ITAT 2016 Proceedings, CEUR Workshop Proceedings Vol. 1649, pp. 147-154
http://ceur-ws.org/Vol-1649, Series ISSN 1613-0073, © 2016 J. Outrata, M. Trnecka

Evaluating Association Rules in Boolean Matrix Factorization

Jan Outrata and Martin Trnecka™

Department of Computer Science
Palacky University Olomouc, Czech Republic
jan.outrata@Qupol.cz, martin.trnecka@gmail.com

Abstract: Association rules, or association rule mining,
is a well-established and popular method of data mining
and machine learning successfully applied in many dif-
ferent areas since mid-nineties. Association rules form
a ground of the Asso algorithm for discovery of the first
(presumably most important) factors in Boolean matrix
factorization. In Asso, the confidence parameter of associ-
ation rules heavily influences the quality of factorization.
However, association rules, in a more general form, appear
already in GUHA, a knowledge discovery method devel-
oped since mid-sixties. In the paper, we evaluate the use
of various (other) types of association rules from GUHA
in Asso and, from the other side, a possible utilization of
(particular) association rules in other Boolean matrix fac-
torization algorithms not based on the rules. We compare
the quality of factorization produced by the modified algo-
rithms with those produced by the original algorithms.

1 Introduction

1.1 The problem and algorithms

Boolean matrix factorization (BMF), called also Boolean
matrix decomposition, aims to find for a given nxm
object-attribute incidence Boolean matrix I a n x k object-
factor Boolean matrix A and a k x m factor-attribute
Boolean matrix B such that the Boolean matrix product
(see below) of A and B (approximately) equals I. A de-
composition of / into A and B may be interpreted as a
discovery of k factors exactly or approximately explaining
the data. Interpreting the matrices I, A and B as the object-
attribute, object-factor and factor-attribute incidence ma-
trices, respectively, A and B explain I as follows: the ob-
ject i has the attribute j (the entry J;; corresponding to the
row i and the column j is 1) if and only if there exists fac-
tor [such that [applies to i and j is one of the particular
manifestations of /. The optimization version of this ba-
sic BMF problem demands k to be as small as possible.
The least k for which an exact decomposition of 7 exists is
called the Boolean rank (or Schein rank) of 1.

In the literature, two common variants of the optimiza-
tion problem are defined and dealt with: the approximate
factorization problem (AFP) [3], where the number k of
factors is sought to be minimal for a prescribed maximal

“Support by grant No. GA15-17899S of the Czech Science Founda-
tion is acknowledged. M. Trnecka also acknowledges partial support by
grant No. PrF_2016_027 of IGA of Palacky University Olomouc.

difference (error) of the Boolean product of A and B from /
(usualy zero), and the discrete basic problem (DBP) [11],
where the error is sought to be minimal for a prescribed
(fixed) k. The formal definitions of the problems are given
below. For the former problem, greedy approach algo-
rithms seem popular. One of the most efficient ones, GRE-
COND, is proposed in [3] (where it is called Algorithm 2).
Another one, GREESS [4], refines GRECOND based on a
deeper insight into the problem. For the latter problem,
probably the most known (and a basic one) algorithm is
AsSSO, proposed in [11], together with a few of its vari-
ants. Other BMF algorithms proposed in the recent data
mining literature that can be tailored for either of the two
problems are e.g. HYPER [16] or PANDA [10].

GRECOND (and GREESS and their variants) finds fac-
tors as maximal rectangles, Boolean matrices whose en-
tries with 1 form a maximal rectangular area (full of 1s),
upon a suitable permutation of rows and columns. This
concept comes from the geometric view on BMF and for-
mal concept analysis (FCA). The view tells us that finding
a decomposition of / means finding a coverage of 1s in /
by rectangles full of 1s [3, 4] and in FCA maximal rectan-
gles full of 1s correspond to so-called formal concepts [5].
We will use maximal rectangles as factors to describe the
algorithms now. The GRECOND algorithm, in its seek for
a factor, starts with the empty set of attributes to which a
selected attribute with possibly other attributes are repeat-
edly added. The constructed set of attributes together with
the set of all objects having all the attributes determine a
maximal rectangle (form a formal concept). The selected
attribute is such that the rectangle with the attributes added
covers as many still uncovered 1 in I as possible. The at-
tributes are added repeatedly as long as the number of still
uncovered 1s in I covered by the rectangle grows (note
the greedy approach here). Further factors are sought the
same way and the algorithm stops when the prescribed
number of 1s in [is covered by the maximal rectangles
corresponding to factors (i.e. the algorithm is designed for
the AFP). Characteristic vectors of object sets determin-
ing found maximal rectangles then constitute columns of
matrix A and characteristic vectors of attribute sets of the
maximal rectangles constitute rows of matrix B.

ASSO, on the other hand, starts in its seek for each of (at
most) the prescribed number k of factors with a selected set
of attributes and searches for a set of objects such that the
Boolean product of the characteristic vectors of the two
sets, as a rectangle (not necessarily maximal) correspond-

A
ITAT

148

J. Outrata, M. Trnecka

ing to the factor, covers as many 1s in / as possible. At the
same time, however, the rectangle must also overcover as
few 0 in I by 1 as possible (i.e. the algorithm is designed
for the DBP). Note here that ASSO is admitted to over-
cover 0 in [in its aim to cover 1s, while GRECOND does
not do that (thereby it is said it performs a from-bellow
decomposition of 7). Characteristic vectors of the selected
sets of attributes constitute rows of matrix B while charac-
teristic vectors of the corresponding found sets of objects
constitute columns of matrix A. The sets of attributes are
selected, under the same conditions as for the search of
objects, among candidate sets represented by rows of the
attribute-attribute matrix called association matrix. This
m x m Boolean matrix, created in the first step of the algo-
rithm, contains 1 in the row corresponding to an attribute i
and the column corresponding to an attribute j if the asso-
ciation rule i = j has the (so-called) confidence — the ratio
of the number of objects having both i and j to the number
of objects having i — greater than a user-defined parameter
T; otherwise it contains O in the row and the column.

1.2 Associations in BMF

The association rules in ASSO, also known from asso-
ciation rule mining [1], are of one type of relationship
between two (Boolean) attributes in (Boolean) object-
attribute data. There are other types, in general between
two logical formulas above attributes instead of between
just two single attributes, introduced in the literature. After
all, general association rules whose validity in data is de-
fined through a function of the numbers of objects having
and not having both or one of the attributes (or, in general,
satisfying and not satisfying the formulas above attributes)
are introduced and operated with in GUHA [7, 8, 9, 13],
one of the oldest, less known but most sophisticated,
method of knowledge discovery. In GUHA, several log-
ical and statistical functions, called quantifiers, used to in-
terpret several different types of association rules are in-
troduced. Actually, one of the quantifiers (the basic one),
founded implication, interprets the association rule used in
AsSO (and association rule mining, see below).

The topic of this paper is twofold. First, we pick up
several (other) types of association rules, interpreted by
selected GUHA quantifiers, and use them in place of the
ASSO’s association rule in the ASSO algorithm. Sec-
ond, vice versa, we take the concept of association matrix
from ASSO and utilize it in greedy-approach algorithms.
Namely, we take a particular association matrix and use
the rows of the matrix as characteristic vectors of candi-
dates to initial sets of attributes to which further attributes
are added in GRECOND instead of the empty set. Both
modifications of the algorithms are novel ideas not pre-
viously discussed in the literature. The main purpose of
the paper is to evaluate the use of various types of associ-
ation rules in ASSO algorithm and the use of association
matrix in GRECOND algorithm. The evaluation is done
by experimental comparison of quality of decompositions

obtained from the modified algorithms with those obtained
from their respective original versions.

The rest of the paper is organized as follows. In the fol-
lowing section 2 we briefly precise the BMF problems in-
troduced above and recall GUHA, namely the quantifiers
and general association rules. Then, in section 3 the mod-
ification of ASSO with GUHA association rules and the
modification of GRECOND with rows of particular asso-
ciation matrix as initial attributes sets are presented. The
modified algorithms are experimentally evaluated in sec-
tion 4 and section 5 draws a conclusion and future research
directions.

2 Basic notions of BMF and GUHA

2.1 Boolean Matrix Factorization

We precise the basic BMF notions and problems recalled
in the beginning of the previous section. Denote by
{0,1}™™ the set of all nxm Boolean matrices (i.e. with
entries either 1 or 0). The basic problem in BMF is to
find for a given 7 € {0,1}" matrices A € {0,1}"* and
Be{0,1} for which

I (approximately) equals Ao B, €8

where o is the Boolean matrix product, i.e.
ko
(AoB);j= nllalxmln(A,-l,Blj).

The approximate equality in (1) is assessed by means of
the well-known Li-norm |[7]| = 32", |Z;j| and the corre-
sponding distance (error) function E(I,A o B) defined by
m.n
E(IAoB) =|[[-AoB| = 3 |1~ (AoB).
ij=1
In BMF, one is usually interested in two parts of the
error function E, E, corresponding to 1s in / that are Os
(and hence uncovered) in Ao B and E, corresponding to Os
in [that are 1s (and hence overcovered) in Ao B:

E(I,AoB)=E,(I,AoB)+E,(I,AoB), where
E,(I,AoB) =|{(i,j); I;j=1,(A0B);; = 0},
Eo(I,AoB) = [{{i,j); 1;j=0,(AoB)i; = 1}],

or, more often, in the relative errors
eu(l) = Ef(LLAoB)/|I|l, e,(1) =E,(1,AcB)/|[I]|. (2)

e, and e, are functions of the first / factors delivered by
the particular algorithm and measure how well the data is
explained by the [factors. The value of 1-¢, represents
the (pure) coverage of data by the observed factors. We
will use 1 —¢, and e, in the experiments section 4 below.
Note that the value of ¢ = 1 —¢, — ¢, represents the overall
coverage of data by the factors and is commonly used to
assess quality of decompositions delivered by BMF algo-
rithms [3, 4, 6, 11].

The two optimization BMF problems are defined as fol-
lows:

Evaluating Association Rules in Boolean Matrix Factorization

149

Definition 1 (Approximate Factorization Problem,
AFP [3]). GivenI€{0,1}"™"™ and prescribed error € >0,
find A € {0,1Y"* and B € {0,1}*™ with k as small as
possible such that || -AoB|| < &.

AFP emphasizes the need to account for (and thus to ex-
plain) a prescribed (presumably reasonably large) portion
of data, which is specified by €.

Definition 2 (Discrete Basis Problem, DBP [11]). Given
1€{0,1Y™" and a positive integer k, find A € {0,1}"* and
B e {0, 1Y that minimize |[[-AoB||.

DBP emphasizes the importance of the first k (pre-
sumably most important) factors. A throughout study of
Boolean matrix factorization from the point of views of
the two problems is provided in [4].

2.2 GUHA

We will only recall the necessary notions from the GUHA
(General Unary Hypotheses Automaton) method [7, 8]
which are required to describe the various types of asso-
ciation rules used in the modified ASSO algorithm. For
throughout treatise of the foundations of the method (of
mechanized formation of hypotheses, in particular its ob-
servational predicate calculi), see books [9] or [13].

GUHA, more precisely its ASSOC procedure [9] (do not
confuse with the ASSO algorithm!) or more enhanced
4FT-MINER procedure [14] for Boolean data, inputs
(Boolean) object-attribute incidence data with Boolean at-
tributes which we represent by a n x m Boolean matrix 1.
(General) association rule (over a given set of attributes) is
an expression

inj

where i and j are attributes. (Note that in its full form,
GUHA general association rule is an expression ¢ ~ ¥
where ¢ and y are arbitrary complex logical formulas
above the attributes. We consider the simplified case with
just single attributes for the formulas, as in the associa-
tion rules used in ASSO and association rule mining.) i ~ j
is true in [if there is an association between i and j inter-
preted by a function g assigning to the four-fold table 4ft(i,
J, I) corresponding to i ~ j and I the value 1 (logical true).
4ft(i, j, I) is the quadruple

(a,b,c,d) =
(frin), frin=j), fr(=inj), fr(=in=j))

where fr(iA j) is the number of objects having both i and

jin I (rows in I in which there is 1 in both columns corre-

sponding to i and j) and —i is an attribute corresponding to

the negation of attribute i (i.e. the column in / correspond-

ing to i in which 1s are replaced by Os and vice versa).
4ft(i, j, I) is usually depicted as

! J ~J
i | a=fr(ing) b=fr(in-j)
- C:fr(—\i/\j) d:fr(—|i/\—|j).

Function g which assigns to any four-fold table 4ft(i, j,
I) a logical value O or 1 defines a so-called (generalized,
GUHA) quantifier. There are several different quantifiers,
summarized e.g. in [13], logical and statistical, which in-
terpret different types of association rules (with different
meaning of the association ~ between attributes):

* founded (p-)implication, =, (for ~)

1if 4 a+h >
0 otherw1se.

q(a,b,c,d):{

Parameter O < p < 1 has a meaning of threshold for the
confidence of the association rule i =, j, i.e. the ratio
of the number of objects having in I both attributes i
and j to the number of objects having i. Founded
implication interprets the association rule used in the
original ASSO algorithm (with p denoted as 7 in-
stead) and association rule mining, which is thus a
particular case of GUHA general association rules.

* double founded implication, <>,

Lif a+h+c 2p,
0 otherwise.

q(a,b,c,d):{

Compared to founded implication, double founded
implication, to evaluate to 1, requires that the number
of objects having in 7 both i and j is at least 100- p %
of the number of objects having i or j.

* founded equivalence, =,

1if a+b+c+d 2D,
0 otherwise.

C](a,b,C,d) = {
Meaning: At least 100- p% among all objects in /
have the same attributes.

* E-equivalence, ~g

3 lifmax(%,ﬁ)<6,
q(a,b,c,d) = { 0 otherwise.

Meaning: Less than 100-0 % (0 < § < 0.5) of objects
among the objects having i do not have j and among
the objects not having i have j.

* negative Jaccard distance

1if b+c+d 2p,
0 otherwise.

Q(a’bvcad) :{

This is our new quantifier resembling Jaccard dis-
tance dissimilarity measure used in data mining
(which is one minus Jaccard similarity coeffi-
cient [15] which in turn is equal to double founded
implication above). Compared to double founded im-
plication, this quantifier, to evaluate to 1, requires that
atleast 100- p % objects have i or j among the objects
not having i or j.

150

J. Outrata, M. Trnecka

In fact, the above presented quantifiers, except for the
last one, are simplified versions of quantifiers defined
in [9] where additional parameter s > 0 is included:

* founded implication, =, ¢

: a
Lif 57 >pandazxs,

9(a,bc.d) = { 0 otherwise.

and similarly for the other quantifiers. For association rule
i~ j, s has a meaning of threshold for the so-called sup-
port of the rule — the number of objects having in I both
attributes i and j (or, if normalized as in association rule
mining, the ratio of the number to the number of all objects
in I).

3 The modified algorithms

3.1 Asso with GUHA association rules

The modified ASSO algorithm involving GUHA (general)
association rule interpreted by a GUHA quantifier is de-
picted in Algorithm 1.

Algorithm 1: Modified ASSO algorithm

Input: A Boolean matrix [€ {0, 1}, a positive
integer k, a threshold value 7 € (0,1],
real-valued weights w*, w™ and a quantifier g;
(with parameter 7) interpreting i ~ j

Output: Boolean matrices A € {0, 1} and

Be{0,1}km

fori=1,....mdo
for j=1,....mdo
‘ Qij :qr(avbac’d)
end
end

A < empty n x k Boolean matrix
B < empty k x m Boolean matrix
for/i=1,...,kdo

(i ,e) < ArgmMaxy, e (o,1jnx!

o 0NN N R W N -

cover([g],[A el,[,w",w™)

10 A<—[Ae],B<—|:Qlj_:|
11 end
12 return A and B

Q; denotes the ith row vector of the (Boolean) associ-
ation matrix Q and the function cover(B,A,I,w" w™) is
defined as

wrl{(i,j): lij=1,(AoB);; = 1}]
~w[{{i,j); I;;=0,(AoB);j = 1}].

The original algorithm was described in the introduc-
tion section 1. The only modification in Algorithm 1 to the

(generic) version of the original algorithm in [11] is com-
puting the association matrix Q (lines 1-5) using the given
quantifier g;(a,b,c,d) interpreting a (general) association
rule i ~ j instead of using the confidence of the association
rule i =; j.

3.2 GRECOND using association matrix

Due to the particular way of finding factors in the GRE-
CoND algorithm, namely as maximal rectangles, we need
to use a particular association matrix of which the rows
are used as characteristic vectors of candidates to initial at-
tribute sets in the algorithm. The matrix used is computed
using the GUHA quantifier founded implication with pa-
rameter p set to 1; hence the confidence of the interpreted
association rule i =, j must be 1 for the rule to be true
(which precisely coincides with the notion of attribute im-
plication between attributes i and j in formal concept anal-
ysis, see [5]). This, at the same time, means that the asso-
ciation matrix is the special case of the association matrix
of the ASSoO algorithm with 7= 1.

The modified GRECOND algorithm using the associa-
tion matrix is depicted in Algorithm 2.

Algorithm 2: Modified GRECOND algorithm

Input: A Boolean matrix 7 € {0,1}"" and a
prescribed error € >0
Output: Boolean matrices A € {0, 1} and
Be{0,1}km

1 Q < empty m x m Boolean matrix

2 fori=1,....mdo

3 for j=1,...,mdo

4 if i = jis true in I then

5 | Qij=1

6 end

7 end

8 end

9 A < empty n x k Boolean matrix

10 B < empty k x m Boolean matrix

11 while |[I-AoB||> ¢ do

12 D < argmaxg, cover(Q; ,I1,A,B)
3 V < cover(D,I,A,B)

14 while there is j such that D; = 0 and
cover(D+[j],1,A,B) >V do

15 Jj < argmax; p.—o cover(D+[j],1,A,B)
6 | | De@+[DN

17 V < cover(D,I,A,B)

18 end

v | A<[A Di],Be[g]

20 end
21 return A and B

D; denotes the jth item of (row Boolean) vector D €
{0,131] €{0,1}1*™ denotes the (row Boolean) vec-

Evaluating Association Rules in Boolean Matrix Factorization

151

Dataset &k densA densB dens/
SetCl 40 0.07 0.04 0.10
SetC2 40 0.07 0.06 0.15
SetC3 40 0.11 0.05 0.20

Table 1: Synthetic data

tor with jth item equal to 1 and all other items equal to O,
the function cover(D,I,A,B) is defined as

(D' xDM)-(1-AeB)|

and the (formal concept-forming [5]) operators C' and D*
for (column Boolean) vector C € {0,1}"Xl and vector D,
respectively, are defined as

CT
D' =

+[j1e{0,1}™; foreachi,Ci=1:1; =1,
—+[i]€{0,1}™"; foreach j,Dj=1:1;=1.

Again, the original algorithm was described in the intro-
duction section 1. The only modifications in Algorithm 2
to the (generic) version of the original algorithm in [3] are
computing the particular association matrix Q (lines 1-8)
using the quantifier founded implication with p = 1 inter-
preting the association rule i =1 j and using the rows of
the matrix as characteristic vectors of candidates to initial
attribute sets (line 12) in the factor construction (lines 12—
19).

4 Experimental evaluation

In this section, we provide an experimental evaluation of
the modified algorithms and their comparison to the orig-
inal versions, the ASSO algorithm and the GRECOND al-
gorithm. Due to the lack of space we do not present a
comparison with other algorithms and approaches to the
general BMF. A comparison that includes both the algo-
rithms can be found for example in [4].

As in the typical experiment scenario—which occurs
in various BMF papers—we use both synthetic and real
datasets. Experiments on synthetic datasets enable us to
analyze performance of the algorithms on data with the
same and known characteristics—we can analyze results
in average case. On real data, we can study meaning of
obtained results. Let us also note, that synthetic data are
artificial while real data are influenced by real factors.

Synthetic data. We created 1000 of randonly generated
datasets. Every dataset X; has 500 rows and 250 columns
and was obtained as a Boolean product X; = A; o B; of ma-
trices A; and B; that were generated randomly with param-
eters shown in Table 1. The inner dimmension k was for
all X; set to 40, i.e. the expected number of factors is 40.

Real data. We used datasets DNA [12], Mushroom [2],
and Zoo [2], the characteristics of which are shown in Ta-
ble2. All of them are well known and widely used in the
literature on BMF.

Dataset Size (7]
DNA 4590x392 26527
Mushroom 8124x119 186852
Z00 101x28 862

Table 2: Real data

4.1 Asso with GUHA association rules

We observe the values of 1 —e¢, (1) (2) for[=0,...,k where
k is the number of factors delivered by a particular algo-
rithm. Clearly, for / = 0 (no factors, A and B are “empty”)
we have 1 -¢,(l) = 0. In accordance with general require-
ments on BMF, for a good factorization algorithm 1-e¢, (/)
should be increasing in /, should have relatively large val-
ues for small /, and it is desirable that for [= k we have
I =AoB, ie. the data is fully explained by all k fac-
tors computed (in which case 1-¢,(/) = 1). For synthetic
datasets C|, C; and Cj3, values of 1-e¢,(/) are shown in
Figures 1, 2 and 3, respectively.

As we mentioned above the ASSO algorithm admits
overcovering of Os of input data matrix. The number of
overcovered Os is a very important value and the values of
e,(1) (2) for synthetic datasets C;,C, and C3 are shown in
Figures4, 5 and 6. Let us note that the results marked as
“founded implication” are in fact results for the original
ASSO algorithm. Note also that all variants of ASSO re-
quire us to set T and (one of) w+ and w—, see Algorithm 1.
Based on some previous experimental results (see [4]) we
fixed w+ = w— =1 and used the value of 7 for which the
particular algorithm produces the best results. In most
cases, the best choice was 0.8 < 7 < 1. This observation
corresponds with results in [4].

We can see that the original algorithm is outperformed
in terms of both coverage (1 —e¢,) and overcoverage (e,)
by the modification utilizing double founded implication.
This modification produces large values of coverage and
compared to the original ASSO algorithm commits smaller
overcoverage error. This is true for both synthetic and real
datasets. Very promising is also the modification utilizing
the negative Jaccard distance quantifier.

Modifications utilizing founded equivalence and E-
equivalence, however, do not perform well, for synthetic
datasets. In case of dataset C;—the most sparse one—
both modifications commit extremely large overcover er-
ror, the values are beyond the scale of Figure 4. In cases
of C; and C3, Figures 2 and 3, they produce poor coverage
while the overcoverage error is not much different from the
modifications utilizing other quantifiers, for higher num-
ber of factors. On the other side, for real datasets the re-
sults are comparable with the other modifications (Figures
7, 8), with significantly smaller overcoverage errors (Fig-
ures 10, 11). The only exception is the Mushroom dataset
where founded equivalence is again beyond the scale of
Figure 10. Due to the limited space we do not include
results for the DNA dataset which are very close to the
results obtained for the Zoo dataset.

152

J. Outrata, M. Trnecka

coverage

coverage

coverage

09 b
0.8 |
0.7f b
0.6 |
0.5F |
0.4 J
0.3f |
—v— founded implication
0.2 —&— double founded implication|
—<— founded equivalence
0.1 —%— negative Jaccard distance |
—6— E-equivalence
. . . n n n n
0 5 10 15 20 25 30 35 40
number of factors
Figure 1: Coverage for synthetic dataset C;
! 4
0.9 |
0.8
0.7F i
0.6 b
0.5F |
0.4 b
0.3 |
—v— founded implication

0.2 —&— double founded implication|
—<o— founded equivalence

0.1 —%— negative Jaccard distance |
—©6— E-equivalence

0 5 10 15 20 25 30 35 40
number of factors
Figure 2: Coverage for synthetic dataset C

1
0.9} J
0.8
0.7f J
0.6 |
0.5F b
0.4 b
0.3 B

—v— founded implication
0.2 —&— double founded implication|
—<— founded equivalence
0.1H —%— negative Jaccard distance |
—6— E-equivalence
. . . n n n n
‘(5 5 10 15 20 25 30 35 40

number of factors

Figure 3: Coverage for synthetic dataset C3

overcoverage

overcoverage

overcoverage

2
1.8H]
1.6 4
1.4H 1
1.2
1
0.8
0.6
—— founded implication
0.4 ——&— double founded implication
—<— founded equivalence
0.2 —s==— negative Jaccard distance 1
—6— E-equivalence
. . . I I T I
0 5 10 15 20 25 30 35 40

number of factors

Figure 4: Overcoverage for synthetic dataset C;

—— founded implication
0.4 —=&— double founded implication|
—<— founded equivalence

0.2 U‘ —#— negative Jaccard distance |
f —©6— E-equivalence

0 5 10 15 20 25 30 35 40
number of factors

Figure 5: Overcoverage for synthetic dataset C,

2
181 R
1.6]
141 R
1.2 1
b "
o
0.8 |
0.6 %
—v— founded implication I
04r —=&— double founded implication |
—<— founded equivalence
0.2 —— negative Jaccard distance |
—o6— E-equivalence
. . . n n n n
6 5 10 15 20 25 30 35 40

number of factors

Figure 6: Overcoverage for synthetic dataset C3

Evaluating Association Rules in Boolean Matrix Factorization

153

coverage

0.2

0.1

—v— founded implication
—+&— double founded implication
—<— founded equivalence
—#%— negative Jaccard distance
—©6— E-equivalence

g

20 40 60 80
number of factors

Figure 7: Coverage for Mushroom dataset

100

coverage

—v— founded implication

0.2 ——&— double founded implication |
—<— founded equivalence
0.1 —#— negative Jaccard distance |
—©6— E-equivalence
o . n n
0 5 10 15 20
number of factors
Figure 8: Coverage for Zoo dataset
1 550 P =8
0.9]
0.8r b
0.7f I
061 i
()
j=}
©
© 05 i
g
Q
o
0.4 i
0.3 H
0.2 1
0.1 —6— GreConD N
—=&— GreConD implication
0o . . . n n
0 20 40 60 80 100 120
number of factors

Figure 9: Original and modified GRECOND on Mushroom

dataset

overcoverage

overcoverage

coverage

0.9H |

0.8 b

0.7H J

0.6 b

0.51 a a = =) =) =) = g

0.4H]

0.3} |
—v— founded implication

0.2 —&— double founded implication|
—<— founded equivalence

0.1 —%— negative Jaccard distance |
—©6— E-equivalence

Gﬂ L L n n
0 20 40 60 80 100

number of factors

Figure 10: Overcoverage for Mushroom dataset

0.9 |
0.8 J
"
0.7f = il
0.6 J
0.5F B
0.4
0.3 |
—v— founded implication
0.2 —&— double founded implication|
—<— founded equivalence
0.1 —#%— negative Jaccard distance |
—©6— E-equivalence
o . n n
0 5 10 15 20

number of factors

Figure 11: Overcoverage for Zoo dataset

0.1 —©o&— GreConD
—+&— GreConD implication
b n n n
0 50 100 150 200 250 300 350 400
number of factors

450

Figure 12: Original and modified GRECOND on DNA
dataset

154

J. Outrata, M. Trnecka

Presented results are representative. We performed the
same evaluations for several other datasets which we have
not included in the paper and observed the same type of
results described above.

4.2 GRECOND using association matrix

Do to the limited space we do not present a comparison
of the original GRECOND algorithm and the modifica-
tion utilizing the association matrix (Algorithm 2) on the
synthetic datasets. On each X; the modified GRECOND
slightly outperforms the original algorithm from the stand-
point of coverage. Moreover, the modified algorithm also
tends to produce less factors, i.e. outperforms the origi-
nal GRECOND from both the AFP and DBP views (see
Section 2).

Values of 1-¢, for the Mushroom and DNA datasets
are shown in Figures 9 and 12, respectively. We can see
that the modified algorithm first looses for small numbers
of factors but in the end, it outperforms the original GRE-
CoND algorithm—i.e. it outperforms GRECOND from
the AFP view. We observed similar behavior also for the
other real datasets.

Time complexity. We implemented all used algorithms in
MATLAB with critical parts written in C. Theoretical time
complexity is not of our primary concern. Practically, it
follows from our observations that the modification of the
GRECOND algorithm is slightly faster than the original
algorithm and all modifications of the ASSO algorithm are
equally fast as the original.

5 Conclusion

We evaluated the use of various types of (general) associa-
tion rules from the GUHA knowledge discovery method in
the Boolean matrix factorization (BMF) algorithm ASSO
and an utilization of (particular) association rules in the
greedy-approach BMF algorithm GRECOND which is not
based on association rules. The comparison of the qual-
ity of factorization produced by the modified algorithms
with those produced by the original algorithms on both
synthetic and selected real data showed that our modified
algorithms outperform, for some types of rules, the origi-
nal ones. Namely the double founded implication and (our
new) negative Jaccard distance quantifiers interpreting the
association rules in ASSO perform better than the founded
implication quantifier used in the original ASSO. Also the
utilization of association matrix in the factor search initial-
ization stage of the GRECOND algorithm improves factor-
ization results produced by the algorithm.

The observed results encourage us to the following fu-
ture research directions. First, as the role of association
matrix is crucial for the ASSO algorithm (and, as we have
seen, the algorithm can be improved by using other types
of association rules), we have an idea about algorithm

which computes, or updates, the matrix in the process of
searching for factors instead of computing it once before
the search. Second, we will look for a way how to use in
the utilization of association matrix the so-called essential
elements of the input data matrix, which are crucial for the
GREESS algorithm [4] (which improves the GRECOND
algorithm).

References

[1] Agrawal R., Imieliriski T., Swami A.: Mining association
rules between sets of items in large databases, Proc. ACM
SIGMOD 1993, 207-216.

[2] Bache K., Lichman M., UCI Machine Learning Reposi-
tory [http://archive.ics.uci.edu/ml], Irvine, CA: University
of California, School of Information and Computer Sci-
ence, 2013.

[3] Belohlavek R., Vychodil V., Discovery of optimal factors in
binary data via a novel method of matrix decomposition, J.
Comput. Syst. Sci. 76(1)(2010), 3-20 (preliminary version
in Proc. SCIS & ISCIS 2006).

[4] Belohlavek R., Trnecka M., From-below approximations
in Boolean matrix factorization: Geometry and new algo-
rithm, J. Comput. Syst. Sci. 81(8)(2015), 1678-1697.

[5] Ganter B., Wille R., Formal Concept Analysis: Mathemat-
ical Foundations, Springer, Berlin, 1999.

[6] Geerts F., Goethals B., Mielikédinen T., Tiling databases,
Proc. Discovery Science 2004, 278-289.

[71 Hajek P., Holetia M., Rauch J.: The GUHA method and its
meaning for data mining. Journal of Computer and System
Science 76(1)(2010), 34--438.

[8] Hajek P, Havel I., Chytil M.: The GUHA method of
automatic hypotheses determination. Computing 1(1966),
293—308.

[9] Hijek P., Havranek T.: Mechanizing Hypothesis Forma-
tion (Mathematical Foundations for a General Theory),
Springer-Verlag 1978, 396 pp. New edition available on-
line at http://www.cs.cas.cz/ hajek/guhabook/.

[10] Lucchese C., Orlando S., Perego R., Mining top-K patterns
from binary datasets in presence of noise, SIAM DM 2010,
165-176.

[11] Miettinen P., Mielikiinen T., Gionis A., Das G., Mannila
H., The discrete basis problem, IEEE Trans. Knowledge
and Data Eng. 20(10)(2008), 1348-1362 (preliminary ver-
sion in Proc. PKDD 2006).

[12] Myllykangas S. et al, 2006, DNA copy number am-
plification profiling of human neoplasms, Oncogene
25(55)(2006), 7324-7332.

[13] Rauch J.: Observational Calculi and Association Rules.
Springer-Verlag, 2013.

[14] Rauch J., Simtnek M.: Mining for 4ft rules, in: Proceed-
ings of Discovery Science, Springer-Verlag, 2000.

[15] Tan P.-N., Steinbach M., Kumar V.: Introduction to Data
Mining. Addison Wesley, Boston, MA, 2006.

[16] Xiang Y., Jin R., Fuhry D., Dragan F. F., Summarizing
transactional databases with overlapped hyperrectangles,
Data Mining and Knowledge Discovery 23(2011), 215-251
(preliminary version in Proc. ACM KDD 2008).

