
Assumption-Based Planning with Sensing via Contingent Planning

Pamela Calvo and Jorge A. Baier
Departamento de Ciencia de la Computación

Pontificia Universidad Católica de Chile
Santiago, Chile

Abstract
Assumption-based planning (ABP) is a recently
proposed alternative to conformant planning. Like
conformant planning, it is designed for domains in
which the initial state is uncertain, and in which
actions are deterministic. Unlike conformant plan-
ning, an ABP plan may make commonsensical as-
sumptions about the initial state, which may re-
sult in simpler, easier-to-communicate plans that
achieve the goal provided such assumptions hold.
In this paper we extend the ABP paradigm to do-
mains with sensing. We propose a polynomial com-
pilation of ABP into an extension of conditional
planning supporting negation as failure in action
preconditions. We show that extending DNF, a
well known conditional planner, with negation as
failure, is fairly easy. In our theoretical analy-
sis, we prove that our compilation is polynomial,
sound, and complete. In our experimental evalu-
ation we use DNF’s extension and compare with
existing, non-polynomial compilations of ABP to
conditional planning, showing that in many do-
mains conditional planners are able to solve in-
stances that could be not solved before.

1 Introduction
Human beings can plan in the presence of high levels of un-
certainty with remarkable ease. Arguably, the plans they con-
struct do not always account for all possible contingencies;
much to the contrary, they make many assumptions about the
state of affairs of the world based on commonsensical criteria.
These plans tend to be effective, regardless of how many as-
sumptions have been made. For example, when planning our
way home or a trip, we hardly ever build contingency plans
for cases in which the city’s taxi drivers are on strike and both
your car and public transit fail to work altogether.

In contrast, much of the standard AI machinery developed
to-date for the problem of planning in the presence of uncer-
tainty has focused on the construction of plans that achieve
a goal no matter what is the initial state of the world. While
this is desirable in some domains, in many applications one
desires a plan that is easy to understand and easy to commu-
nicate.

Assumption-based planning (ABP) [Davis-Mendelow et
al., 2013] is a recently proposed approach to planning with
uncertainty in which a solution plan is composed both by a
course of action and a number of assumptions about the states
visited during execution. For example, an ABP plan could
assume that the subway is operational and return a plan con-
sisting of taking the subway home. Assumptions allow the
planning system to explore a wider range of plans, with the
potential of returning a simple plan subject to a number of
assumptions that are compatible with common sense. ABP
may be more applicable than contingent planning in some
applications in which uncertainties of the world are not un-
der the control of the planning agent. For example, imagine
a situation in which an autonomous rover is unaware of the
truth value of a certain fluent f but cannot observe or affect
its truth value by performing any action. Imagine further that
this prevents the rover from building any plan that achieves
the goal. In these cases, ABP, unlike other frameworks, pro-
vides a way of building a plan which will depend on assuming
f or ¬f at a certain state during execution. Whether or not
such an assumption is reasonable can be assessed later by a
human expert, or achieved by other agents, if feasible.

Davis-Mendelow et al.’s approach to ABP is limited to
generating plans for unobservable environments. In this pa-
per, we provide a new definition of ABP that incorporates
sensing actions. We formalize assumption-based planning
with sensing (APBS) as an extension of conformant planning
with deterministic actions. We prove that ABPS is not harder
than contingent planning: indeed it is 2-EXP-complete. Fur-
thermore, we show how to compile ABPS into a variant of
contingent planning in which action preconditions may con-
tain atoms negated under the negation as failure semantics.
We show that negation as failure in preconditions is a feature
that does not make the task of deciding plan existence harder
in terms of computational complexity. In addition, it allows
us to propose a polynomial-time translation. This property is
important and was not enjoyed by Davis-Mendelow et al.’s
compilation of ABP to classical planning.

We show that implementing negation as failure into the
state-of-the-art contingent planner DNF [To et al., 2011] in-
volves the addition of only a handful of lines of code, suggest-
ing that incorporating such a feature to other planners may be
just as easy.

In our experimental evaluation, we compare to Davis-

Mendelow et al.’s approach in unobservable domains. Re-
sults are mixed. While their compilation to classical plan-
ning allows exploiting highly optimized classical planners,
in some domains their compilation excels possibly because
DNF’s heuristic is very weak. In other domains, however,
Davis-Mendelow et al.’s worst-case exponential-time trans-
lation either runs out of memory or generates an input that is
not handled well by the back-end planner, allowing DNF to
solve problems that cannot be solved by Davis-Mendelow et
al.’s approach.

An approach to finding small plans related to ours is
Meuleau and Smith’s [2003], which focuses on computing
best possible plans with at most k contingencies. As pre-
sented, it does not consider the notion of assumptions. Our
approach is related but very different from Brafman and
Shani’s [2012], which implicitly makes assumptions in states
based on probability criteria. Our approach does not need
probabilities. As motivated above, assumptions do not have
to be necessarily facts that are usually true, yet they may be
facts that are sometimes necessary to find a plan or to find a
compact plan, regardless of their likelihood.

2 Preliminaries
The following sections describe the background necessary for
the rest of the paper.

2.1 Propositional Logic Preliminaries
Given a set of propositions (or fluents) F , the set of literals of
F , L(F), is defined as L(F) = F ∪ {¬p | p ∈ F}. A clause
is a disjunction of literals.

Boolean formulae overF—denoted byB(F)— are defined
inductively as usual, and may contain constants > and ⊥,
which are used to denote “true”and “false”, and standard con-
nectives (∧, ¬). We assume the |= relation to be defined in
the standard way; that is, a formula ϕ is entailed by a set
of clauses C, denoted by C |= ϕ, iff all models of C satisfy
ϕ. If F is a set of propositions, we define the set of liter-
als with negation as failure as Lnot (F) = L(F) ∪ {not p |
p ∈ L(F)}. If p ∈ F , and C is a set of clauses, we say that
C |= not p iff C 6|= p. Finally, we say C |= L if C |= `, for
every ` ∈ L.

A set of literals over F is said to be logically complete if it
contains either p or ¬p, for every p ∈ F . If p ∈ F , then ¬p is
the complement of p and p is the complement of ¬p. If ` is a
literal, we denote its complement by `. A set of literals over
F is consistent if it does not contain a pair of complementary
literals. If S is a set of sets of literals, then we say that S |= L,
iff for every s ∈ S, it holds that s |= L.

2.2 Contingent and Assumption-Based Plans
Below we follow closely the definitions of Davis-Mendelow
et al. [2013] for conformant plan and assumption-based plan.

Definition 1 (Planning Problem) A planning problem is a
tuple P = (F,O, I,G) where F is a finite set of fluents, O is
a finite set of actions, I is a set of clauses over F , defining the
set of possible initial states, and G is a boolean formula over
symbols in F , that defines a goal condition.

For every action a, function prec(a), the precondition of
a, returns a subset of L(F). Furthermore, eff (a), the effect
of a, is a set of contingent effects, each of the form C → `,
where C ⊆ L(F) and ` ∈ L(F).
Example Imagine a situation in which we want to obtain a
plan to go from home to the office. There are three ways of
getting there: walking, by bus, or by subway. The actions are
bus(A,B), which takes a bus from A to B, subway(A,B),
which takes the subway fromA toB, andwalk(A,B) which,
by foot, gets you from A to B. Action bus(A,B) is ex-
ecutable when there is no driver strike (denoted by fluent
strike). Action walk(A,B) can be performed if the agent
is at A. Formally, we define these actions as follows. For
every x ∈ {home, subwayH}:

prec(bus(x, office)) = {¬strike, at(x)}
eff (bus(x, office)) = {¬at(x), at(office)}

For every x, y ∈ {home, office, subwayH, subwayO} such
that x 6= y, we define

prec(walk(x, y)) = {at(x)}
eff (walk(x, y)) = {¬at(x), at(y)}

For every x, y ∈ {subwayH, subwayO}, where x 6= y,
we define

prec(subway(x, y)) = {operational, at(x)}
eff (subway(x, y)) = {¬at(x), at(y)}

�

A planning state for P is a set of literals over F that is both
logically complete and consistent. An action a is applicable
in a planning state s iff s |= prec(a). We denote by δ(s, a)
the state that results from applying a in s. Formally,

δ(s, a) =(s \ {` | C → ` ∈ eff (a), s |= C})∪
{` | C → ` ∈ eff (a), s |= C}

if s ∈ F and a is applicable in s; otherwise, δ(s, a) is un-
defined. It is convenient to extend the definition of δ for
sequences of actions. If α is a sequence of actions and a
is an action, we define δ(s, αa) as δ(δ(s, α), a) if δ(s, α)
is defined. Furthermore, if α is the empty sequence, then
δ(s, α) = s.
Definition 2 (Execution Trace) Given a planning problem
P = (F,O, I,G) and a sequence of actions α = a0a1 . . . an,
we say that α induces an execution trace σ = s0s1 · · · sk iff

1. I |= s0, and s0 is a planning state.
2. δ(si, ai) = si+1, for all i < k, and
3. either k = n+1 or k < n+1 and δ(sk, ak) is undefined.

Definition 3 (Successful Execution Trace) An execution
trace σ for α is successful iff |σ| = |α|+ 1.
Definition 4 (Leads to) An execution trace σ = s0 · · · sk
leads to (goal formula) G, iff sk |= G.
Definition 5 (Conformant Plan) A sequence of actions α is
a conformant plan for P = (F,O, I,G) iff every execution
trace of α is successful and leads to G.

Definition 6 (Conforms to) An execution trace
σ = s1 · · · sk conforms to a sequence of boolean for-
mulae ρ = h1 · · ·hn with k ≤ n iff si |= hi, for every
i ∈ {1, . . . , k}.

Finally, each of the execution traces of α that conform to
ρ must actually lead to the goal. A formal definition of an
assumption-based plan follows.

Definition 7 (Assumption-Based Plan) The pair (ρ, α),
where α is a sequence of k actions, and ρ is a sequence of
k + 1 boolean formulae over T is an assumption-based plan
for P = (F,O, I,G, T) iff any execution trace of α that
conforms to ρ is successful and leads to G, and furthermore
at least one such execution trace exists.

Example (continued) Assume we define the initial state
as I = {at(home)}, and the goal as G = at(office). Note
this means that it is not known whether the subway is opera-
tional or whether their is a bus strike. Then the only confor-
mant plan for the problem is given by walk(home, office).

However, if operational is an assumable fluent, then
(ρ1, α1) is an ABP plan, with:

ρ1 = operational,>,>,>
α1 = walk(home, subwayH),

subway(subwayH, subwayO),

walk(subwayO, office)

Finally, if strike is assumable, then (ρ2, α2) is also an
ABP plan, with:

ρ2 = ¬strike,>
α2 = bus(home, office)

�

2.3 Contingent Planning
Contingent planning extends conformant planning by allow-
ing the agent to observe the world via sensing actions. As
such, we assume the set of action operators is partitioned into
two (disjoint) sets Ow and Os, which contain, respectively,
the actions that modify the world and sensing actions.

Formally a contingent planning problem is characterized
by a tuple (F,Ow, Os, I, G), where F , I , and G are defined
as above. Likewise, functions prec and eff return the precon-
dition and effect of each action a in Ow. For every sensing
action o ∈ Os, we associate a precondition prec(o) specify-
ing the conditions under which o is executable, and we asso-
ciate an observation obs(o), which is a Boolean formula over
F specifying the condition that is sensed by o.

In general, contingent plans look like programs with if-
then-else conditions. In the formalization, we focus on tree-
like programs to simplify our definitions. Tree-like programs
are as expressive as programs with if-then-else constructs.

Definition 8 (Contingent Program) A contingent program
for contingent planning task (F,Ow, Os, I, G) is the lan-

guage for variable prog of the following BNF grammar.

act ::= a (for every a ∈ Ow)
obs ::= o (for every o ∈ Os)
prog ::= ε (the empty program)
prog ::= act · prog (for a ∈ Ow)
prog ::= branch(obs, prog, prog) (for o ∈ Os)

Just like any action sequence induces an execution trace of
states, so do contingent plans. Providing a formal definition
for these traces will ultimately allow us to give a formal def-
inition for a plan. First, however, we need an intermediate
step: we need to define what does it mean to execute a pro-
gram. We do this by first defining the notion of configuration.

Given a contingent planning problem, a configuration is a
pair (S, p), where S is a set of planning states—also referred
to below as belief state—and p is a program. Now we define
the relation which can be intuitively related to atomic ex-
ecution steps. More precisely, if (S, p) (S′, p′) then the
execution of one atomic step of p in S leads to state S′, with
p′ remaining to be executed. Formally,

1. (S, a · p) (S′, p), for every a ∈ Ow, if and only if
S |= prec(a) and S′ = {δ(s, a) | s ∈ S}.

2. (S, branch(o, p1, p2)) (S′, p), for every o ∈ Os, if
and only if S |= prec(o), and either S′ = T and p = p1
or S′ = S \ T and p = p2, where T = {s ∈ S | s |=
obs(o)}.

Now we formally define a trace of execution for a program.

Definition 9 (Trace of Configurations) Given a contingent
planning problem (F,Ow, Os, I, G), and a program p, we
say p induces an execution trace c0c1 . . . cn iff:

1. c0 = (S0, p), where S0 = {s | s is a state and I |= s}.
2. ci−1 ci, for every i ∈ {1, . . . , n}.
3. there is no c such that cn c.

As before successful traces are those that involved execut-
ing every single action of the program.

Definition 10 (Successful Trace of Configurations) A
trace of configurations c1 . . . cn is successful if and only if
cn = (S, ε), for some s.

Definition 11 (Leads to, for Configurations) A trace of
configurations c0c1 . . . cn leads to G if cn = (S, p) and
S |= G.

Now we are ready to define contingent plans.

Definition 12 (Contingent Plan) A contingent program p is
a plan for P = (F,Ow, Os, I, G) if and only if every trace of
configurations of p over P is successful and leads to G.

Example (continued) Assume the initial state and goal
state are defined as above, and that in addition we have the
following sensing actions to sense whether or not the subway
is operational. For each x ∈ {stnO, stnH}:

prec(senseOp(x)) = {at(x)}
obs(senseOp(x)) = operational

In addition to the plan walk(home, office), we have the con-
tingent plan:

walk(home, stnH) · branch(senseOp(stnH), p1, p2)

where

p1 = subway(stnH, stnO) · walk(stnO, office),

and where p2 may describe various plans that involve waking.
Important is the fact that p2 may not consider taking the bus,
since fluent strike is unknown, unobservable, and its truth
value cannot be changed by the agent. �

3 Negation as Failure in Preconditions
Our translation uses a version of contingent planning that re-
quires negation as failure (NAF) in action preconditions. This
is not standard in contingent planning systems [Hoffmann and
Brafman, 2005; Albore et al., 2009; To et al., 2011]. Never-
theless, as we show in this section, it is easy to extend a state-
of-the-art contingent planner with NAF in preconditions. In
the rest of the section, we first show that adding support for
NAF in preconditions does not change the complexity class
of contingent planning. Then, we show how to incorporate
this feature to a state-of-the-art planner.

3.1 A Note on Complexity
NAF in preconditions is related to modal logic modalities in
preconditions [Bonet, 2010]. Bonet proved that adding modal
operators like �p (“always p”) and ♦p (“possibly p”) to pre-
conditions does not change the complexity class of contin-
gent planning, for the more general case of finding an uncon-
strained branching plan (Theorem 2, Bonet 2010). We can do
likewise for the case of NAF.

In short, our proof follows from three facts. First, plan
existence for a contingent planning problem is a 2-EXP-
complete decision problem [Rintanen, 2012]. Second, 2-
EXP is equivalent to AEXPSPACE; that is, the class of prob-
lems that can be decided with an alternating Turing machine
(ATM) that uses exponential space. This means there exists
an exponential-space ATM, say, M , that decides existence of
a contingent plan. Third, we can modify M to now decide
existence of a plan for a contingent problem with NAF pre-
conditions, without requiring more memory. Indeed, such a
machine is a slight modification of M . The only modifica-
tion is the module in which preconditions are checked. For
contingent planning, for every ` ∈ prec(a) we need to check
S |= `, where the size of S may be exponential in the size of
the problem (|S| is worst-case the set of all possible states).
Note that S |= ` does not require more than exponential space
since it can be done in non-deterministic polynomial time in
|S|+ |`|. Adding support for NAF requires checking S 6|= `,
which clearly can also be done in exponential space in the
size of the problem. The rest of the M is left with no further
modifications. Formally,
Theorem 1 Contingent planning with NAF in preconditions
is in 2-EXP.
Corollary 1 Contingent planning with NAF in preconditions
is 2-EXP-complete.

Proof: Follows from the fact that contingent planning, a
2-EXP-complete problem is a particular case of contingent
planning with negation as failure. �

3.2 Implementing Negation as Failure in DNF
Now we turn into a more practical aspect of negation as fail-
ure: its implementation in a state-of-the-art system, namely,
DNF [To et al., 2011].

As its name suggests, DNF represents belief states using
disjunctive normal form; that is, as disjunctions of literal con-
junctions. Internally, belief states are represented as sets of
conjunctions. Algorithm 1 shows a pseudocode for the C++
routine actually used in DNF to check the applicability of an
action. Essentially, it checks that every literal in prec(a) is
in every conjunction c of the belief state cs. Extending Algo-

Algorithm 1: DNF’s precondition evaluation
Input: An action a, a set of conjunctions of literals cs

1 for each conjunction c in cs do
2 for each ` ∈ prec(a) do
3 if ` 6∈ c then
4 return false

5 return true

rithm 1 to support negation as failure is extremely easy. Algo-
rithm 2 shows how we did it in our implementation. The main
difference is in Lines 2–8, which will declare that cs |= not `
if cs contains a conjunction in which ` does not appear.

Algorithm 2: Precondition evaluation with NAF
Input: An action a, a set of conjunctions of literals cs

1 exec← true
2 for each “not `” in prec(a) do
3 for each conjunction c in cs do
4 if ` 6∈ c then
5 exec← true
6 break

7 if not exec then
8 return false

9 for each conjunction c in cs do
10 for each ` ∈ prec(a) ∩ L(F) do
11 if ` 6∈ c then
12 return false

13 return true

4 Assumption-based Planning with Sensing
Now we extend the definition of ABP to the case of sens-
ing. At the formal level an ABPS instance is simply a tu-
ple (F,Ow, Os, I, G, T), where all elements are defined as in
conformant planning, and T ⊆ F are the assumable fluents.

As with regular ABP, we want to allow an assumption prior
to each action execution. Plans for an ABPS problem look
like contingent programs where each world action or sense
action is accompanied with an assumption. We call these pro-
grams assumption-based contingent programs.

Definition 13 (Assumption-based Contingent Program)
An assumption-based contingent program is any element
of the language defined by the prog variable of the BNF
grammar of Definition 8, when replacing the rules for act
and obs by the following:

act ::= [h, a] (for every a ∈ Ow, h ∈ B(F))
obs ::= [h, o] (for every o ∈ Os, h ∈ B(F))

Now we adapt the definitions for contingent planning to
consider the effect of an assumption. The main difference
between ABPS and contingent planning is that assumptions
filter out some of the states in belief states; specifically, those
states that are inconsistent with the assumption. We only re-
quire the goal to hold in the worlds that have not been filtered
out. An additional requirement is that assumptions cannot fil-
ter out all states of the belief state. This is needed for two
reasons. First, we do not want to allow assumptions that are
inconsistent with all states in the belief state. Second, by defi-
nition, every action is executable in an empty belief state, and
every formula is satisfiable in an empty belief state. As such,
if we don’t prevent empty belief states to arise, we would ob-
tain plans with an arbitrary number of spurious actions.

We formalize the notion of filter with the following defini-
tion Filter(S, h) = {s ∈ S | s |= h}. Relation for ABPS
is defined in the following way.

1. (S, [h, a] · p) (S′, p), for every a ∈ Ow, if and only
if Sh = Filter(S, h) is nonempty, Sh |= prec(a) and
S′ = {δ(s, a) | s ∈ Sh}.

2. (S, branch([h, o], p1, p2)) (S′, p), for every o ∈ Os,
if and only if Sh = Filter(S, h) is nonempty, Sh |=
prec(o), and either S′ = T and p = p1 or S′ = S \ T
and p = p2, where T = {s ∈ Sh | s |= obs(o)}.

Definition 14 (Assumption-based Plan with Sensing)
A assumption-based contingent program p is a plan for
P = (F,Ow, Os, I, G, T) if and only if every trace of
configurations of p over P is successful and leads to G.

Example (continued) Suppose, like above, that
operational can be sensed by action senseOp, but that
strike can be assumed but cannot be sensed by any action.
Then the following is an ABPS plan for the resulting prob-
lem.

[>, walk(home, stnH)]·
[>, branch(senseOp(stnH), p1, p2)]

where

p1 = [>, subway(stnH, stnO)] · [>, walk(stnO, office)],

and where p2 can now consider an action that takes the
bus, while assuming there is no strike. Indeed, p2 may be
[¬strike, bus(stnH, office)]. �

Note that our definition does not need to define a notion
of conformity (cf. Definition 7), because we ensure a plan
conforms to the assumptions by applying the Filter function.
In the absence of sensing actions, Definitions 14 and 6 are
equivalent, for those plans that do not assume anything about
the final state.

Theorem 2 Let P = (F,O, I,G, T) and P ′ =
(F,O, ∅, I, G, T) be respectively ABP and ABPS problems.
Then (h0 . . . hn>, a0 . . . an) is a plan for P if and only if
[h0, a0] · · · [hn, an] is a plan for P ′.

Finally, ABPS is in the same complexity class as contin-
gent planning.

Theorem 3 Deciding existence of an ABPS plan is 2-EXP-
complete.

Proof: Follows from the correctness of the translation we
propose in the following section. �

5 ABPS via Contingent Planning
Our translation takes an ABPS problem P =
(F,Ow, Os, I, G, T) as input and produces a con-
tingent planning problem with NAF preconditions,
P ′ = (F ′, O′w, O

′
s, I
′, G). The assumable fluents in T

are translated into a set of world actions and sensing actions
that, by being applied in a certain order, will have the same
effect of making an assumption about the current state of the
world. Notice that G is the only set that remains unmodified.

To understand the intuition underlying our translation, we
first observe that assumptions can be related to sensing ac-
tions. Indeed, a sensing action o will, in one branch, filter out
from the belief those states inconsistent with obs(o) whereas
in the other branch those states consistent with the observa-
tion are filtered out. For sensing actions a plan is needed for
both branches. For assumptions, on the other hand, we are
only interested in the belief state that has filtered out those
states inconsistent with the assumption.

One way of mapping an assumption into a sensing action
would be to have a sensing action capable of performing both
an observation and a change in the world. If t is an assumable
fluent, one would create a sensing action whose observation is
t. In addition, we would add a conditional effect ¬t→ g, for
every g in the goal G.1 Such a sensing action would imme-
diately “solve the problem” in the branch that is inconsistent
with t. Unfortunately, the current model for contingent plan-
ning that planning system support does not handle conditional
effects in sensing actions.

What our compilation does is to model assumptions with
4 distinguished actions for each assumable fluent. First, and
foremost, there is a sensing action whose observation is the
assumable fluent; its role is to filter out states that are con-
sistent/inconsistent with the assumption. Second, there is a
world action (assumme(t)) that intuitively starts “assump-
tion mode”. An effect of this action is the fluent lock, which
does not allow other world actions to be performed as soon
as it becomes true. Then there are actions done and unlock.
Both of them can only be performed after the sensing action.
Action unlock, as the name implies, makes lock false, while
action done, makes the goal true.

The details of the compilation are as follows.

1We assume here the goal is a set of literals to simplify the pre-
sentation, but the compilation can be adapted if G is a Boolean for-
mula.

Fluents The set of fluents of the compiled problem is de-
fined as:

F ′ = F ∪ {lock} ∪ FA,

where fluent lock resembles an “assumption mode” in which
regular actions from the original problem (those in Ow or
Os) are not executable. When lock is true, only assumption-
related actions are applicable. Consequently, when it is false,
only actions that belong exclusively to Ow or Os are appli-
cable. Finally, FA = {assuming(t) | t ∈ T}. Fluent
assuming(t) intuitively indicates that “t is being assumed”.
Its dynamic should be clear after reading how actions are de-
fined.
Actions All actions in P are “copied into” P ′, but their
precondition is modified to include lock. Formally,

O′w = {â | a ∈ Ow} ∪Aw

O′s = {â | a ∈ Os} ∪As

We modify the preconditions of actions inOw∪Os to include
the lock fluent. Formally,

prec(â) = prec(a) ∪ {¬lock}, for each a ∈ Ow ∪Os

Below we define Aw and As constructively, assuming they
are initially empty. For each t ∈ T that assumes a literal p to
be true, we add:

1. An action assume(t) ∈ Aw. This action initiates the
process of making an assumption.

prec(assume(t)) = {¬lock,not t,not ¬t}
eff (assume(t)) = {assuming(t), lock}

Since an assumption will be reduced to several world
and sensing actions applied in an specific order, the flu-
ent assuming(t) is needed to ensure the correct course
of action execution. Note that this is the action that re-
quires NAF in preconditions. Essentially the precondi-
tion is saying that we can only assume a fluent t if neither
t nor ¬t is true; in other words, we can assume t if t is
unknown.

2. A sensing action assume-s(t) ∈ As. This is the next
action to be applied. It will split the current belief state
in two: one containing states where t is true and one
containing the remaining states, where ¬t is true. When
making an assumption only the branch where t is true is
relevant, and so two more actions are needed in order to
finish the process of making an assumption. This will
be explained in the following two steps. Before that, we
specify the preconditions for this action.

prec(assume-s(t)) = {assuming(t), lock}

This action does not have any effects besides the branch-
ing due to its sensing nature.

3. An action done ∈ Aw. The previously described sens-
ing action will branch the plan into two paths. Since we
are making an assumption, there is one branch which
is not needed anymore and therefore has to be pruned
so the plan does not continue expanding it. The action

done is the one responsible for finishing off this branch.
It does this by adding all goal fluents.

prec(done(t)) = {lock,¬t, assuming(t)}
eff (done(t)) = {g | g ∈ G}

4. Finally, unlock(t) removes the lock fluent to allow the
planner to continue using world and sensing actions (by
removing lock) in the branch that is consistent with the
assumption (i.e., in which t holds). Its definition follows.

prec(unlock(t)) = {lock, t, assuming(t)}
eff (unlock(t)) = {¬lock,¬assuming(t)}

Initial State The new initial state of the problem is:

I ′ = I ∪ {¬lock} ∪ {¬f | f ∈ Fa}.

6 Empirical Evaluation
A note on DNF’s performance In earlier stages of the ex-
perimental phase, we noticed that DNF was prone to choose
actions that led to just one belief state as a result, over than
those that generated a new one (like sensing and assump-
tion actions). This was because the PrAO* algorithm [To et
al., 2011] attempts to minimize the branching in the returned
plans, which is not good if we want to generate plans with as-
sumptions. To minimize this effect, we modified the heuris-
tic modified the heuristic to increase likelihood of choosing
nodes that come from a branching action. We called this vari-
ant DNF-ABPSA.

We designed two sets of experiments. In the first, we
compared with our ABP predecessor, A0+Lama [Davis-
Mendelow et al., 2013] in problems that do not have sens-
ing actions. We evalueated over two of the four domains that
were evaluated by Davis-Mendelow et al. [2013]: alogistics a
modified version of logistics in which assumptions are needed
to get to the goal, and the well-known coins domain, which
included assumption actions that allow assuming the initial
location of coins. Results are shown Table 1.

In our second set of experiments, the objective was to com-
pare a contingent planner with an ABPS planner on the same
problem, which the conformant planner does not, but the
intent here was to evaluate difference on performance and
on plan size. Of course, the ABP planner has access to a
set of assumption actions. We ran DNF (without assump-
tions), and the two versions of DNF that used our transla-
tion (DNF-ABPS and DNF-ABPSA) over modified confor-
mant domains dispose and push-to. In these domains we are
can assume the position of the objects. Finally, we created
medical-allergy inspired by IPC’s medical. In this domain
there is a fixed number of illnesses and medicines that can
cure each. Unfortunately, treatments may cause an allergic
reaction, not deadly, but undesired. To determine whether or
not a person is allergic, a number of actions that have to be
performed. Furthermore, if the person turns out to be aller-
gic to a medicine, there is an alternative medicine available,
but it has to be imported (this was simulated by a number of
actions). In this problem one can assume that a patient is not
allergic. Results for all three domains are shown in Table 2.

A0 + Lama DNF-ABPS DNF-ABPSA

Problem Total T Sol Len #Ass Trans T Plan T Total T Sol Len #Ass Plan T Total T Sol Len #Ass
alog-01 445,31 35 2 0,278 32,526 32,804 112 2 131,230 131.508 109 2
alog-02 0,02 36 3 1,145 TO - - - TO - - -
alog-04 0,03 36 3 83,753s TO - - - TO - - -
alog-06 1,45 41 4 0,374 TO - - - 1470,01 1470,384 568 5
alog-10 0,02 33 4 0,294 1739,744 1740,038 132 5 21,989 22,283 151 5

Coins 01 0,01 5 3 0,166 0,014 0,18 18 2 0,019 0,185 16 2
Coins 07 0,08 8 5 0,198 1,038 1,236 36 4 1,356 1,554 30 4
Coins 13 4,29 10 7 0,316 TO - - - TO - - -
Coins 19 214,96 7 7 0,359 TO - - - TO - - -
Coins 25 129,12 16 16 9,582 TO - - - TO - - -
Coins 30 398,32 52 21 17,45 TO - - - TO - - -

Table 1: T0 + Lama, DNF-ABPS y DNF-ABPSA, alogistics and coins. Times in seconds.

DNF-ABPS DNF-ABPSA DNF-Cont
Problem Trans T Plan T Total T Sol Len #Ass Plan T Total T Sol Len #Ass Trans T Plan T Total T Sol Len

push-to-4-3 0,459 51,113 51,572 108 2 18,695 19,154 50 3 0,457 14,987 15,354 107
push-to-5-3 1,427 742,415 743,482 135 0 159,063 160,49 44 3 1,622 106,629 108.251 213
push-to-5-4 2,174 TO - - - TO - - - 2,386 TO - -
push-to-5-5 3,127 TO - - - TO - - - 3,57 TO - -
push-to-8-1 9,396 2,388 11,784 42 1 0,715 10,111 13 1 10,912 0,976 11.888 135
push-to-8-2 23,258 423,714 446,972 154 1 78,639 101,897 49 2 27,269 81,760 109,029 232
push-to-8-3 49,459 TO - - - TO - - - 52,007 TO - -

push-to-8-10 516,833 TO - - - TO - - - 8m37.427 TO - -
push-to-10-1 63,729 11,234 74,963 69 1 7,344 71,073 88 1 63,404 3.227 66,631 326
push-to-10-2 147,608 TO - - - 456,567 604,175 67 2 154,947 414.303 569,25 308
dispose-4-5 0,35 TO - - - TO - - - 0,282 TO - -
dispose-7-3 2,41 TO - - - TO - - - 2,51 TO - -
dispose-7-6 3,812 TO - - - TO - - - 3,331 TO - -

dispose-10-1 28,765 1,427 30,192 16 1 2,22 30,985 34 1 28,903 1,853 30,756 400
dispose-10-4 32,47 TO - - - TO - - - 39,804 TO - -
medical001 0,161 0,006 0,167 5 1 0,004 0,165 5 1 0,144 0,027 0,171 11
medical002 0,149 0,193 0,342 28 1 0,159 0,308 19 2 0,176 0,048 0,224 45
medical003 0,145 0,229 0,374 55 2 0,231 0,376 27 3 0,158 0,131 0,289 113
medical004 0,162 0,548 0,71 67 3 (5) 0,545 0,707 34 4 0,16 0,445 0,605 300
medical005 0,157 1,856 2,013 104 4(7) 0,365 0,522 53 5 0,155 1,191 1,346 620

Table 2: DNF-ABPS, DNF-ABPSA, and DNF-Contingent, push-to, dispose, and medical-allergy. Times in seconds.

Experimental Conclusions A0, which uses LAMA
[Richter et al., 2008] as a back-end planner, performs sig-
nificantly better in the alogistics domain. This is possibly
due to the fact that the DNF uses a very weak heuristic (goal
counting), and does not exploit the advanced search tech-
niques (like preferred operators) that are key to LAMA’s per-
formance [Richter and Helmert, 2009].

In the push-to domain, on the other hand, A0 cannot trans-
late almost any instance, and DNF and our approach can solve
many of them in a couple of seconds or minutes, depending
on the complexity of the problem. While observing the result
for the different versions of DNF over the push-to and dis-
pose domains, we can note, firstly that the translation time is
not significantly different when assumption actions are added.
Secondly, it is easy to see that the modification over DNF-
ABPS improves its performance and balances the priority of
world actions and branching actions. Hence, more assump-
tions are made in plans found by DNF-ABPSA. Thirdly, ob-
serving the characteristics of the plans themselves, DNF tends
to take a shorter time to give a solution but these solutions are
the longest. DNF-ABPS obviously takes more time to find
a solution since its search space is wider and since it penal-
izes assumption actions, it doesn’t have a quick escape route
to simplify it. In contrast, DNF-ABPSA, by doing more as-
sumptions, provides considerably shorter solutions.

Finally, in medical-allergy, when the planner has more
available assumptions, planning takes longer (probably due
to the increasing branching factor), but solutions are shorter.
Most likely, best results in both aspects, time and length,

would come from a domain that allows assumptions and yet
puts some kind of restrictions over what assumption can be
performed. In future work, we would like effect on perfor-
mance and plan quality when varying the set of assumable
fluents in various ways.

7 Summary and Future Work
We proposed an extension of ABP for domains in which sens-
ing actions are available. We proposed a polynomial-time
translation of ABP problems with sensing to contingent plan-
ning with negation as failure. Even though negation as failure
is not a standard feature of contingent planners, we show that
modifying one such a planner (DNF) is easy to do.

In our evaluation, we confirm that using assumptions may
reduce plan size. In comparison to A0, the translator of the
previous approach to ABP that does not support sensing and
uses classical planners as a back end, we observe that in some
cases the optimized classical planner outperforms the contin-
gent planner we use. In other cases, however, our polynomial-
time translation seems to pay off, allowing our planner to
solve instances that cannot be translated by A0.

In future work we plan to extend our experimental eval-
uation to more domains, and will evaluate the effect of us-
ing different sets of assumable fluents. We also will inves-
tigate different quality objectives (e.g., smaller plans, fewer
assumptions). Another line of future research is the integra-
tion of these types of assumptions into logic-programming
planning frameworks (e.g., Tu et al. 2007).

References
[Albore et al., 2009] Alexandre Albore, Héctor Palacios, and

Hector Geffner. A translation-based approach to contin-
gent planning. In Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI), pages
1623–1628, Pasadena, CA, 2009.

[Bonet, 2010] Blai Bonet. Conformant plans and beyond:
Principles and complexity. Artificial Intelligence, 174(3-
4):245–269, 2010.

[Brafman and Shani, 2012] Ronen I. Brafman and Guy
Shani. Replanning in domains with partial information
and sensing actions. Journal of Artificial Intelligence Re-
search, 45:565–600, 2012.

[Davis-Mendelow et al., 2013] Sammy Davis-Mendelow,
Jorge A. Baier, and Sheila A. McIlraith. Assumption-
based planning: Generating plans and explanations under
incomplete knowledge. In Proceedings of the 27th AAAI
Conference on Artificial Intelligence (AAAI), 2013.

[Hoffmann and Brafman, 2005] Jörg Hoffmann and Ronen
Brafman. Contingent planning via heuristic forward
search with implicit belief states. In Proceedings of the
15th International Conference on Automated Planning
and Scheduling (ICAPS), pages 71–80, Monterey, CA,
USA, June 2005. Morgan Kaufmann.

[Meuleau and Smith, 2003] Nicolas Meuleau and David E.
Smith. Optimal limited contingency planning. In Pro-
ceedings of the Proceedings of the 19th Conference on Un-
certainty in Artificial Intelligence (UAI), pages 417–426,
Acapulco, Mexico, August 2003.

[Richter and Helmert, 2009] Silvia Richter and Malte
Helmert. Preferred operators and deferred evaluation in
satisficing planning. In Proceedings of the 19th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 2009.

[Richter et al., 2008] Silvia Richter, Malte Helmert, and
Matthias Westphal. Landmarks revisited. In Proceed-
ings of the 23rd AAAI Conference on Artificial Intelligence
(AAAI), pages 975–982, Chicago, IL, 2008.

[Rintanen, 2012] Jussi Rintanen. Complexity of conditional
planning under partial observability and infinite execu-
tions. In Proceedings of the 20th European Conference
on Artificial Intelligence (ECAI), pages 678–683, 2012.

[To et al., 2011] Son Thanh To, Enrico Pontelli, and
Tran Cao Son. On the effectiveness of CNF and DNF rep-
resentations in contingent planning. In Proceedings of the
23rd International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 2033–2038, 2011.

[Tu et al., 2007] Phan Huy Tu, Tran Cao Son, and Chitta
Baral. Reasoning and planning with sensing actions, in-
complete information, and static causal laws using answer
set programming. Theory and Practice of Logic Program-
ming, 7(4):377–450, 2007.

