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Abstract
State estimation is the task of estimating the state
of a partially observable dynamical system given
a sequence of executed actions and observations.
In logical settings, state estimation can be real-
ized via logical filtering. Unfortunately such fil-
tering, though exact, can be intractable. To this
end, we propose logical smoothing, a form of
backwards reasoning that works in concert with
logical filtering to refine past beliefs in light of
new observations. We characterize the notion of
logical smoothing together with an algorithm for
backwards-forwards state estimation. We prove
properties of our algorithms, and experimentally
demonstrate their behaviour. Smoothing together
with backwards-forwards reasoning are important
techniques for reasoning about partially observable
dynamical systems, introducing the logical ana-
logue of effective techniques from control theory
and dynamic programming.

1 Introduction
Many applications of artificial intelligence from automated

planning and diagnosis to activity recognition require reason-
ing about dynamical systems that are only partially observ-
able. A necessary component of such systems is state estima-
tion – the task of estimating the state of the systems given a
sequence of executed actions and observations. State estima-
tion is well-studied in control systems where transition sys-
tems are stochastic and the belief state is typically represented
as a probability distribution. State estimation is commonly re-
alized via filtering, of which Kalman filtering [Kalman, 1960]
is a well-known example.

In logical settings, an analogous form of logical filtering
was proposed by Amir and Russell [2003] in which an agent’s
belief state – the set of possible world states – can be com-
pactly represented as a formula, and filtering is a form of be-
lief update. While logical filtering is intractable in the general
case [Eiter and Gottlob, 1992], there are tractable subclasses
often involving restricted transition systems or compact en-
codings of the belief state (e.g., [Shahaf and Amir, 2007;
Shirazi and Amir, 2011]). Unfortunately, typical belief state
representations often require further inference to ascertain be-

liefs about individual fluents – a frequent and time critical
component of many decision-making systems.

Our concern is with logical state estimation in service
of tasks such as planning, execution monitoring, diagnosis,
and activity recognition. We are particularly concerned with
systems that include a rich characterization of how the ac-
tions of an agent indirectly affect their environment. These
are typically captured by causal or ramification constraints
(e.g., a causal constraint might say that if the battery and radio
are ok and the radio is on then sound is emitted.). We assume
that such constraints are compiled into the transition system
as additional effects of actions following, e.g., [Pinto, 1999;
Strass and Thielscher, 2013; Baier et al., 2014]. In planning
such constraints tend to create problems with large confor-
mant width [Palacios and Geffner, 2009].

We exploit the observation that for planning, only a subset
of the state is necessary to track. Planning systems need to
know (1) when actions are applicable, and (2) when the goal
is reached [Bonet and Geffner, 2014]. Execution monitoring
systems need only track the conditions under which a plan
remains valid (e.g., [Fikes et al., 1972]). Diagnosis systems
track the confirmation and refutation of candidate diagnoses.

These observations motivate the development of state es-
timation techniques tailored to the task of tracking the truth
of (conjunctions of) fluent literals. In Section 2 we formal-
ize state estimation as semantic logical filtering and propose
a sound under-approximation that is computationally appeal-
ing. Motivated by the technique of smoothing for stochastic
systems (e.g., [Einicke, 2012]), in Section 3, we introduce
the notion of logical smoothing, which allows for the updat-
ing of beliefs about the past in light of observations about the
present. In Section 4, we propose an algorithm for backwards-
forwards reasoning that combines smoothing and filtering in
order to perform state estimation. The application of (approx-
imate) logical smoothing mitigates for the incompleteness of
approximate logical filtering, while preserving many of its
computational advantages. We evaluate the behaviour of our
approach. This is followed by a discussion of related work
and concluding remarks.

2 The Problem: State Estimation
State estimation is a core task in reasoning about dynam-

ical systems with partial observability. Consider the simpli-
fied action-observation sequence in support of diagnosing a



car. You turn the key in the ignition, turn ignition, result-
ing in ignition turned. If ignition turned, battery ok and
gas ok hold, then so will car started. You observe that the
car did not start (car started = False), and so, under the
assumption that the characterization of the vehicle function-
ing is complete, you can you infer ¬battery ok ∨ ¬gas ok.
You turn on the radio, turn on radio, causing radio on
as well as sound if battery ok ∧ radio ok. You observe
sound (sound = True). Under completeness and frame as-
sumptions, you are now able to infer radio ok, battery ok
and ¬gas ok. So following the action-observation sequence
(turn ignition,¬car started,turn on radio,sound), your
estimated belief state comprises just one state here repre-
sented by the set of fluents {ignition turned, radio on,
¬car started, battery ok, radio ok, ¬gas ok, sound}.

Informally, the state estimation task we address is: Given a
dynamical system, a belief state, and a sequence of executed
actions and observations, infer the resulting belief state of
the system. For logical theories, state estimation is captured
by logical filtering [Amir and Russell, 2003].

To relate our work to planning, execution monitoring
and diagnosis, we appeal to standard finite domain plan-
ning language syntax. A dynamical system is a tuple Σ =
〈F ,S,A,R, I〉, whereF is a finite set of propositional fluent
symbols such that if p ∈ F , then p and ¬p are fluent literals,
S = Pow(F) is the set of possible world states, A is a set of
actions including sensing actions, R ⊆ S×A×S is the tran-
sition relation (equivalently we use the notation (s, a, s′) ∈ R
or s′ = R(s, a)), and I is a set of clauses over F that defines
a set of possible initial states, collectively – the initial be-
lief state. As noted in the introduction, we assume that causal
constraints are compiled into our transition system as extra
effects of actions (e.g., following [Pinto, 1999]). For the pur-
poses of this paper, non-sensing actions a ∈ A are assumed
to be deterministic and are defined by a precondition prec(a),
which is a conjunction of fluent literals, and eff (a), a set of
conditional effects of the form C → L, where C is a con-
junction of fluent literals and L is a fluent literal. We write
the unconditional effect true→ L as simply L, and use true
to denote an empty precondition. Each sensing action, on the
other hand, is defined by its precondition prec(a), which is
a conjunction of fluent literals, and obs(a), which is the flu-
ent literal that is observed by the sensing action. We assume
no exogenous actions and that the transition relation is com-
plete, characterizing all and only the conditions under which
the truth value of a fluent changes.

Throughout this paper we take the viewpoint that the state
of Σ represents the belief state of the agent. The semantics of
logical filtering is defined by considering the belief state to be
a set of possible world states ρ ⊆ S. For our purposes , we
will often represent the belief state (henceforth also the state
of the system) as a state formula φ. Later we will be restrict-
ing φ to a conjunction of fluent literals, sometimes denoted
as a set of fluent literals and referred to as a conjunctive state
formula. Following Amir and Russell (2003):
Definition 1 (Logical Filtering Semantics)
Given belief state ρ ⊆ S of dynamical system Σ, the filtering
of a sequence of actions and observations 〈a1, o1, . . . , at, ot〉
with respect to ρ is defined as:

1. Filter[〈〉](ρ) = ρ

2. Filter[a](ρ) = {s′ | s′ = R(s, a), s ∈ ρ}
3. Filter[o](ρ) = {s | s ∈ ρ and o is true in s}
4. Filter[〈ai, oi, . . . , at, ot〉](ρ) =

Filter[〈ai+1, oi+1, . . . , at, ot〉](Filter[oi](Filter[ai](ρ)))

We call step 2 progression with a and step 3 filtering with o.
When action a is filtered, every state s ∈ ρ is updated with

respect to the transition system R(s, a). When an observa-
tion o is filtered, every state inconsistent with the observation
is eliminated. Logical filtering results in an interleaving of
action progression and observation filtering (e.g.,[Vassos and
Levesque, 2013]). Logical filtering naı̈vely is hard: there are
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|F|
belief states. As such, algorithms for logical filtering

typically represent the belief state ρ compactly as a logical
formula φ, called a belief-state formula or state formula.

While logical filtering realizes state estimation, the result-
ing belief state representation can cause fundamental infer-
ence operations to be intractable, such as inferring beliefs
about individual fluents [Shahaf and Amir, 2007]. A core
component of automated planning is determining the appli-
cability of actions during the search for a plan, as well as
determining whether the goal condition has been achieved.
Similarly dynamical diagnosis requires determination of the
refutation or confirmation of candidate diagnoses as the result
of (treatment) actions and sensing (e.g., [McIlraith and Reiter,
1992]). Diagnoses, action preconditions, and planning goals
are typically represented as conjunctions of fluents, motivat-
ing the following definition of approximate logical filtering:
Definition 2 (Approximate Logical Filtering)
Given belief-state formula φ of dynamical system Σ, the ap-

proximate filtering of a sequence of actions and observations
〈a1, o1, . . . , at, ot〉 with respect to φ is defined as:

1. Filtera[〈〉](φ) = φ;

2. Filtera[a](φ) =
∧
{L | (C → L) ∈ eff(a) ∧ φ |= C}∧

{L | φ |= L∧ ∀(C → ¬L) ∈ eff(a), φ |= ¬C};
3. Filtera[o](φ) = φ ∧ o;

4. Filtera[〈ai, oi, . . . , at, ot〉](φ) =
Filtera[〈ai+1, oi+1, . . . , at, ot〉](Filtera[oi](Filtera[ai](φ)))

Approximate logical filtering describes the belief state only
in terms of a subset of the fluent literals entailed by the be-
lief state. One can see from line 2 that progressing a state φ
through an action a produces a state consisting of what was
known to be caused (directly or indirectly) by a and what was
known to persist through a.

Returning to our car example, we can see how this is a
weak approximation. After the observations car started =
False and sound = True, no further inferences could be
made, yielding the belief state {ignition turned, radio on,
¬car started, sound}
Theorem 1 (Sound Under Approximation) Given dy-
namical system, Σ, belief-state formula φ representing pos-
sible belief state ρ ⊆ S, and action-observation se-
quence 〈a1, o1, . . . , at, ot〉, Filter[〈a1, o1, . . . , at, ot〉](ρ) |=
Filtera[〈a1, o1, . . . , at, ot〉](φ).



This follows from Definitions 1 and 2. Approximate Logi-
cal Filtering is not complete with respect to the logical filter-
ing semantics.

Proposition 1 (Conjunctive State Formula Preservation)
Given dynamical system, Σ, conjunctive state formula φ, and
action-observation sequence 〈a1, o1, . . . , at, ot〉, where each
oi is a conjunctive formula, Filtera[〈a1, o1, . . . , at, ot〉](φ) is
a conjunctive formula.

The above proposition follows naturally from lines 2 and
3 of Definition 2 and is key to our complexity results and
tractable approximate representations.

Theorem 2 (Complexity) Given dynamical system, Σ, con-
junctive state formula φ, and action-observation sequence
〈a1, o1, . . . , at, ot〉, where each oi is a conjunctive formula,
Filtera[〈a1, o1, . . . , at, ot〉](φ) is computable in time O(t · c ·
|F|) where c is the maximum number of conditional effects
over actions in the sequence.

This follows from fluent entailment of a conjunctive for-
mula and the limit of |F| fluents per consistent conditional
effect. For automated planning and similar problems where
the general assumption is that observations are conjunctive
formulae, approximate logical filtering enables state estima-
tion to reduce to set operations. While computationally ap-
pealing, the approximation is weak and thus of limited use
on its own for AI planning, dynamical diagnosis, and similar
tasks. In the next section, we show how to combine approxi-
mate logical filtering with a new approach for reasoning over
the past – logical smoothing.

3 Logical Smoothing
Filtering with a stochastic transition system involves esti-

mating the marginal posterior probability distribution of the
system conditioned on some data that was received prior
to the current system state. There is an analogous concept
for estimating not the current state but instead a previous
state. This is called smoothing – refining a previous state es-
timation (e.g., [Einicke, 2012]). For stochastic models, this
amounts to a re-computation of the marginal posterior proba-
bility distribution. We can carry this idea into the the logical
setting and show how observations can be used to refine esti-
mates of past states. The notion of logical smoothing is only
of interest if the belief state is approximated in some way. For
example, in later sections, we show how logical smoothing,
can be used to improve weak approximations of logical filter-
ing and thus produce a refined estimate of the current state.

We begin our treatment of logical smoothing by defining
the semantics of logical smoothing with respect to a belief
state. Given a representation of the sequence of actions, ob-
servations, and intermediate state estimates, logical smooth-
ing recursively refines previous state estimates through a
backwards update procedure. To this end, we store previous
state estimates, coupled with the actions executed to construct
successor states in a so-called history. Note that while we use
a set of possible worlds to represent a belief state, histories
can be defined with any sort of state representation (logical
formulae, sets of fluents understood as a logical conjunction,
etc.), which we exploit later in this section.

Definition 3 (Belief State History) Given dynamical sys-
tem, Σ, a belief state history over Σ is a sequence of tu-
ples (ρ0, a0),(ρ1, a1),. . . (ρn, an) such that each ρi is a belief
state, a set of possible world states ρi ⊆ S and each ai is an
action of Σ.

The intent of a history is to capture the evolution of the
system starting from some designated initial belief state ρ0.
The observations are not modeled as separate entities. Rather,
they reside in the intermediate belief states, presumably as
part of an original filtering process.

Definition 4 (Logical Smoothing Semantics)
Given belief state ρ ⊆ S of dynamical system Σ, the smooth-
ing of a belief state history (ρ0, a0),(ρ1, a1),. . . (ρn, an) with
respect to the ρ is defined as:

1. Smooth[〈〉](ρ) = ρ

2. Smooth[o](ρ) = Filter[o](ρ)
= {s | s ∈ ρ and o is true in s}

3. Smooth[(ρ′, a′)](ρ) =
ρ′ ∩ {s | s ∈ PreImage(s′, a′), s′ ∈ ρ}

4. Smooth[〈(ρ0, a0), (ρ1, a1), . . . (ρn, an)〉](ρ) =
Smooth[〈(ρ0, a0), . . . (ρn−1, an−1)〉]

(Smooth[(ρn, an)](ρ))

where PreImage(s′, a) = {s | s′ = R(s, a)}

Logical smoothing works by propagating acquired infor-
mation (typically an observation or the resultant filtered state-
action pair) back through a given history and updating its con-
stituent state estimates. Note that this is more akin to belief
updating than to belief revision. Each smoothing step refines
previous state estimates in that the smoothed state’s set of
possible world states are always a (non-strict) subset of the
state’s original set of possible world states.

With the semantic account of logical smoothing in hand,
we now define the notion of logical smoothing with respect
to a more compact representation of the set of belief state in
terms of a belief state formula.

Definition 5 (History) Given dynamical system,
Σ, a history H over Σ is a sequence of tuples
(σ0, a0), (σ1, a1), . . . (σn, an) such that each σi is a
belief-state formula over F and each ai is an action of Σ.

Definition 6 provides a formal characterization of logical
smoothing with respect to a belief-state formula represen-
tation of the history. It utilizes regression rewriting [Reiter,
2001] to propagate updates back through the history. Regres-
sion, denoted asR[φ, a], takes a logical formula φ and action
a and rewrites the formula in terms of the weakest conditions
necessary for φ to hold following the execution of a. We ap-
peal to Reiter’s definition of regression in the situation calcu-
lus [Reiter, 2001] with syntactic notation suitably modified.

When the history comprises a single state-action pair, for-
mula φ is simply conjoined to the state. Otherwise, the for-
mula is regressed step by step through the history, and any
new information garnered from the regression, φNEW , is
conjoined to the associated state. PI(φ) refers to the prime
implicates of formula φ.



Definition 6 (Logical Smoothing) Given dynamical system
Σ, history H = (σ0, a0), . . . (σn, an) and formula φ, the log-
ical smoothing of H with respect to φ is defined as:

1. Smooth[(σ, a)](φ) = (σ ∧ φ, a)

2. Smooth[(σ0, a0), . . . , (σn, an)](φ) =
Smooth[(σ0, a0), . . . , (σn−1, an−1)](φNEW),

Smooth[(σn, an)](φ)

where φNEW =
∧
{ϕ ∈ PI(R[φ, an−1]) | σn−1 2 ϕ}

The soundness and completeness of Logical Smoothing
(Definition 6) relative to the semantic account in Definition
4 follow straightforwardly from the correspondence between
PreImage and regression.

Returning to our car example, consider logical smooth-
ing with respect to the observation car started = False.
For ease of presentation, assume approximate logical filter-
ing is used for action progression. Progressing the initial
state, σ0, through the action turn ignition results in state σ1,
which is equivalent to σ0 since the effect of turn ignition is
predicated on fluents whose truth value is unknown. When
the observation action obs(car started) is subsequently per-
formed and car started = False observed, the smoothed
history is given by Smooth[h0, h1](¬car started) where
h0 = (σ0, turn ignition) h1 = (σ1, obs(car started)).
Following point 2 of Definition 6, this is equivalent to
Smooth[(h0)](φNEW),Smooth[(h1))](¬car started). Rule 1
of the logical smoothing semantics smooths σ1 of h1 as
σ1 ∧ ¬car started. The action obs(car started) has no ef-
fects and therefore the observation car started = False
must hold in the prior state. Returning to φNEW , this for-
mula hinges on R[¬car started, turn ignition]. By the
regression re-writing and frame axioms, this gives φ =
¬car started ∧ (¬battery ok ∨ ¬gas ok). As σ0 |=
¬car started, we are left with φNEW = ¬battery ok ∨
¬gas okay after restricting to prime implicates, giving the
intuitive refinement of the initial state given the observation.

Algorithm 1: LSmooth(H, φ, i) Perform logical smooth-
ing on history H given that φ holds at σi in H. Returns
updated H and the index of termination.

1 σi = σi ∧ φ
2 if i > 0 then
3 ψ = R[φ, ai−1]
4 ψNEW =

∧
{ϕ ∈ PI(ψ) | σi−1 2 ϕ}

5 if ψNEW is empty then
6 return
7 LSmooth(H, ψNEW , i− 1)

8 return (H, i)

Algorithm 1 realizes Logical Smoothing together with an
optimization to support early termination of the regression.
Included in its input is a state index parameter, identifying
the location within history H where φ is to be integrated.
Logical smoothing can thus acquire information about a past
state and smooth the preceding state estimates in light of it,
as well as smoothing from the most recent state. The heart

of the smoothing procedure lies within R[φ, ai−1] (line 3)
as explained above. Line 4 identifies those aspects of ψ that
are new to state σi−1 by identifying prime implicates of ψ
not entailed by σi−1. This is an optimization as it allows for
early termination (line 5) when further smoothing would be
unnecessary and it minimizes the subsequent formula to be
regressed in the next iteration. The process then repeats on
the newly computed ψNEW formula at index i − 1. Finally,
LSmooth returns a tuple of the refined history and the index
of termination term-idx . The purpose of returning term-idx
will become apparent in Section 4 when we leverage logical
smoothing in a state estimation algorithm.
Proposition 2 (Early Termination Completeness) Given a
dynamical system Σ and a history H over Σ with at least n
state-action tuples and a formula φ over F , the updated his-
tory returned by LSmooth(H, φ, n) is the updated history re-
turned by LSmooth(H, φ, n) with the early termination con-
dition of line 5 removed.
It follows straightforwardly from the close correspondence
between Definition 6 and Algorithm 1, and Proposition 2 that
the history computed in Algorithm 1 is equivalent to the spec-
ification in Definition 6.

We say that H′ = (σ′0, a
′
0), . . . , σ′n, a

′
n) is a sound and

complete refinement of H = (σ0, a0), . . . , (σn, an) with re-
spect to formula φ that holds at index i of H if for all
0 ≤ j ≤ n, (1) a′j = aj ; (2) σ′j |= σj ; and (2) if j < i,
Filter[〈a′j, σ′j+1, ..., a

′
i , σ
′
i 〉](σ′j ) |= φ. In other words, a sound

and complete refinement captures all of what must be known
based on the existing history and necessary conditions for φ.
With this definition in hand we have,
Theorem 3 (Soundness and Completeness) Given a dy-
namical system Σ, history H over Σ, and formula φ over F
that must be true at σi of H, LSmooth(H, φ, i) produces a
sound and complete refinement of H.

Logical smoothing provides a sound, complete, and prin-
cipled approach to smoothing previous state estimations in a
logical system in light of additional observations or informa-
tion which must hold in the associated state. As this is merely
the general algorithmic structure of logical smoothing, fur-
ther optimizations are possible but omitted for clarity of ex-
position of the core concepts.

3.1 Approximate Logical Smoothing
Unfortunately, like logical filtering, the querying of belief

states resulting from logical smoothing may not be tractable.
To make matters worse, while a single regression step results
in a linear increase in formula size with respect to the input,
recursive applications of regression result in an exponential
blow up [Fritz, 2009]. To remedy these issues, we define, as
we did with logical filtering, an analogous procedure of ap-
proximate logical smoothing. We do so by one minor adjust-
ment to the logical smoothing outlined in Algorithm 1:
Line 4: ψNEW =

∧
{f | ψ ∧ σi−1 |= f and σi−1 2 f} (1)

Where f is restricted to fluent literals. This approximation
limits the updating of the history to fluent literals entailed by
these regressed additions. Again we consider only the entail-
ments not already captured by a state in the history. We denote
the resulting algorithm obtained by modifying LSmooth as



per (1) as LSmootha. It should be stressed that this is but one
way to deal with the formula size increase due to repeated
applications of regression. Alternatives which do not sacri-
fice completeness include adding new fluents in place of cer-
tain sub-formulae of the regressed formula [van Ditmarsch et
al., 2007] or representing the formula as a circuit [Rintanen,
2008].

Following Definition 6, logical smoothing produced the
correct refinement of the initial state with ¬battery ok ∨
¬gas ok. However, with approximate logical smoothing
ψNEW is limited to fluent literals, resulting in an empty for-
mula and therefore no refinement. Some information is lost
but other inferences can still be made. Continuing with the
sequence of actions in our example, after obs(car started)
the actions turn on radio and obs(sound) are executed, ob-
taining sound = True. By smoothing with respect to this
observation the regression R[sound, turn on radio] gives
ψ = sound∨(battery ok∧radio ok). Following the approx-
imation rule (1) we get ψNEW = battery ok∧radio ok due
to the previous state in the history entailing ¬sound. Even
with the approximation, we refine the estimate of the prior
state with the knowledge battery ok∧ radio ok. Continuing
this example, approximate logical smoothing would smooth
each state in the history, including the initial state, to include
battery ok ∧ radio ok.

Proposition 3 (Soundness) Let Σ be a dynamical system,
H be a history over Σ of n state-action tuples, and φ be
a formula over the language of F that must be true at the
state at index i of H. If LSmooth(H, φ, i) = (H′, j) and
LSmootha(H, φ, i) = (H′′, k) then for all 0 ≤ i ≤ n, if
σ′i is the i-th state of H′ and σ′′i is the i-th state of H′′ then
σ′i |= σ′′i .

By Proposition 3, LSmootha is an under-approximation of
LSmooth. It amounts to a version that smooths only with re-
spect to conjunctive formulae. Moreover, analogously to ap-
proximate logical filtering (Proposition 1), approximate logi-
cal smoothing is conjunctive state formula preserving.

We also sidestep the exponential size formula blowup from
repeated regression operations by always regressing conjunc-
tive formulae except for, potentially, in the first step.

Theorem 4 (Complexity) Given a history H over a dynami-
cal system Σ of n state-action tuples such that all states are
conjunctive formulae, a conjunctive formula φ over the lan-
guage of F , and an index i of H, LSmootha(H, φ, i) can be
computed in timeO(n ·2|F|) with propositional entailment or
O(n · |F|2) with unit propagation entailment.

While the worst case complexity is exponential, in prac-
tice this is not the case. Actions typically trigger few indirect
system effects (ramifications) in comparison to the size of the
propositional domain. This results in a compact regressed for-
mula where all unit entailments are computable through unit
propagation in most cases. Note that since we place no re-
strictions on the syntactic form of regressed formulae, such as
restricting to Horn clauses, unit propagation may not produce
all entailments, resulting in a sound under-approximation.

4 Backwards-Forwards Algorithm
Logical smoothing refines the previous state estimates by

reasoning backwards (regressing) over the history of actions
and states with respect to some acquired information. In many
cases, this process removes some uncertainty about the past,
particularly in dynamical systems where actions have causal
ramifications. This information about the past can then be
propagated forwards (progressed) through the state-action
history to potentially produce further refinements.

As we last left the car example from Section 3.1, each
state in the history, including the initial state, was smoothed
with battery ok ∧ radio ok after observing sound = True.
While it is obvious that this should be propagated forward
to the current state, as it stands it is not so obvious how
and why, in general, this should be done. Consider the
case where the action turn ignition actually had an addi-
tional effect battery charging if battery ok. Propagating
battery ok forward from the initial state given the actions
and intermediate states in the history further refines the post-
turn ignition state estimates (including the current state)
with battery charging.

We can realize the forward phase outlined above via
filtering. Note that when operating on a history, simu-
lating the forwards reasoning phase by filtering works
on the corresponding sequence of actions with obser-
vation formulae being the state formula. For notational
convenience, we define subseq(H, i) of a history H =
(σ0, a0), (σ1, a1), . . . , (σn, an) and index 0 ≤ i ≤ n as the
sub-sequence 〈ai, σi+1, ai+1, ..., σn, an〉. Algorithm 2 out-
lines our backwards-forwards state estimation algorithm.

Algorithm 2: BF(H, φ, i) Perform backwards-forwards
state estimation on history H given that formula φ holds
at σi in H.

1 (H′, term-idx ) = LSmootha(H, φ, i)
2 return Filtera[(subseq(H′, term-idx )](σterm-idx )

The BF algorithm uses approximate logical smoothing and
approximate logical filtering. BF maintains conjunctive state
formulae while computing sound state estimates. Logical
smoothing allows us to encode complex information about
any state of the system into the history, keeping each individ-
ual state estimate in a compact and computationally manage-
able form that is maintained through a simple logical filter-
ing procedure. Towards this goal of tractability, BF leverages
approximate logical smoothing with unit propagation entail-
ment. When combined, the result is an intuitive reasoning
mechanism for dynamical states with partial observability.

Although it may appear excessive to filter with respect to
state formulae, the states are always conjunctive formulae and
approximate filtering operates by conjoining the observation
formula with the state formula resulting from progressing the
previous action. Since all refinements are sound, this reduces
to simple set operations over the fluents.
Proposition 4 (Complexity) Given a history H over a dy-
namical system Σ of n state-action tuples such that all states
are conjunctive formulae, a conjunctive formula φ over the



language of F , and an index i of H, BF(H, φ, i) can be com-
puted in time O(n · c · 2|F|) with propositional entailment or
O(n · c · |F|2) with unit propagation entailment, where c is
the maximum number of conditional effects over actions of Σ.

This follows from the previous complexity results.

4.1 Space Optimization
Here we outline two optimizations to alleviate the space

requirements of logical smoothing.
State Relevance Minimization. The smoothing process only
relies on a subset of the state. Given a history H with tuple
(σ, a), it is sufficient for σ to only include the fluents f that
are involved in the conditional effects of a. This is due to the
regression formula being purely over these fluents plus fluents
of φ which have no positive or negative effects with respect
to a. Such an optimization of the state fluents would greatly
reduce the memory overhead as actions typically involve and
effect a small fraction of the domain. The downside is that the
ψNEW may contain old inferences and thus the early termi-
nation becomes less robust.
Sliding Window History. A second optimization is to
smooth over a fixed window size called fixed-lag smoothing
[Einicke, 2012] in stochastic systems. This greatly improves
the memory footprint, at the potential expense of quality of
the estimation.

5 Experimental Evaluation
We investigate three key questions: (1) how effective is our

approach in capturing the necessary fluent literals to deter-
mine action preconditions and the goal; (2) how does our state
relevance minimization impact the system; and (3) how does
our approach perform in light of different manifestations of a
domain’s dynamics. Ideally, we would compare our approach
empirically with logical filtering. However, the original au-
thors confirmed in private correspondence that the code is
unavailable. Instead, we look to the field of automated plan-
ning that deals with partial observability and sensing. We use
a set of standard benchmark problems and two newly created
domains.

We ran the BF algorithm on valid plans, and here we
present statistics on the proportion of action traces (plan
branches) for which all action preconditions and goal con-
dition are known to hold. For comparison, these are also
reported for Approximate Logical Filtering (ALF). Average
history state sizes over the action traces are reported for
the BF algorithm and with the state relevance minimization
(BF+SRM) as outlined in Section 4.1. Problem statistics and
running times are also reported.

The plans were produced by the planner POPRP [Muise
et al., 2014], which leverages a compilation of partially ob-
servable planning problems that exhibit particular proper-
ties making them easier to solve (i.e., “simple” contingent
problems [Bonet and Geffner, 2011]). For a description of
the benchmark domains Wumpus, Doors, Colored Balls, and
CTP (Canadian Traveler’s Problem), see [Muise et al., 2014].
Full details and source code used for evaluation will be made
available online.

Table 1 shows the results of evaluating the BF algorithm on
plans for each of the benchmarks. First, consider the Precon-

dition / Goal Coverage section. Even with a judicious under-
approximation, the BF algorithm is capable of tracking every
relevant fluent for every action trace of all plans for the above
problems. This is due in part to the fact that these problems
belong to the class of width-1 simple contingent problems,
which has the property that once a fluent becomes known it
stays known [Bonet and Geffner, 2011]. For problems like the
Colored Balls, ALF is capable of solving a significant portion
of the action traces. This is to be expected; the domain has
very little dynamics. In the case of four colors with one ball,
the only unsolvable traces result from the situations when the
ball must be in the last location not observed and the plan is
able to infer this without directly observing it. Other domains,
like Wumpus and CTP, require heavy reasoning, causing ALF
to fail in most, if not all, cases.

Table 1 also reports the average history state size as a per-
centage of the total number of fluents in the problem. The
large reduction in state size from SRM is due to the fact that
only sensing actions have relevant information: no action af-
fects observable fluents. This is a byproduct of the problem
structures that the planning community has chosen to focus
on and highlights the orthogonality of this work to what is
currently being researched.

Lastly, Table 1 reports how much time it takes to solve ev-
ery action trace of the plan for the associated problem. There
are two main take-aways here. First, the SRM optimization
creates a space vs time trade off. It significantly reduces the
memory footprint of the history but has an impact on compu-
tation time. Second, as one would expect, the time to solve a
given instance correlates with the number of branches (action
traces) in the plan as well as their average length in terms of
the number of actions. This is why large problems like Wum-
pus05 can be solved much quicker than a smaller problem
like Balls4-2.

To further expand the evaluation, we introduce two new
domains in the class of width-n non-simple contingent prob-
lems that specifically involve system dynamics and hidden
state information that must be inferred.
Password. n switches may be flipped by the agent. Each has
an unobservable correct position. There are n+ 1 lights such
that the i-th light signifies that exactly i switches are in the
wrong position. The goal is for the 0-th light to be on and for
the agent to know the correct position of each switch.
Lights. n lights are connected in series and each may po-
tentially be broken. A light may be off if it is broken or a
light downstream is broken. The agent must fix lights that are
known to be broken and reach a state where all lights are no
longer broken. This domain has cascading effects as fixing a
single light may change the “lit” status of all lights upstream.

Note that the contingent width (as defined by [Bonet and
Geffner, 2014]) for these problems is precisely n.

These problems represent two orthogonal classes of dy-
namic domains with their differences best summarized by
Figure 1. First, consider the Password domain. As the prob-
lem size grows, the average number of conditional effects
grows dramatically. Any time a switch is flipped, all pos-
sible cases for the n + 1 lights changing must be covered.
With the Lights domain, the actions of fixing a single light
have more repercussions as lights are added but the chain is



Problem Problem Statistics Precondition / Goal
Coverage (% of runs)

Avg History State Size
(% of total fluents)

Time to Solve
(seconds)

|F| #-BR max-BR avg-BR BF ALF BF BF+SRM BF BF+SRM

Wumpus05 802 35 43 32.9 100 0 17.4 0.02 0.91 1.69
Doors05 100 25 26 16.0 100 64.0 43.5 0.3 0.01 0.17
Doors07 196 343 60 33.2 100 62.9 43.2 0.1 9.02 16.52
CTP05 76 32 10 10.0 100 3.1 43.4 0.6 0.06 0.10
CTP07 134 128 13 14.0 100 0.7 34.3 0.3 0.57 1.01
CTP09 205 512 18 18.0 100 0.2 28.3 0.2 4.34 7.73

Balls4-1 374 48 46 26.1 100 81.2 21.3 0.1 0.83 1.54
Balls4-2 396 2304 90 51.4 100 66.0 25.1 0.09 166.85 324.69

Table 1: BF Algorithm - Planning Benchmarks Performance. (#-BR) number of branches; (max-BR) max branch depth; (avg-BR) average
branch depth; (Coverage) percentage of runs where all preconditions and goal fluents are captured; (History State Size) average percentage
of all fluents that must be tracked; (Time to Solve) time for each technique to process and verify each branch of the plan.
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Figure 1: Differences in Password and Lights domains

only increased by one per new light. If we look at how the
average number of conditions (fluents) of the conditional ef-
fects grow with respect to problem size we see the reverse -
the Lights domain grows much faster than Password. By the
parametrization of the Password domain, each conditional ef-
fect of flipping a switch depends only on the correctness of
the switch and the light that is currently on. For the Lights
domain, as more lights are added fixing any single light has a
longer chain of potential ramifications given the status of the
lights both upstream and downstream. Therefore, these prob-
lems allow us to compare how BF scales with respect to these
two important domain characteristics.

We evaluate via a simulation that creates a randomized true
state and produces a sequence of actions that should result in
a state where the goal holds. Figure 2 shows how the BF al-
gorithm performs as the problem size increase, averaged over
100 random action traces. As with the standard benchmarks,
the BF algorithm correctly deduced all action preconditions
and goal states over all generated action traces. The main
point of comparison here is not pure performance but instead
performance of problem type as per the preceding discussion
of Figure 1. The Password domain scales slightly better par-
tially due to the general domain growth with respect to prob-
lem size being lower than the Lights domain as per Figure 3.
As Figures 1 and 3 show, an increase in a simple notion of
problem size can have a large impact on multiple facets of
the problem representation. Regardless of how the dynamics
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Figure 2: Performance of BF on Password and Lights domains

of the system manifest when compiled into conditional ef-
fects of actions, Figure 2 shows that the BF algorithm scales
equivalently.

6 Related Works
In this paper we propose an approach to logical state esti-

mation for dynamical systems that is tailored to address the
tracking of individual fluents in a computationally efficient
manner. Similar to Amir and Russell’s original work on logi-
cal filtering, we elected not to perform our analysis in the sit-
uation calculus, but rather to use a dynamical system model
that is employed by those who develop efficient algorithms
for AI automated planning and diagnosis. Nevertheless, there
is a large body of work in the knowledge representation lit-
erature, much of it in the situation calculus, that is related
to logical filtering; particularly work on belief update and on
progression. Among these, Lin and Reiter (1997) provided
a broad study of progression spawning a number of other
advances and culminating in Vassos and Levesque’s (2013)
treatment of first-order progression, which appears to sub-
sume Shirazi and Amir’s (2011) work on first-order logical
filtering. Also relevant to approximate filtering, and in small
degree smoothing, is the work by Liu and Levesque (2005)
that studies progression in dynamical systems with respect to
so-called Proper Knowledge Bases. This work shares some
motivation with our conjunctive formulae restriction in at-
tempting to avoid disjunction in favor of tractability. Further,
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Figure 3: Password and Lights domain growth

the authors discuss a limited integration of sensing via re-
gression to determine the context of actions to be performed,
building on a similar idea for projection by De Giacomo and
Levesque (1999). Finally, Ewin et al. (2014) study the prob-
lem of query projection for long-living agents by combining
regression and progression in a manner that is similar in spirit
to the work presented here.

Our work is inspired by work on smoothing and
backwards-forwards reasoning in stochastic systems, build-
ing on previous work on logical filtering [Amir and Russell,
2003], the adaptation of the classical filtering to a logical set-
ting. Various works on (database) progression (e.g., [Vassos
and Levesque, 2013]) are also closely related to this exact
logical state estimation task. In 2007, Shahaf and Amir de-
veloped a version of logical filtering that represents the un-
derlying belief state as a circuit. By solving the update prob-
lem completely, logical circuit filtering is able to compute and
represent the belief state, exactly, in polynomial time. Un-
fortunately, querying of the underlying data structure used in
logical circuit filtering requires use of a SAT solver, making it
untenable for tasks such as AI planning which could require
excessive SAT calls to evaluate action executability during
plan construction.

One of the first works on the approximation of logical be-
lief states in dynamical systems was the 0-approximation se-
mantics proposed by Baral and Son (1997). Like our approx-
imation techniques, they represent beliefs in terms of con-
junctions of fluents, but do not exploit a notion of backwards-
forwards reasoning to do state estimation.

The field of automated planning has spawned numerous
systems which necessarily have a sub-component to perform
state estimation. For example, the systems CNFct, DNFct,
and PIct ([To et al., 2011b; 2011a]) explicitly maintain sets
of the possible belief states but in the worst case have ex-
ponential space complexity. Palacios and Geffner realize a
form of approximate state estimation via a compilation pro-
cess that introduces additional fluents and actions correspond-
ing to possible initial worlds (2009). While this translation
based approach provides efficient state querying, the number
of additional fluents required for completeness grows expo-
nentially in problem’s contingent width.

The SDR Planner [Brafman and Shani, 2012] maintains
a history of actions similar to our history of state-action

pairs but for a slightly different purpose. The planner sam-
ples a possible complete initial state then assumes it is correct
and plans appropriately. When information is gained through
sensing actions that disprove the correctness of the initial
state sample, re-planning is performed and a new state is sam-
pled. To ensure action preconditions are correctly followed,
precondition fluents are regressed through the history to the
initial state to ensure satisfiability. This portion of the algo-
rithm is similar, at a high level, to the fundamental ideas of
logical smoothing - that an understanding of the evolution of
the past can produce new information about the present. More
recently Brafman and Shani (2014) also exploit regression for
effective state estimation. A key difference, however, is that
we use newly discovered information about past states to re-
duce the uncertainty of more recent states. In contrast, they
only perform a backwards pass on the history of actions and
observations, using full regression, while we approximate for
efficiency.

Most recently Bonet and Geffner (2014) developed algo-
rithms for belief tracking for so-called simple planning prob-
lems, as noted previously. We were unable to perform an
experimental comparison with their work because their im-
plementation is domain-specific. Nevertheless, it is interest-
ing to consider when one approach works well and the other
does not. As width-n problems, both the Password and Lights
domains would cause an exponential blowup for their tech-
nique. Conversely, there are width-1 problems where our ap-
proximation does not capture simple entailments, such as
conformant-like conditions where case-based reasoning plays
a role. The complementary nature of the two approaches
makes their combination an obvious step for future research.

7 Concluding Remarks
Logical smoothing and backwards-forwards reasoning are

important techniques in service of reasoning about partially
observable dynamical systems. They characterize the logical
analogue of commonly used techniques in control theory and
other dynamic programming settings. This paper provides the
formal foundations for a number of interesting theoretical and
algorithmic tools that are of practical significance for auto-
mated planning, execution monitoring, diagnosis and beyond.
We demonstrated the effectiveness of our approach, which
has flawless recall on state estimation for the preconditions
and goal conditions in the plans for existing partially observ-
able planning problems. Further, we witnessed a dramatic re-
duction in the number of fluent literals that must be moni-
tored. In future work we plan to integrate our algorithms with
a contingent planning system.While our work was presented
in the context of deterministic actions, the account and algo-
rithms extend trivially to non-deterministic actions, and can
be extended to exogenous actions. We plan to elaborate on
such cases and to further explore variants of logical smooth-
ing and our BF algorithm as they relate to non-deterministic
and probabilistic transition systems. Finally we wish to fur-
ther explore the theoretical relastionship between our work
and progression over Proper KBs, and relationship to the var-
ious approximations defined by Palacios and Geffner in [Pala-
cios and Geffner, 2009] and by Bonet and Geffner in [Bonet
and Geffner, 2014].
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