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Abstract: Computational units induced by convolutional
kernels together with biologically inspired perceptrons be-
long to the most widespread types of units used in neu-
rocomputing. Radial convolutional kernels with vary-
ing widths form RBF (radial-basis-function) networks and
these kernels with fixed widths are used in the SVM (sup-
port vector machine) algorithm. We investigate suitabil-
ity of various convolutional kernel units for function ap-
proximation. We show that properties of Fourier trans-
forms of convolutional kernels determine whether sets of
input-output functions of networks with kernel units are
large enough to be universal approximators. We com-
pare these properties with conditions guaranteeing positive
semidefinitness of convolutional kernels.

1 Introduction

Computational units induced by radial and convolutional
kernels together with perceptrons belong to the most
widespread types of units used in neurocomputing. In
contrast to biologically inspired perceptrons [15], local-
ized radial units [1] were introduced merely due to their
good mathematical properties. Radial-basis-function units
(RBF) computing spherical waves were followed by ker-
nel units [7]. Kernel units in the most general form include
all types of computational units, which are functions of
two vector variables: an input vector and a parameter vec-
tor. However, often the term kernel unit is reserved merely
for units computing symmetric positive semidefinite func-
tions of two variables. Networks with these units have
been widely used for classification with maximal margin
by the support vector machine algorithm (SVM) [2] as
well as for regression [21].

Other important kernel units are units induced by convo-
lutional kernels in the form of translations of functions of
one vector variable. Isotropic RBF units can be viewed as
non symmetric kernel units obtained from convolutional
radial kernels by adding a width parameter. Variability
of widths is a strong property. It allows to apply argu-
ments based on classical results on approximation of func-
tions by sequences of their convolutions with scaled bump
functions to prove universal approximation capabilities of
many types of RBF networks [16, 17]. Moreover, some
estimates of rates of approximation by RBF networks ex-
ploit variability of widths [9, 10, 13].

On the other hand, symmetric positive semidefinite ker-
nels (which include some classes of RBFs with fixed

widths parameters) benefit from geometrical properties of
reproducing kernel Hilbert spaces (RKHS) generated by
these kernels. These properties allow an extension of
the maximal margin classification from finite dimensional
spaces also to sets of data which are not linearly separable
by embedding them into infinite dimensional spaces [2].
Moreover, symmetric positive semidefinite kernels gener-
ate stabilizers in the form of norms on RKHSs suitable for
modeling generalization in terms of regularization [6] and
enable characterizations of theoretically optimal solutions
of learning tasks [3, 19, 11].

Arguments proving the universal approximation prop-
erty of RBF networks using sequences of scaled kernels
might suggest that variability of widths is necessary for the
universal approximation. However, for the special case of
the Gaussian kernel, the universal approximation property
holds even when the width is fixed and merely centers are
varying [14, 12].

On the other hand, it is easy to find some examples
of positive semidefinite kernels such that sets of input-
output functions of shallow networks with units generated
by these kernels are too small to be universal approxima-
tors. For example, networks with product kernel units of
the form K(x,y) = k(x)k(y) generate as input-output func-
tions only scalar multiples ck(x) of the function k.

In this paper, we investigate capabilities of networks
with one hidden layer of convolutional kernel units to ap-
proximate multivariable functions. We show that a crucial
property influencing whether sets of input-output func-
tions of convolutional kernel networks are large enough
to be universal approximators is behavior of the Fourier
transform of the one variable function generating the con-
volutional kernel. We give a necessary and sufficient con-
dition for universal approximation of kernel networks in
terms of the Fourier transforms of kernels. We compare
this condition with properties of kernels guaranteeing their
positive definitness. We illustrate our results by exam-
ples of some common kernels such as Gaussian, Laplace,
parabolic, rectangle, and triangle.

The paper is organized as follows. In section 2, no-
tations and basic concepts on one-hidden-layer networks
and kernel units are introduced. In section 3, a neces-
sary and sufficient condition on a convolutional kernel that
guarantees that networks with units induced by the kernel
have the universal approximation property. In section 4
this condition is compared with a condition guaranteeing
that a kernel is positive semidefinite and some examples
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of kernels satisfying both or one of these conditions are
given. Section 5 is a brief discussion.

2 Preliminaries

Radial-basis-function networks as well as kernel models
belong to the class of one-hidden-layer networks with one
linear output unit. Such networks compute input-output
functions from sets of the form

spanG =

{
n

∑
i=1

wigi |wi ∈ R, gi ∈ G,n ∈ N+

}
,

where the set G is called a dictionary [8], and R, N+ de-
note the sets of real numbers and positive integers, resp.
Typically, dictionaries are parameterized families of func-
tions modeling computational units, i.e., they are of the
form

GK(X ,Y ) = {K(.,y) : X → R |y ∈ Y}
where K : X ×Y → R is a function of two variables, an
input vector x∈ X ⊆Rd and a parameter y∈Y ⊆Rs. Such
functions of two variables are called kernels. This term,
derived from the German term “kern”, has been used since
1904 in theory of integral operators [18, p.291].

An important class of kernels are convolutional kernels
which are obtained by translations of one-variable func-
tions k : Rd → Rd as

K(x,y) = k(x− y).

Radial convolutional kernels are convolutional kernels ob-
tained as translations of radial functions, i.e., functions of
the form

k(x) = k1(‖x‖),
where k1 : R+→ R.

The convolution is an operation defined as

f ∗g(x) =
∫

Rd
f (y− x)g(y)dy =

∫

Rd
f (y)g(x− y)dy

[20, p.170].
Recall, that a kernel K : X ×X → R is called positive

semidefinite if for any positive integer m, any x1, . . . ,xm ∈
X and any a1, . . . ,am ∈ R,

m

∑
i=1

m

∑
j=1

aia jK(xi,x j)≥ 0.

Similarly, a function of one variable k : Rd → R is called
positive semidefinite if for any positive integer m, any
x1, . . . ,xm ∈ X and any a1, . . . ,am ∈ R,

m

∑
i=1

m

∑
j=1

aia jk(xi− x j)≥ 0.

For symmetric positive semidefinite kernels K, the sets
spanGK(X) of input-output functions of networks with

units induced by the kernel K are contained in Hilbert
spaces defined by these kernels. These spaces are called
reproducing kernel Hilbert spaces (RKHS) and denoted
HK(X). They are formed by functions from

spanGK(X) = span{Kx |x ∈ X},

where
Kx(.) = K(x, .),

together with limits of their Cauchy sequences in the norm
‖.‖K . The norm ‖.‖K is induced by the inner product
〈., .〉K , which is defined on

GK(X) = {Kx |x ∈ X}

as
〈Kx,Ky〉K = K(x,y).

So spanGK(X)⊂HK(X).

3 Universal approximation capability of
convolutional kernel networks

In this section, we investigate conditions guaranteeing that
sets of input-output functions of convolutional kernel net-
works are large enough to be universal approximators.

The universal approximation property is formally de-
fined as density in a normed linear space. A class of one-
hidden-layer networks with units from a dictionary G is
said to have the universal approximation property in a
normed linear space (X ,‖.‖X ) if it is dense in this space,
i.e., clX spanG = X , where spanG denotes the linear
span of G and clX denotes the closure with respect to the
topology induced by the norm ‖.‖X . More precisely, for
every f ∈ X and every ε > 0 there exist a positive integer
n, g1, . . . ,gn ∈ G, and w1, . . . ,wn ∈ R such that

‖ f −
n

∑
i=1

wigi‖X < ε.

Function spaces where the universal approximation
property has been of interest are spaces (C(X),‖.‖sup) of
continuous functions on subsets X of Rd (typically com-
pact) with the supremum norm

‖ f‖sup = sup
x∈X
| f (x)|

and spaces (L p(Rd),‖.‖L p) of functions on Rd with fi-
nite

∫
Rd | f (y)|pdy and the norm

‖ f‖L p =

(∫

Rd
| f (y)|pdy

)1/p

.

Recall that the d-dimensional Fourier transform is an
isometry on L 2(Rd) defined on L 2(Rd)∩L 1(Rd) as

f̂ (s) =
1

(2π)d/2

∫

Rd
e−ix·s f (x)dx
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and extended to L 2(Rd) [20, p.183].
Note that the Fourier transform of an even function is

real and the Fourier transform of a radial function is radial.
If k ∈ cL1(Rd), then k̂ is uniformly continuous and with
increasing frequencies converges to zero, i.e.,

lim
‖s‖→∞

k̂(s) = 0.

The following theorem gives a necessary and sufficient
condition on a convolutional kernel that guarantees that the
class of input-output functions computable by networks
with units induced by the kernel can approximate arbitrar-
ily well all functions in L 2(Rd). The condition is formu-
lated in terms of the size of the set of frequencies for which
the Fourier transform is equal to zero. By λ is denoted the
Lebesgue measure.

Theorem 1. Let d be a positive integer, k ∈ L 1(Rd)∩
L 2(Rd) be even, K :Rd×Rd→R be defined as K(x,y) =
k(x− y), and X ⊆ Rd be Lebesgue measurable. Then
spanGK(X) is dense in (L 2(X),‖.‖L 2) if and only if
λ ({s ∈ Rd | k̂(s) = 0}) = 0.

Proof. First, we prove the necessity. To prove it by
contradiction, assume that λ (S) 6= 0. Take any function
f ∈L 2(Rd)∩L 1(Rd) with a positive Fourier transform
(for example, f can be the Gaussian). Let ε > 0 be such
that

ε <
∫

Rd
f̂ (s)2ds.

Assume that there exists n, wi ∈ R, and yi ∈ Rd such that

‖ f −
n

∑
j=1

wik(.− yi)‖L2 < ε.

Then by the Plancherel Theorem [20, p.188],

‖ f̂ −
n

∑
j=1

wi
̂k(.− yi)‖2

L2
= ‖ f̂ −

n

∑
j=1

w̄ik̂‖2
L2

,

where w̄i = wieiyi . Hence

‖ f̂ −
n

∑
j=1

w̄ik̂‖2
L2

=

∫

Rd\S

(
f̂ (s)−

n

∑
j=1

w̄ik̂(s)

)2

ds+
∫

S
f̂ (s)2ds > ε,

which is a contradiction.
To prove the sufficiency, we first assume that X = Rd .

We prove it by contradiction, so we suppose that

clL 2 spanGK(R
d)= clL 2 span{K(.,y) |y∈Rd} 6=L 2(Rd).

Then by the Hahn-Banach Theorem [20, p. 60] there ex-
ists a bounded linear functional l on L 2(Rd) such that
for all f ∈ clL 2spanGK(R

d), l( f ) = 0 and for some f0 ∈

L 2(Rd)\clL 2spanGK(R
d), l( f0) = 1. By the Riesz Rep-

resentation Theorem [5, p.206], l can be expressed as an
inner product with some h ∈L 2(Rd).

As k is even, for all y ∈ Rd ,

〈h,K(.,y)〉=
∫

Rd
h(x)k(x− y)dx =

∫

Rd
h(x)k1(y− x)dx = h∗ k1(x) = 0.

By the Young Inequality for convolutions h∗ k ∈L 2(Rd)
and so by the Plancherel Theorem [20, p.188],

‖ĥ∗ k1‖L 2 = 0.

As

ĥ∗ k1 =
1

(2π)d/2
ĥ k̂

[20, p.183], we have ‖ĥ k̂‖L 2 = 0 and so
∫

Rd
(ĥ(s) k̂(s))2ds = 0.

As the set
S = {s ∈ Rd | k̂(s) = 0}

has Lebesgue measure zero we have
∫

Rd
ĥ(s)2k̂(s)2ds =

∫

Rd\S
ĥ(s)2k̂(s)2ds = 0.

As for all s ∈ Rd \S, k̂(s)2 > 0, we have ‖ĥ‖2
L 2 ds = 0. So

‖h‖L 2 = 0 and hence by the Cauchy-Schwartz Inequality
we get

1 = l( f0) =
∫

Rd
f0(y)h(y)dy≤ ‖ f0‖L 2 ‖h‖L 2 = 0,

which is a contradiction.
Extending a function f from L 2(X) to f̄ from L 2(Rd)

by setting its values equal to zero outside of X and restrict-
ing approximations of f̄ by functions from spanGK(R

d) to
X , we get the statement for any Lebesgue measurable sub-
set X of Rd .

✷

Theorem 1 shows that sets of input-output functions of
convolutional kernel networks are large enough to approx-
imate arbitrarily well all L 2-functions if and only if the
Fourier transform of the function k is almost everywhere
non-zero.

Theorem 1 implies that when k̂(s) is equal to zero for all
s such that ‖s‖ ≥ r for some r > 0 (the Fourier transform
is band-limited), then the set spanGK(R

d) is too small to
have the universal approximation capability. In the next
section we show, that some of such kernels are positive
semidefinite. So they can be used for classification by the
SVM algorithm but they are not suitable for function ap-
proximation.
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4 Positive semidefinitness and universal
approximation property

In this section, we compare a condition on positive
semidefinitness of a convolutional kernel with the condi-
tion on the universal approximation property derived in the
previous section.

As the inverse Fourier transform of a convolutional ker-
nel can be expressed as

K(x,y) = k(x− y) =
1

(2π)d/2

∫

Rd
k̂(s)ei(x−y)·sds

it is easy to verify that when k̂ is positive or non nega-
tive than K defined as K(x,y = k(x−y) is positive definite,
semidefinite, resp.

Indeed, to verify that ∑n
j,l=1 a jalK(x j,xl) ≥ 0 we ex-

press K in terms of the inverse Fourier transform. Thus
we get

n

∑
j,l=1

a jalK(x j,xl)=
n

∑
j,l=1

a jal
1

(2π)d/2

∫

Rd
k̂(s)ei(x j−xl)·sds=

1
(2π)d/2

∫

Rd

(
n

∑
j

a je
i(x j)·s

)(
n

∑
l

ake−i(xl)·s
)

k̂(s)ds =

1
(2π)d/2

∫

Rd

∣∣∣∣∣
n

∑
j

a je
i(x j)·s

∣∣∣∣∣

2

k̂(s)ds≥ 0.

The following proposition is well-known (see, e.g., [4]).

Proposition 2. Let k ∈ L 1(Rd) ∩L 2(Rd) be an even
function such that k̂(s)≥ 0 for all s ∈ Rd . Then K(x,y) =
k(x− y) is positive semidefinite.

A complete characterization of positive semidefinite
bounded continuous kernels follows from the Bochner
Theorem.

Theorem 3 (Bochner). A bounded continuous function
k :Rd→C is positive semidefinite iff k is the Fourier trans-
form of a nonnegative finite Borel measure µ , i.e.,

k(x) =
1

(2π)d/2

∫

Rd
e−x·sµ(ds).

The Bochner Theorem implies that when the Borel mea-
sure µ has a distribution function then the condition in
Proposition 2 is both sufficient and necessary.

Comparison of the characterization of kernels for which
by Theorem 1 one-hidden-layer kernel networks are
universal approximators with the condition on positive
semidefinitness from Proposition 2 shows that there are
positive semidefinite kernels which do not generate net-
works possessing the universal approximation capability

and there also are kernels which are not positive defi-
nite but induce networks with the universal approximation
property. The first ones are suitable for SVM but not for
regression, while the second ones can be used for regres-
sion but are not suitable for SVM. In the sequel, we give
some examples of such kernels.

A paradigmatic example of a convolutional kernel is the
Gaussian kernel ga : Rd → R defined for a width a > 0 as

ga = e−a2‖.‖2 .

For any fixed width a and any dimension d,

ĝa = (
√

2a)−de−1/a2‖.‖2 .

So the Gaussian kernel is positive definite and the class of
Gaussian kernel networks have the universal approxima-
tion property.

The rectangle kernel is defined as

rect(x) = 1 for x ∈ (−1/2,1/2),
otherwise rect(x) = 0.

Its Fourier transform is the sinc function

r̂ect(s) = sinc(s) =
sin(π s)

π s
.

So the Fourier transform of rect is not non negative but its
zeros form a discrete set of the Lebesgue measure zero.
Thus the rectangle kernel is not positive semidefinite but
induces class of networks with the universal approxima-
tion property. On the other hand, the Fourier transform of
sinc is the rectangle kernel and thus it is positive semidef-
inite, but does not induce networks with the universal ap-
proximation property.

The Laplace kernel is defined for any a > 0 as

l(x) = e−a|x|.

Its Fourier transforms is positive as

l̂(s) =
2a

a2 +(2πs)2 .

The triangle kernel is defined as

tri(x) = 2x−1/2 for x ∈ (−1/2,0),
tri(x) =−2(x+1/2) for x ∈ (0,1/2),

otherwise tri(x) = 0.

Its Fourier transforms is positive as

t̂ri(s) = sinc(s)2 =

(
sin(π s)

π s

)2

.

Thus both the Laplace and the triangle kernel are positive
definite and induce networks having the universal approx-
imation property.

The parabolic (Epinechnikov) kernel is defined

epi(x) = 3
4 (1− x2) for x ∈ (−1,1),

otherwise epi(x) = 0.
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Its Fourier transforms is

êpi(s) = 3
s3 (sin(s)− 1

2 scos(s)) for s 6= 0,

êpi(s) = 1 for s = 0.

So the parabolic kernel is not positive semidefinite but in-
duces networks with the universal approximation property.

5 Discussion

We investigated effect of properties of the Fourier trans-
form of a kernel function on suitability of the convolu-
tional kernel for function approximation (universal ap-
proximation property) and for maximal margin classifi-
cation algorithm (positive semidefinitness). We showed
that these properties depend on the way how the Fourier
transform converges with increasing frequencies to infin-
ity. For the universal approximation property, the Fourier
transform can be negative but cannot be zero on any set of
frequencies of non-zero Lebesgue measure. On the other
hand, functions with non-negative Fourier transforms are
positive semidefinite even if they are compactly supported.
We illustrated our results by the paradigmatic example
of the multivariable Gaussian kernel and by some one-
dimensional examples. Multivariable Gaussian is a prod-
uct of one variable functions and thus its multivariable
Fourier transform can be computed using transforms of
one-variable Gaussians. Fourier transforms of other radial
multivariable kernels are more complicated, their expres-
sions include Bessel functions and the Hankel transform.
Investigation of properties of Fourier transforms of multi-
variable radial convolutional kernels is subject of our fu-
ture work.
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