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Abstract: This paper compares several Gaussian-process-
based surrogate modeling methods applied to black-box
optimization by means of the Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES), which is considered
state-of-the-art in the area of continuous black-box opti-
mization. Among the compared methods are the Model-
assisted CMA-ES, the Robust Kriging Metamodel CMA-
ES, and the Surrogate CMA-ES. In addition, a very suc-
cessful surrogate-assisted self-adaptive CMA-ES, which
is not based on Gaussian processes, but on ordinary re-
gression by means of support vector machines has been
included into the comparison. Those methods have been
benchmarked using CEC’2013 testing functions. We show
that the surrogate CMA-ES achieves best results at the be-
ginning and later phases of optimization process, conced-
ing in the middle to surrogate-assisted CMA-ES.

1 Introduction

Evolutionary computation has been successfully applied
to a wide spectrum of engineering problems. The ran-
domized exploration guided by a set of candidate solutions
(population) may be resistant against most optimization
obstacles such as noise or multi-modality. It makes evolu-
tionary algorithms (EAs) suitable for black-box optimiza-
tion where an analytic form of the objective function is
not known. In such cases, values of the objective function
evaluations are the only available information to optimize
the function.

The evaluation of the objective function can often be
costly, i.e., it takes a significant amount of time and/or
money. Typically, a black-box objective function is evalu-
ated empirically during some experiment such as gas tur-
bine profiles optimization [3] or protein folding stability
optimization [4].

Today, a state-of-the-art among evolutionary black-box
optimizers is the Covariance Matrix Adaptation evolution
strategy (CMA-ES), which was initially introduced in [7].
However, as any other evolutionary optimization methods,
CMA-ES may suffer from insufficient convergence speed
w.r.t. the budget of expensive function evaluations. This
can be avoided by the introduction of so-called surrogate
models (aka metamodels), which provide regression-based
predictions of the expensive objective function values.

Past works on surrogate-assisted optimization showed
that models based on Gaussian Processes (GP) can lead to
a significant reduction as to the number of evaluations of

the original objective function [2]. The aim of this pa-
per is to compare several GP-based surrogate-modeling
techniques against another successful surrogate model-
ing method used in connection with CMA-ES. In partic-
ular, we examine the POI-based approach [13], the ro-
bust kriging metamodel [9] and the surrogate CMA-ES (S-
CMA-ES) [2] and compare them against the support vec-
tor machines-based method called s∗ACM-ES [11] and the
basic CMA-ES without a surrogate model. The compar-
ison has been performed on the multi-modal benchmark
from CEC’2013.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the necessary background of the Covari-
ance Matrix Adaptation ES and Gaussian processes in the
context of black-box optimization. Section 3 briefly re-
calls tested surrogate models, while section 4 describes the
performed experiments and comments on obtained results.

2 Background

2.1 Surrogate modeling in black-box optimization

In the context of black-box optimization by CMA-ES, a
surrogate model is built using some points sampled by the
CMA-ES and their objective values. Then, the model is
used to predict the quality of the sampled points in order
to reduce number of function evaluations. However, the
points should be carefully selected. Generally, there are
two main ways to select them. The first approach proposed
in [3] means that in each iteration of the overall optimiza-
tion algorithm, one replaces the original objective function
by its surrogate model, estimates the model’s global opti-
mum and evaluates it with the original objective function.

The other way consists in selecting a controlled fraction
of individuals that should be evaluated on the original ob-
jective function. Such approach is thus called evolution
control (EC) [8]. More specifically, costly evaluating the
original objective for the entire population only at certain
generations is called generation-based EC, while evaluat-
ing it only for a part of the population at each generation
is called individual-based EC.

Using a surrogate model to find the global optimum, one
exploits model’s knowledge regarding the unknown objec-
tive function. However, this can potentially prevent the op-
timization algorithm from convergence to an optimal solu-
tion due to unexplored regions that were incorrectly mod-
eled. To protect the model from making such predictions
there is a need for some mechanism which cares about the
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exploration of new regions in the solution space. The merit
functions were introduced precisely for this reason: they
incorporate both exploration and exploitation patterns into
the decisions performed during the surrogate modeling.

The variance σ2 of the model predictions may be used
as a merit function. Thus, the larger the variance, the
higher the uncertainty of the predicted objective function
value. The merit function is expressed as:

fvar(xxx) = σ2(xxx),

where σ2(xxx) is the variance of the model’s prediction at xxx.
Lower confidence bound (LCB) is another merit func-

tion, which has the following form:

fα(xxx) = f̂ (xxx)−ασ2(xxx),

where α ≥ 0 balances between the exploration and ex-
ploitation and f̂ (xxx) is the model’s prediction of the objec-
tive function value at xxx.

The next merit function is a probability of improvement
(POI). For any given solution vector xxx, the model predic-
tions about the function value at xxx is a realization of the
random variable Y (xxx). Having fmin as the current best ob-
tained value of the original objective function, we define
for any T ≤ fmin the probability of improvement as:

fT(xxx) = p(Y (xxx)≤ T ). (1)

2.2 Gaussian processes

Gaussian process is a random process indexed by Rn

such that its marginal indexed by a finite set of points
XXXN = {xxx1, . . . ,xxxN} ⊂ Rn has an N-dimensional Gaussian
distribution. Evaluating the objective function at those
points results in a vector of function values tttN ∈ RN . If
that vector is viewed as a particular realization of the re-
spective Gaussian distribution, the GP provides a predic-
tion of the distribution of the function value tN+1 at some
point xxxN+1.

Gaussian process models are determined by their mean
and covariance matrix. This matrix is constructed by ap-
plying a covariance function k : Rn×Rn 7→ R to each pair
of points in XXXN . The covariance functions have a certain
set of parameters, usually called hyper-parameters due to
the fact that the covariance function itself is a parameter of
the Gaussian process. Typically, the hyper-parameters are
obtained through the maximum likelihood estimation.

We recall the covariance functions employed in the ob-
served methods. Note that the hyper-parameters below are
marked as θ . The first one is exponential covariance func-
tion. It is used in [9] and has the following form:

kE(xxxp,xxxq) = exp
(
− r

θ

)
,

where r = ‖xxxp− xxxq‖ is the distance between points.

The next covariance function is called squared exponen-
tial. This is used in [13] and its basic variant can be ex-
pressed as:

kSE(xxxp,xxxq) = exp
(
− r2

θ

)
.

In [2], the isotropic Matérn covariance function k5/2
Matérn is

used in its form:

k5/2
Matérn(xxxp,xxxq) = θ1

(
1+

√
5r

θ2
+

5r2

3θ 2
2

)
exp

(
−
√

5r

θ2

)
.

Having defined the covariance matrix for N points, an
extension of CCC after including an (N +1)th point reads:

CCCN+1 =

(
CCCN kkk
kkkT κ

)
,

where kkk = k(xxxN+1,XXXN) is an N-dimensional real vector of
covariances between the new point and points from train-
ing set, while κ = k(xxxN+1,xxxN+1) is a variance of the new
point [3]. Consequently,

tN+1 ∼ N (µN+1,σ
2
N+1), (2)

where µN+1 = kkkTCCC−1
N tttN is the predictive mean and

σ2
N+1 = κ− kkkTCCC−1

N kkk is the predictive variance.
In the context of Gaussian processes, we have fmin =

min(t1, . . . , tN). Then, considering distribution from (2),
the POI criterion can be rewritten from (1) as follows:

fT(xxx) = Φ

(
T − t̂(xxx)

σ(xxx)

)
,

where Φ is the cumulative distribution function of the nor-
mal distribution N (0,1).

Areas with high POI value have a high probability to
sample point with objective value better than fmin. Re-
gions with model prediction t̂(xxx) ≫ fmin will have POI
value close to zero, which encourages the model to search
somewhere else. The POI value becomes large when the
variance (i.e. σ2) is large, which is typical for unexplored
areas. Therefore, the use of POI may be useful for dealing
with multi-modal functions.

2.3 CMA-ES

The CMA-ES employs the concept of the adaptation of
internal variables from the data. Particularly, it adapts sev-
eral components such as mutation step size, distribution
mean and the covariance matrix, which represents a local
approximation of the function landscape.

In the CMA-ES, a generation of candidate solutions is
usually obtained by sampling a normally-distributed ran-
dom variable:

xxx(g+1)
k ∼ mmm(g)+σ (g)N

(
000,CCC(g)

)
for k = 1, . . . ,λ ,
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where λ ≥ 2 is a population size, xxx(g+1)
k ∈ Rn is the k-th

offspring in g+1-th generation, mmm(g) ∈ Rn is the mean of
the sampling distribution, σ (g) ∈ R+ is a step-size, CCC(g) ∈
Rn×n is a covariance matrix. Below we list basic equations
for the adaptation of the mean, step-size and covariance
matrix used in CMA-ES. For details we refer to [5].

The mean of the sampling distribution is a weighted av-
erage of µ best-ranked points from xxx(g+1)

1 , . . . , xxx(g+1)
λ

:

mmm(g+1) =
µ

∑
i=1

wi xxx(g+1)
i:λ ,

where ∑
µ
i=1 wi = 1, w1 ≥ w2 ≥ ·· · ≥ wµ > 0 are weight

coefficients and i : λ notation means i-th best individual
out of xxx(g+1)

1 , . . . , xxx(g+1)
λ

.
The covariance matrix CCC, being initially set to identity

matrix, is updated by rank-one-update and rank-µ-update
during each iteration. A cumulation strategy [5] is applied
to combine consecutive steps in the search space.

CCC(g+1) = (1− c1− cµ) CCC(g)

+ c1 ppp(g+1)
c ppp(g+1)

c
⊤

︸ ︷︷ ︸
rank-one update

+ cµ

µ

∑
i=1

wi yyy(g+1)
i:λ yyy(g+1)

i:λ

⊤

︸ ︷︷ ︸
rank-µ update

,

where c1 and cµ are learning rates for rank-one-update and

rank-µ-update, ppp(g+1)
c is an evolution path and yyy(g+1)

i:λ =(
xxx(g+1)

i:λ −mmm(g)
)
/σ (g).

The step length update reads:

σ (g+1) = σ (g)exp

(
cσ

dσ

(
‖ppp(g+1)

σ ‖
E‖N (000,I)‖ −1

))
,

where cσ is a learning rate and ppp(g+1)
σ is an evolution path.

The CMA-ES is considered as a local optimizer. So in
case of multi-modal functions, it tends to end up in a lo-
cal optima. Hence, to reduce the influence of such behav-
ior, several restart strategies were introduced. The perhaps
best known one is the IPOP-CMA-ES [1]. In this modifi-
cation, an optimization process is being interrupted several
times and independently restarted with the population size
increased by a certain factor (typically 2). IPOP version is
set default for all of the CMA-ES algorithms throughout
the article.

3 Tested methods

3.1 POI MAES

Ulmer et al. refer to this algorithm as Probability
of Improvement Model-assisted Evolution Strategy (POI
MAES) [13]. The method uses a modification of the co-
variance function SE, which has n+ 2 hyper-parameters,

obtained by likelihood maximization:

k(xxxp,xxxq,θθθ) = θ1exp

(
− 1

2

n

∑
i=1

(xpi− xqi)
2

r2
i

)
+δpqθ2,

where r2
i are length-scales for the individual dimensions

and δpq =

{
0, if p 6= q

1, if p = q
is the Kronecker delta.

The model is incorporated into the CMA-ES via
individual-based EC, which the authors call pre-selection.
In every iteration, λpre > λ new individuals are sampled
from µ parents and evaluated on the surrogate model us-
ing the POI merit function. Then, the λ offsprings with
the highest POI are selected and evaluated on the objec-
tive function. In the end, the surrogate model is updated.

3.2 Robust CMA-ES

The approach below was designed to provide robustness
approximations of the objective function values. It is also
combined with a special method to select promising solu-
tions [9].

One can imagine robustness approximation as an at-
tempt to predict function values within noisy or imprecise
environment. Considering expensive optimization, it be-
comes extremely important to make precise predictions for
noisy problems as it requires a certain trade-off between
limiting the noise and reducing the number of evaluations.

The robustness approximation is achieved in a way that
the local model is trained around every point xxxk to be
estimated. To achieve this, the algorithm chooses nkrig
pairs (xxx, t) in a specific way described below from a given
archive A and stores them in a local training set D . If the
amount of points does not suffice, the algorithm returns
also a set XXXcand = {xxx1, . . . ,xxxl} of length l = nkrig − |D |.
Points from XXXcand are then evaluated with the original ob-
jective function and added to both A and D .

The procedure to select the pairs (xxx, t) from the archive
A is as follows. First, the nkrig points are generated via the
Latin hypercube sampling method and are stored in a ref-
erence set R. Then, for every point xxx ∈R (subsequently
called reference point), the closest xxx from A is assigned.
An important note here is that the reference point from
R must be closest to the archive point xxx as well. If this
is the case, the archive point with its corresponding ob-
jective function value are added to the training set. Other-
wise, the reference point is considered a suitable candidate
for sampling and added to XXXcand. When all points from R
are assigned, the reference point from the assigned pair
(archive point, reference point), for which the distance be-
tween both points is the largest among all assigned pairs,
is selected and evaluated.

Using the procedure above a separate training set is se-
lected for every point xxx(g) to be estimated at generation g
and the model is trained. Then, the fitness value at xxx(g) is
estimated according to so-called multi evaluation method
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(MEM). In this method the approximation is obtained as a
mean value of several approximations at points with ran-
dom perturbation in the input space, i.e.:

f̂MEM(xxx) =
1
m

m

∑
i=1

f̂ (xxx+δδδ i),

where m is the predefined amount of points to perform ap-
proximation and δδδ i denotes a random variation.

3.3 S-CMA-ES

Another surrogate-assisted approach is called Surrogate
CMA-ES (S-CMA-ES). It was initially proposed in [2]
and later extended to the Doubly Trained S-CMA-ES
(DTS-CMA-ES) in [12]. The S-CMA-ES employs the
Matérn covariance function mentioned in 2.2 with hyper-
parameters θθθ = {σ2

f , l,σ
2
n } optimized by the maximum-

likelihood approach.
The S-CMA-ES algorithm uses generation-based evolu-

tion control which means that an original-evaluated gener-
ation and model-evaluated generations interleave. During
the original generations, all the points are evaluated by the
expensive objective function. In every model generation,
at least nMIN archive points have to be selected to train
the surrogate model. The selection process is restricted to
points that do not have the Mahalanobis distance from the
CMA-ES’ mean value mmm larger than some prescribed limit
r:

D ←{(xxx, t) ∈A |
√
(mmm− xxx)⊤(σ2CCC)−1(mmm− xxx)≤ r},

where CCC is the CMA-ES covariance matrix and σ is the
step-size at the considered generation.

If there are not enough points, building the model is
postponed and all fitness evaluations are performed on the
original objective function. When there are enough points,
at most nMAX points are selected via k-NN clustering to
train a GP model.

The extension DTS-CMA-ES selects norig < λ most
uncertain points w.r.t. the employed merit function and
evaluates them on the original objective function. Then,
the surrogate model is being retrained on the archive ex-
tended with the newly evaluated norig points. Finally, the
λ−norig remaining points function values are predicted by
the model and returned to the CMA-ES.

3.4 s*ACM-ES

This subsection describes a method called Self-adaptive
Surrogate-assisted CMA-ES (s∗ACM-ES) [11], which is
not GP-based, but is used for comparison.

This method employs the ordinal regression based on
Ranking support vector machines. Evaluations made by
such model provide only rankings of the points in order to
achieve the invariance to the rank-preserving transforma-
tions of f . The method adapts the model hyper-parameters

in an on-line manner. In addition, it also depends on much
larger population size while operating on surrogate and
preserving original population size for the original objec-
tive function evaluations.

A generation-based EC is used, the number n̂ of model-
evaluated generations is adjusted according to the model
error, assessed in the interleaving generation in which the
original objective function is evaluated.

The algorithm adjusts n̂ by a linear function inversely
proportional to a global model error Err(θθθ). The global
error is updated with some relaxation from a local error on
λ most recent evaluated points. Denoting Λ to be the set
of those λ points, the local error is estimated as follows:

Err(θθθ) =
2

|Λ|(|Λ|−1)

|Λ|
∑
i=1

|Λ|
∑

j=i+1
wi, j ·1 f̂θθθ ,i, j

,

where 1 f̂θθθ ,i, j
is true if f̂ violates the ordering of pair (i, j)

given by the real objective function f and wi, j defines the
weights of such violations.

The procedure of the surrogate error optimization is
done in the end of every ES generation, where the model
hyper-parameters are optimized by one iteration of an ad-
ditional CMA-ES (referred to as CMA-ES #2 in [11]).
Here, the algorithm samples λhyp different points in a
space of hyper-parameters and builds λhyp surrogate mod-
els. Then, those models are evaluated using the Err(θθθ)
metric and µhyp = ⌊λhyp/2⌋ best performing are used to
update internal variables of the CMA-ES #2. The resulting
mean of the hyper-parameter distribution is used to obtain
θθθ for the next generation of s∗ACM-ES.

Finally, the standard CMA-ES configurations differ if
it optimizes the surrogate model f̂ . In such cases, it uses
larger population sizes λ = kλ λdefault and µ = kµ µdefault,
where kλ ,kµ ≥ 1. In order to prevent degradation when the
model is inaccurate, kλ is also adjusted w.r.t. the Err(θθθ ).

4 Experiments

4.1 Benchmark functions
The experiments has been conducted on a recently pro-
posed benchmark, introduced on the special session for
multi-modal function optimization during the Congress
of Evolutionary Computation (CEC) in 2013 [10]. The
benchmark contains 12 noiseless multi-modal functions
being defined for dimensions 1 − 20D. Note that this
test set differs from the one used in [9], where the noise
was introduced by oscillations in the input space. In ad-
dition, the experiments has been conducted within the
BBOB framework [6] via introducing 9 new benchmark
functions. Since the CMA-ES is not able to run in 1D,
we excluded 1D functions from our experiments. Alto-
gether, the following set of functions was employed (di-
mensionality is shown in brackets): Himmelblau (2D),
Six-Hump Camel Back (2D), Shubert (2D, 3D), Vincent
(2D, 3D), Modified Rastrigin (2D), Composition Function
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1 (2D), Composition Function 2 (2D), Composition Func-
tion 3 (2D, 3D, 5D, 10D), Composition Function 4 (3D,
5D, 10D, 20D).

4.2 Experimental setup

The experimental testing has been prepared according
to the BBOB framework specifications [6]. First, for
every benchmark function, the global minimum is de-
noted as fopt. The target function value ftarget was set to
fopt + 10−8. This value is considered as a stopping crite-
rion for tested algorithms. The performance of the tested
methods is measured as a difference of the best objective
value found so far tbest and global minimum of the func-
tion: ∆ f = tbest− fopt for respective numbers of original
fitness evaluations. The resulting ∆ f values are calculated
for Ntrials = 15 algorithm runs for every benchmark
function and every dimension.

The tested algorithms had the following settings:

• CMA-ES: the Matlab code version 3.62 of the IPOP-
CMA-ES has been used, with the number of restarts
= 4, IncPopSize = 2, σstart =

8
3 , λ = 4+⌊3 logn⌋ and

setting the remaining parameters to its defaults [6].
Note that since the tested surrogate methods perform
within the CMA-ES environment, they also had those
settings.

• POI MAES: the only algorithm, which does not use
the original author’s implementation. We imple-
mented it in Matlab according to its description in
[13]. The λpre was set to 3λ and the number of points
to train the model to 2λ . Here we weren’t able to
confirm or deny if the algorithm replicates the results
from the original paper.

• Robust CMA: the nkrig is set to 2n, the m parameter is
10.

• S-CMA-ES: the DTS-CMA-ES extension was used,
the Mahalanobis distance limit r was set to 8, the co-
variance function k5/2

Matérn was used with the starting
values (σ2

n , l,σ
2
f ) = log (0.01,2,0.5), norig was set to

⌈0.1λ⌉ and fvar was used as the merit function, see
[12] for details.

• s∗ACM-ES: uses settings from [11].

4.3 Results and their assessment

The results of testing are now analyzed in two-stages. Dur-
ing the first stage, the algorithm’s performance is analyzed
for every benchmark function and every dimension sepa-
rately. The second stage concentrates on the analysis of re-
sults aggregated over individual functions and dimensions,
and finally over the entire benchmark set.

The results of testing over individual CEC functions are
shown in Figure 1. The performance of every method has
been calculated for Ntrials runs and is represented by
the empirical median ∆med

f (straight lines) and quartiles
(translucent area) of the ∆ f .

It can be seen that the S-CMA-ES and s∗ACM-ES meth-
ods have the best performance on the majority of bench-
mark functions. However, for the Shubert function in 2D
and 3D and for the Composition Function 4 in 5D both
methods seem to miss the global optimum and do not no-
ticeably speed up the original CMA-ES. An example vi-
sualization of the experiment on 2D Shubert function is
shown in Figure 2. In addition, the s∗ACM-ES fails to find
the global optimum for the Vincent function in 3D.

The other methods lead to a deceleration of the CMA-
ES convergence speed in most cases. The global optimum
remains undiscovered except for the Vincent, Himmelblau
and Six-Hump Camel Back functions by POI MAES. POI
MAES was the best method on the Shubert function. Also,
this method outperformed the original CMA-ES on 20 di-
mensional Composite Function 4, which may indicate its
ability to speed up the CMA-ES for higher dimensions.

The Robust CMA method achieved the worst results
in our experiments; comparable performance was shown
only for Shubert function. However, this can be due to the
fact that the considered benchmark functions were noise-
less whereas this method has been developed primarily for
noisy objective functions.

Next, Figure 3 depicts results aggregated over different
functions, while Figure 4 shows results aggregated over
the entire benchmark set. To enable aggregation, we use
scaled logarithms of medians. First of all, the evaluation
budgets are normalized by the dimensionality. For bench-
marking, the budgets were limited to 250 function evalu-
ations per dimension (FE/D). Then, the scaled logarithm
∆

log
f of the median ∆med

f is calculated as follows:

∆
log
f =

log∆med
f −∆MIN

f

∆MAX
f −∆MIN

f

log10(1/10−8)+ log1010−8,

where ∆MIN
f and ∆MAX

f are the lowest and the highest

log ∆med
f values obtained by any of the compared algo-

rithms for the particular benchmark function f and dimen-
sion D within the evaluation budget 250 FE/D.

Figures 3 and 4 show that S-CMA-ES and s∗ACM-ES
have the fastest convergence rates. S-CMA-ES converges
fastest at the beginning of the optimization (till approx.
75FE/D) as well as at the later phases (125− 250FE/D).
However, it slows down from 75 till 125 FE/D, being out-
performed by s∗ACM-ES, especially due to the results on
Shubert, CF3 (in 5D and 10D) and CF4 (in 5D and 20D).

It can be seen that POI MAES finally converges (at 250
FE/D) close to the other algorithms (outperforming CMA-
ES and s∗ACM-ES for 3D) for low-dimensional problems.
An interesting case, however, is that POI MAES outper-
forms CMA-ES on 20-dimensional f12. Such behavior
may be associated with the fact that POI-based approach
tends to explore areas with high model uncertainties which
is useful for multi-modal problems [13], especially in case
of high dimensionality, where the classic CMA-ES is not
capable to learn the landscape sufficiently. Also, slower
convergence rates of POI MAES may be explained by the

142 N. Orekhov, L. Bajer, M. Holeňa



fact that the model requires more time to move from ex-
ploration phase to exploitation. However, one can consider
the method to be not flexible enough. The reason is that the
model selects 2λ most recently evaluated points for train-
ing which is not the best decision if the algorithm moves
far from the global optimum. Hence, a more sophisticated
selection strategy may be required to obtain better results.

5 Conclusion

Experimental testing has shown that the best performing
among all compared methods for smaller evaluation bud-
gets (up to approx. 75FE/D) appears to be S-CMA-ES.
However, it is being outperformed by the s∗ACM-ES for
the budgets 75−125FE/D. For even larger evaluation bud-
gets the former method performed the best again. The POI
MAES has shown a slightly worse performance compared
to CMA-ES with rare improvements. However, we believe
that the method can be further enhanced by introducing a
new selection strategy. The method from [9] has shown in-
adequate performance in our experiments. However, that
method was designed to perform in noisy environment,
which was not the case of the employed CEC benchmark.

Today many experiments in the field of black-box opti-
mization are conducted on the functions from the BBOB
framework [2] [11]. Thereby, this paper is considered as
an extension to the BBOB benchmark. The paper con-
centrates only on the relatively small set of test functions,
which prevents from making clear conclusions. However,
we believe that the performance of the methods may be
clarified by the combination of this paper’s results with
other comparisons.
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Figure 1: Convergence curves (median, first and third quartiles) computed from 15 repeated algorithm runs for feasible
combinations of CEC functions and dimensions n ∈ {2,3,5,10,20}.
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Figure 2: Best solutions found by algorithms mapped on 2D Shubert function landscape. Points represent transitional so-
lutions found at some number of function evaluations during the optimization process. The solutions are sorted according
to that number, the lines represent ordering of points. The resulting solutions found in the end of optimization are denoted
by asterisks.
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Figure 3: Scaled logarithms of the empirical medians
(∆med

f ) depending on FE/D. The graphs show the bench-
mark results achieved by averaging all functions defined
in 2D and 3D.

Figure 4: Scaled logarithms of the empirical medians
(∆med

f ) depending on FE/D. The results are aggregated
over all benchmark functions.
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