tive process explaining the data [Fernando C. N. Pereira and
Yves Schabes, 1992; Dan Klein and Christopher D. Manning,
2004], b) as a probability model, so that learning a grammar
amounts to selecting a model from a pre-specified model fam-
ily [Eugene Charniak and Mark Johnson, 2005; CMengqiu
Wang and Noah A. Smith and Teruko Mitamura, 2007; Shay
B. Cohen and Noah A. Smith, 2010], and c) as a Bayesian
model of machine learning [William P. Headden and Mark
Johnson and David McClosky, 2009].

Using linguistic information from one language for the task
of describing another language has also yielded good results,
albeit for specific tasks—such as disambiguating the other
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language [David Burkett and Dan Klein, 2008], or fixing mor-
phological or syntactic differences by modifying tree-based
rules [Lionel Nicolas and Miguel A. Molinero and Benoı̂t
Sagot and Elena Sánchez Trigo and de La Clergerie, Éric and
and Jacques Farré and Joan Miquel Vergés, 2009]—rather
than for syntax induction.

This usually requires parallel corpora, an interesting excep-
tion being [Shay B. Cohen and Noah A. Smith, 2010], where
information from the models of two languages is shared to
train parsers for two languages at a time, jointly. This is
accomplished by tying grammar weights in the two hidden
grammars, and is useful for learning dependency structure in
an unsupervised empirical Bayesian framework.

Our novel approach, in contrast, works for more than
just specific tasks such as disambiguation, and needs nei-
ther a pre-specified model family, nor parallel corpora, nor
any of the typical models of machine learning. It proceeds
instead through automatically transforming a given (task-
independent) grammar description of a source language, from
just the lexicon of the target language plus a representative in-
put set of correct phrases in the target language.

Both descriptions (the syntax of the source and of the tar-
get language subset addressed) are stated in terms of linguis-
tic constraints (also called “properties” in the linguistic liter-
ature) between pairs of constituents, although for the target
language constraints we depart from the classic formalism
[Blache, 2005] in view of Yorùbá motivated extensions. This
choice allows us a great degree of modularity, in which con-
straints can be checked efficiently through constraint solving.

From the perspective of problem solving, our modelling
framework thus compares favourably with others: it com-
bines linguistic formality with efficient problem solving, and
can transfer into other languages, in particular languages that
use tones to differentiate meaning.

2 Motivation
Close to seven thousand languages are currently spoken in the
world, the majority of which are understudied. Linguists can-
not keep up with their study even for educational purposes,
and there is a growing need for their automatic processing
as well, since the amount of text sources grows much faster
than humans can process them. To make matters worse, most
linguistic resources are poured into English and a handful of



other first world languages, leaving the vast majority of lan-
guages and dialects under-explored. Clearly, automating the
discovery of an arbitrary language’s grammar model would
render phenomenal service to the study and preservation of
linguistic diversity.

Scientifically, we wanted to explore to what extent the
parsing-as-constraint-solving paradigm of Natural Language
Processing (NLP) problem solving could buy us a great de-
gree of linguistic descriptive formality without sacrificing ef-
ficiency, in the realm of grammar induction and in particular
for inducing Yorùbá, which is severely under-resourced and
which one of the authors has expertise in.

Yorùbá belongs to the Yoruboid group of the Kwa branch
of the Niger-Congo language family, which cuts across most
of sub-Saharan Africa. It is a tonal dialect-continnum com-
prising about 20 distinctive dialects and spoken by over 30
million people in the western part of Nigeria [Fagborun,
1994].

3 Background
Among the linguistic theories that lend themselves the most
to constraint-based implementation are those that split the in-
formation previously packed in one rewriting rule into sev-
eral constraints or properties. These constraint based or
property-based theories, such as Property Grammars (PG)
[Blache, 2005] evolved from Immediate Dominance / Lin-
ear Precedence (IDLP), which unfolds a rewrite rule into the
two constraints of immediate dominance (expressing which
categories are allowable daughters of a phrasal category) and
linear precedence (expressing which of the daughters must
precede which others).

For example in the PG framework, English noun phrases
can be described through a few constraints such as prece-
dence (a determiner must precede a noun, an adjective must
precede a noun), uniqueness (there must be at most one deter-
miner), exclusion (an adjective phrase must not coexist with a
superlative), obligation (a noun phrase must contain the head
noun), and so on. Instead of resulting in either a parse tree
or in failure as traditional parsing schemes do, such frame-
works characterize a sentence through the list of the con-
straints a phrase satisfies and the list of constraints it violates,
so that even incorrect or incomplete phrases will be parsed.
Moreover, it is possible to relax some of the constraints by
declaring relaxation conditions in modular fashion. [Dahl and
Blache, 2004] encodes the input PG into a set of CHRG rules
that directly interpret the grammar in terms of satisfied or re-
laxed constraints, which are then propagated while a syntactic
tree is built as a side effect. Womb Grammars- a recent adap-
tation of this framework into grammar transformation [Dahl
and Miralles, 2012]- automates as well the induction of a lan-
guage’s syntax from that of another, focusing on failed con-
straints.

In such theories, the modularity obtained by splitting gram-
matical information apart into constraints leads naturally to
more robust parsers, since it allows us to clearly identify from
the parser’s output which constraints are satisfied and which
fail, which allows us to accept even incomplete or incorrect
sentences, instead of silently failing to parse them. We can

also produce some indication of the sentence’s degree of ac-
ceptability by analyzing the failed properties.

The PG formalism presently comprises the following seven
categories (we adopt the handy notation of [Duchier, Dao,
and Parmentier, 2013], and the same example):

Constituency A : S, children must have categories in the set
S

Obligation A :4B, at least one B child

Uniqueness A : B !, at most one B child

Precedence A : B≺ C, B children precede C children

Requirement A : B⇒C, if B is a child, then also C is a child

Exclusion A : B 6⇔ C, B and C children are mutually exclu-
sive

Dependency A : B∼ C, the features of B and C are the same

Example 1. For example, if we denote determiners by D,
nouns by N, personal nouns by PN, verbs by V, noun phrases
by NP, and verb phrases by VP , the context free rules NP→
D N and NP→ N, which determine what a noun phrase is,
can be translated into the following equivalent constraints:
NP : {D,N}, NP : D !, NP :4N, NP : N !, NP : D≺ N, D : {},
N : {}.

4 The Intuitive Idea
By giving up syntactic trees as a focus and focusing instead
on grammar constraints, we can arrive at more modular, more
flexible and less costly models. To see this, consider that if
we were to work with tree-oriented rules such as:

noun_phrase --> determiner, noun.

such rules would fail for languages such as Yorùbá, where,
for instance, nouns precede determiners, and more than one
determiner can accompany a noun. For instance, ilé yı̀ı́ náà
wó (house this the collapse) means some particular house in
close proximity to the speaker collapsed, whereas ilé kan náà
wó (house a the collapse) means a house the speaker may not
be familiar with collapsed.

Transforming a tree-oriented model into a language model
for Yorùbá would require changing every rule where these
two constituents are involved, as well as creating a grammar
symbol that covers sequences of determiners rather than just
a single one.

In a constraint-based model, in contrast, the needed trans-
formation can be expressed in terms of separate constraints:
we need to replace the English precedence constraint with
its converse (in a noun phrase, a noun must precede a de-
terminer) 1 , and delete the constraint that in a noun phrase,
determiners must be unique. These modifications carry over
to the entire grammar without further ado.

This intuition leads directly to that of our WG transforma-
tion methodology: first we implement an executable version
(i.e., a parser) of our constraint-based grammar model of En-
glish, then instead of running English phrases by it, we feed it
a Yorùbá input phrase. Given that we have a Yorùbá lexicon,

1In fact a subtler algorithm is needed- this will be covered later.



this parses into a pre-lexical string (e.g. “noun, adjective, de-
terminer”). Obviously, many of the English constraints (in
particular, for example, the English precedence constraints)
will fail to hold for it. Examining such failures with respect
to a representative set of input phrases in Yorùbá, our system
will be able to determine whether for Yorùbá we must e.g.
induce the converse of an English precedence constraint (if it
were the case that the converse ordering is found in every sin-
gle Yorùbá phrase), or simply delete the English constraint (if
it were the case that both orderings are allowed), or make it
conditional to some linguistic feature being there (if in some
cases one ordering routinely held, whereas in other cases it
didn’t), etc.

5 Our methodology
5.1 Constraint modification- The WG Paradigm
Just as its ancestor, Property Grammar, the WG paradigm de-
scribes a language’s phrases in terms of constraints between
pairs of direct daughters of a phrasal category. The classic
constraints are constituency (which constituents are allowable
as immediate daughters of a phrasal category), precedence
(in a given phrase, a certain daughter must precede a certain
other daughter), obligation (a certain daughter must occur in a
given phrase), uniqueness (if a daughter can occur only once
in a given phrase), requirement (a certain daughter is required
in a given phrase), dependency (same features must be shared
between two daughters of a given phrase), and exclusion (if
a certain daughter occurs in a given phrase, another certain
daughter may not co-occur).

WG extends the parsing capabilities implicit in these prop-
erties into a model of grammatical induction, in addition to
parsing. In their first incarnation [Dahl and Miralles, 2012]
they allowed greater efficiency by focusing on failed con-
straints only, rather than explicitly calculating all successful
and unsuccessful constraints. However in adapting the model
into Yorùbá , we have found it more efficient to explicitly
calculate satisfied constraints as well, as we go along, This is
partly because in order to arrive at as nuanced a description as
needed for Yorùbá , we had to extend the classical Property
Grammar model to accommodate what we call conditional
constraints: those whose satisfaction depends on the run-time
values of combinations of features (more on this later,)

The general WG model can be described as follows: Let LS

be the source language. Its syntactic component will be noted
LS

syntax. Likewise, we call the target language LT , its lexicon
(LT

lex) and its syntax LT
syntax. If we can get hold of a suffi-

ciently representative set of phrases in LT that are known to
be correct (a set where our desired subset of language is rep-
resented), we can feed these to a hybrid parser consisting of
LS

syntax and LT
lex. This will result in some of the sentences be-

ing marked as incorrect by the parser. An analysis of the con-
straints these “incorrect” sentences violate can subsequently
reveal how to transform LS

syntax so it accepts as correct the
sentences in the corpus of LT —i.e., how to transform it into
LT

syntax by modifying the constraints that were violated into
constraints that accept the input. Figures 1 and 2 respectively
show the problem and our solution in schematic form.

LT
lex LT

syntax? LS
syntax

Figure 1: The Problem

LT
corpus LT

lex LS
syntax

WG
Parser

Violated syntax
properties

Model Transformation
Module

LT
syntax

Figure 2: The Solution

An Example
Let LS =English and LT = Yorùbá, and let us assume that En-
glish determiers always precede the noun they modify, while
in Yorùbá they always post-cede it (an oversimplification, just
for illustration purposes). Thus “a red book” is correct En-
glish, whereas in Yorùbá we would more readily say “iwe
pupa kan” (book, red, a).

If we plug the Yorùbá lexicon and the English syntax con-
straints into our WG parser, and run a representative cor-
pus of (correct) Yorùbá noun phrases by the resulting hybrid
parser, the said precedence property will be declared unsatis-
fied when hitting phrases such as “ı̀wé pupa kan”. The model
transformation module can then look at the entire list of un-
satisfied constraints, and produce the missing syntactic com-
ponent of LT ’s parser by modifying the constraints in LS

syntax
so that none are violated by the corpus sentences.

Some of the necessary modifications are easy to identify
and to perform, e.g. for accepting “ı̀wé pupa kan” we only
need to delete the (English) precedence requirement of deter-
miner over noun (noted det < n). However, subtler modifi-
cations may be in order, after some statistical analysis in a
second round of parsing: if in our LT corpus, which we have
assumed representative, all determiner appear after the noun
they modify, Yorùbá is sure to include the reverse precedence
property as in English: n < det. So in this case, not only do
we need to delete det < n, but we also need to add n < det.

5.2 Constraint Solving as the implementation
means

Constraint Satisfaction has yielded powerful results in many
AI areas, including human language processing. To a large
extent, this powerful problem-solving paradigm has allowed
us to overcome the disjoin that prevailed until relatively re-
cently between languages for problem description and those
for problem solving. Since the advent of CHR [Frühwirth,
1998] and of its grammatical counterpart CHRG [Chris-



tiansen, 2005], constraint-based linguistic formalisms can
materialize through fairly direct methodologies.

In a nutshell, CHRG rules rewrite constraints into other
constraints, subject to possible checks described in a rule’s
guard and stated as Prolog calls. Their general format is:

α -\ β /- γ ::> G | δ.

This rule is called a propagation rule. The part of the rule
preceding the arrow ::> is called the head, G the guard, and
δ the body; α,β,γ,δ are sequences of grammar symbols and
constraints so that β contains at least one grammar symbol,
and δ contains exactly one grammar symbol which is a non-
terminal (and perhaps constraints); α (γ) is called left (right)
context and β the core of the head; G is a conjunction of built-
in constraints as in Constraint handling rules (CHR) and no
variable in G can occur in δ. If left or right context is empty,
the corresponding marker is left out and if G is empty (inter-
preted as true), the vertical bar is left out. The convention
from Definite clause grammars (DCG) is adopted that con-
straints (i.e., non-grammatical stuff) in head and body of a
rule are enclosed by curly brackets. Gaps and parallel match
are not allowed in rule bodies. A gap in the rule heads is noted
“...”. Gaps are used to establish references between two long
distant elements.

A simplification (grammar) rule is similar to a propagation
rule except that the arrow is replaced by <:>. A simpaga-
tion (grammar) rule is similar to a simplification rule, how-
ever one or more grammar symbols is prefixed with ! which
means that the grammar symbols should not be removed from
the constraint store. Details of the CHRG encoding, how to
download the CHRG system and how to use the encoding can
be found in the CHRG manual [Christiansen, 2010].

Implementing the WG paradigm through constraint solv-
ing allow us to both express and test linguistic constraints in
very modular fashion, and results in succinct while executable
code.

In our CHRG implementation the appropriate WG con-
straints are entered in terms of a constraint g/1, whose
argument stores each possible grammar property. For
instance, our English grammar hybrid parser for noun
phrases includes the constraints: g(obligatority(noun,
pronoun, proper noun)), g(constituency(determiner)),
g(precedence(determiner,adjective)),
g(unicity(determiner)), g(requirement(noun, determiner)),
g(dependence(determiner,noun)), and so on. These proper-
ties are weeded out upon detection of a violation by CHRG
rules that look for them, e.g. an input noun phrase where
an adjective precedes a noun may provoke deletion of the
constraint g(precedence(noun,adjective)) when the following
CHRG rule applies:

!word(C2,F1,_),...,!word(C1,F2,_),
{g(precedence(C1,C2))}<:>
{fail(precedence(C1,C2), F1, F2)}.

Each word is stored in a CHRG symbol word/3, along
with its category and features (i.e. word(noun,[neutral, n/a,
common, inanimate],aso)). Since the CHRG parse predicate
stores and abstracts the position of each word in the sentence,

this simpagation rule is triggered when a word of category C2
comes before one of category C1, given the existence of the
grammar constraint that C1 must precede C2 2. Each of the
properties dealt with has similar rules associated with it.

5.3 Main Modifications to the Model resulting
from our Application to Yorùbá

Conditional Properties
The original constraint based model, as we have seen, suc-
ceeded in detecting and signalling mistakes in the sentence,
without blocking the analysis. In this first model, which
is parsing-oriented, incorrect sentences could be “accepted”
through declaring some constraints as relaxable. For instance,
while from the context-free grammar rules shown in Section
3 we wouldn’t be able to parse “the the book” (a common
mistake from cutting and pasting in word processors), in the
constraint-based formulation we can if we relax the unique-
ness of determiner constraint.

Relaxation can be made conditional (e. g. a head noun’s re-
quirement for a determiner can be made relaxable in case the
head noun is generic and in plural form, as in “Lions sleep
tonight”). The failure of relaxable constraints is signalled in
the output, but does not block the entire sentence’s analysis.
Implementations not including constraint relaxation capabil-
ities implicitly consider all properties as relaxable. And in
fact, when exploiting constraint-based parsing for grammar
transformation rather than for parsing, this is exactly what we
need, since in an unknown language any constraint may need
to be “relaxed” and even of course, corrected.

For that reason, we have considered it more appropriate,
in the context of grammar induction, to state “exceptions” as
part of a property itself, rather than separately in a relaxation
definition. Thus we have created conditional properties, e.g.
“precedence(pronoun,noun)” which occurs if a pronoun pre-
ceeds a noun, is plural, is a personal pronoun and can be used
in place of both animate and inanimate nouns.

We have also used conditional properties to express choice,
e.g. whereas before we could state that one element was
obligatory in a phrase, we can now state that a property
needs to have one of a list of constituents. E.g., the
g(obligatority(noun, pronoun, proper noun)) constraint only
needs to find one of noun, pronoun or proper noun to suc-
ceed. If none of these is found, then a failure occurs which
indicates that an obligatory head is absent.

From Failure Driven to Success-and-Failure driven
In view of unprecedented efficiency where property grammar
related models were concerned, the original WG model cal-
culated only failed properties, on the assumption that these
could be trusted to be a complement of the successful prop-
erties, thus obviating the need to calculate both explicitly.
However our more in depth analysis in the context of Yorùbá
has, as we have seen, uncovered the need for more nuances
than simply failing or succeeding, as in the case of condi-
tional properties. We therefore now use a success driven and

2Recall that in CHRG syntax the symbols prefixed with excla-
mation points are kept, while the ones without are replaced by the
body of the rule, in this case an update constraint that invokes some
housekeeping procedures



failure driven approach for inducing the grammar of our tar-
get language, Yorùbá. Each input phrase of the target lan-
guage is tested with all relevant constraints for both failure
and success. This makes the model slightly less efficient than
if we only were to calculate failed properties, but of course
the gain is in accuracy. Efficiency is still guaranteed by the
normal CHRG way of operating: rules will only trigger when
relevant, e.g. if a phrase is comprised of only a noun and
an adjective, it will not be tested with for instance prece-
dence(pronoun, determiner) or any other constraint whose
categories are different from those of the input phrase. We
keep a list of all properties that fail and another for those that
succeed together with the features of the categories of each
input phrase and their counts. It is important to state that
constituency constraints are tested only for success. This is
because we are interested in checking that our target gram-
mar shares similar constituents with our source language and
testing for failure will be irrelevant for these constraints.

Model Transformation Module
After the first round of parsing, we do a statistical analy-
sis in a second round of parsing where we determine which
constraints should be induced as a property or a conditional
property of our target language and those which need to be
weeded out. First we determine which constraints should
be added to the grammar by finding all constraints that suc-
ceed in all relevant phrases. We are correct in doing so
since, our input phrase is correct and representative of the
target language. We also add the converse of any prece-
dence rule that fails in all relevant phrases so that for in-
stance, if precedence(pronoun, determiner) fails in all rele-
vant phrases, precedence(determiner, pronoun) is induced as
a property of our target language. Next, we decide which
constraints should be conditional properties. All constraints
that fail and succeed are tested in this phase. We find these
properties by searching for features which are unique to the
failure and or success of these constraints. Any constraint
where such features are found are added to the grammar as
a conditional property, with its conditions i.e features clearly
stated. All other constraints which are not induced by the
above rules are not added to the grammar of Yorùbá.

Inducing Constraints not present in the Original
Language
We also added an additional function that finds all precedence
constraints that are absent in our source but present in our tar-
get language. We are equally able to test these constraints as
above by checking if such a constraint succeeds in all relevant
phrases and if the converse succeeds in any input phrase. If
we find that the converse does not succeed in any of the input
phrases, this constraint is induced as a property of the target
language, else we search for a unique feature as above.

Using Tonality to Induce Conditional Properties
Yorùbá is a tone language, therefore it was imperative to en-
sure that tones are properly represented. We adopt a full tone
marking approach so that each word is marked with their
tones in order to avoid ambiguities. The tones are also stored
as features, so that for instance the word tútù(cold) that has

two syllables with a high and low tone on each syllable re-
spectively is stored as “high, mid” in the features of the word.
For instance:

[tútù]::> word(ad jective, [neutral,n/a,descriptive,both],
tútù).

These tones are used to infer conditional properties in the
second phase of parsing, so that if a property is found to occur
around words with certain tones, this property will be condi-
tioned on the presence of such tones. It is important to note
that the tones are not used in isolation of other features and
a property will be said to be conditioned on tones if, tones
are the only unique features present. The addition of tones
makes our approach extensible to many other languages in-
cluding tone languages.

In addition to the afore mentioned, the system provides a
record of the English translation of every word in the input
phrases and this record is consulted during parsing to produce
the English equivalent for each word in the input phrase.

5.4 Sample Output
Here is a subset of our induced Yorùbá grammar:

-precedence(pronoun,noun):-
pronoun preceeds noun if the pronoun is
plural, personal and can be used in place of
both animate and inanimate nouns

-precedence(adjective,noun):-
adjective preceeds noun if the adjective is
plural, quantity-uncountable and can be used with
both animate and inanimate nouns

-obligatority((noun;proper-noun;pronoun)):-
noun;proper-noun;pronoun are obligatority.
It succeeds in all 46 input phrases.
noun succeeds in 37 relevant phrases;
pronoun succeeds in 5 relevant phrases;
proper-noun succeeds in 4 relevant phrases;

-precedence(pronoun,adjective):-
pronoun preceeds adjective in all 4 relevant
phrases

-precedence(quantifier,adjective):-
quantifier preceeds adjective in all 4 relevant
phrases

-precedence(quantifier,pronoun):-
quantifier preceeds pronoun in all 4 relevant
phrases

-precedence(pronoun,determiner):-
pronoun preceeds determiner in all 7 relevant
phrases

-precedence(proper-noun,adjective):-
proper-noun preceeds adjective in all 3 relevant
phrases



-precedence(proper-noun,determiner):-
proper-noun preceeds determiner in all 3 relevant
phrases.

-pronoun is a constituent of noun phrases. It
occurs in 12 phrases.

-adjective is a constituent of noun phrases. It
occurs in 26 phrases.

The first two properties are conditional properties and the fea-
tures of these properties are explictly stated. The obligatority
constraint which represents the head of phrases consists of
nouns, proper-nouns and pronouns. We provide further in-
formation on the number of times each of these categories
occur as the head of the phrase. We do not output the features
for other properties except the conditional properties because
they already succeed in all relevant phrases.

6 How can our model be acquired?
Our model for grammar induction is in a sense, already ac-
quired by many other possible source-target language pairs
(those that are amenable to description through the linguis-
tic system of constraints that we accept), because rather
than developing a language-dependent implementation of our
model, we have implemented a generator of grammar induc-
ers which, to work with a different pair of languages than
the one we’ve chosen, requires only: a) a representative sam-
ple of target language phrases, b) that the source grammar
be expressed in terms of the linguistic constraints accepted
in our model (namely, obligatority, precedence, constituency,
requirement, dependency, uniqueness and exclusion), and c)
that the target grammar’s lexicon be described in our user-
friendly provided plain text format, for the subset of words
used in the input set of target language phrases.

7 Verification and validation
Verifying and validating that our results are correct comports
two tasks:

• checking that the input and the output syntax descrip-
tions are correct. Since these descriptions are done in
terms of the linguistic Property grammar formalism, it
may be challenging for users unfamiliar with it to be sure
that it covers exactly the subset of language addressed.
However there is a mechanical procedure to transform
context-free grammars into property grammars [Philippe
Blache, Stephane Rauzy, 2012], so if the user is more fa-
miliar with context-free grammars, and the subset of lan-
guage allows it, we can at least start from a known, cor-
rect Context Free (CF) version and apply the said proce-
dure, either by hand or mechanically, in order to arrive at
an equivalent formulation in terms of our linguistic con-
straints. Alternatively, we can consult a linguist, if one
is available who specializes in the involved languages.
• checking that the set of input phrases from the target lan-

guage is correct and representative. This requires at the
very least a native speaker, and if possible also a linguist,

given that some users’ intuitions about what is correct in
their language (and indeed, about even whether they use
it “correctly” or not) may not be accurate.

8 Concluding Remarks
We have presented an implemented model for integrating
grammatical knowledge representation and reasoning around
the CHRG constraint paradigm of problem solving. Our
model extends the original grammar induction formalism,
WG, in ways motivated by the needs of our particular ap-
plication: the automatic transformation of an English model
of syntax into that of Yorùbá.

We have also presented a proof-of-concept system that al-
lows users to input a source language’s grammar’s description
in modular and declarative fashion, in terms of the linguis-
tic constraints that are supported (constituency, precedence,
dependency, obligatority, requirement, exclusion, unicity).
Since such descriptions also stand alone as a purely linguis-
tic model of a language’s syntax, our system can cater even
for users who are not conversant with coding, such as pure
linguists wanting to perform syntactic model transformation
experiments aided by computers. Their purely (constraint-
based) linguistic descriptions of syntax automatically turn
into executable code when appended to our own code.

As we have seen, our system automatically transforms a
user’s syntactic description of a source language into that of
a target language, of which only the lexicon and a set of rep-
resentative sample phrases are known. While demonstrated
specifically for English as source language and Yorùbá as tar-
get language, our implementation can accept any other pair of
languages for inducing the syntactic constraints of one from
that of the other, as long as their description can be done in
terms of the supported constraints.

We have thus contributed a flexible modelling frame-
work solidly grounded in linguistic knowledge representation
which, through the magic of constraint solving, turns into an
efficiently executable problem solving tool. Through its in-
herent modularity, our model can support revision and adap-
tation quite straightforwardly: new constraints between im-
mediate daughters of any phrase can be modularly added and
implemented, without touching the rest of the system.

Also, our model can accommodate solution revisions at
execution time by interacting with a linguist whenever con-
straints can not be induced consistently. Visual representa-
tions of the output that would be helpful for linguists in this
respect have been proposed in [Adebara I., Dahl V., 2015]
and is yet to be implemented.

Other than integrating knowledge-based and efficiency-
based paradigms of problem solving, our approach demon-
strates that constraint programming is not just about solv-
ing classic OR problems. It is also a powerful tool for
addressing interdisciplinary applications [Dahl, Miralles, and
Becerra, 2012; Becerra, Dahl, and Miralles, 2013; Becerra,
Dahl, and Jiménez-López, 2014; Adebara, Dahl, and Tes-
saris, 2015; Adebara I., Dahl V., 2015].

Further interesting ramifications of our work would in-
clude: testing our system for a larger coverage of syntax (we
have only addressed noun phrases so far), testing it for other



tonal-sensitive languages, studying how assimilation influ-
ences language structure especially in tone languages, study-
ing whether any further constraints or approach extensions
would be needed to accommodate families of languages not
easily describable within our approach (e.g. languages which
have different categories from the source language, those who
have different inflectional paradigms from the source lan-
guage, those that exhibit constraints not among our allowable
set of constraints).
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