
Traditional Gaussian Process Surrogates in the BBOB Framework

Jakub Repický1, Lukáš Bajer1, and Martin Holeňa2
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Abstract: Objective function evaluation in continuous op-
timization tasks is often the operation that dominates the
algorithm’s cost. In particular in the case of black-box
functions, i.e. when no analytical description is available,
and the function is evaluated empirically. In such a situ-
ation, utilizing information from a surrogate model of the
objective function is a well known technique to accelerate
the search. In this paper, we review two traditional ap-
proaches to surrogate modelling based on Gaussian pro-
cesses that we have newly reimplemented in MATLAB:
Metamodel Assisted Evolution Strategy using probability
of improvement and Gaussian Process Optimization Pro-
cedure. In the research reported in this paper, both ap-
proaches have been for the first time evaluated on Black-
Box Optimization Benchmarking framework (BBOB), a
comprehensive benchmark for continuous optimizers.

1 Introduction

An analytical definition of the objective function in
real-world optimization tasks is sometimes hard to ob-
tain. Therefore, neither information about the function’s
smoothness nor its derivatives are available. Moreover,
evaluation of the function is usually expensive as it can
only be done empirically, e.g. by measurement, testing, or
running a computer simulation. Such functions are called
black-box.

One class of optimization algorithms that are suc-
cessfully applied to black-box optimization are evolu-
tion strategies. An evolution strategy is an optimization
method that works on a population of candidate solutions
using evolutionary operators of selection, mutation and re-
combination [10] [11]. In particular, the Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES) [4] is con-
sidered to be the state-of-the-art continuous black-box op-
timizer. It samples each population according to a mul-
tivariate normal distribution determined by a covariance
matrix. A notable property of the algorithm is the adap-
tation of the covariance matrix along the path of past suc-
cessful search steps.

Still the whole population must be evaluated which
might make running the algorithm for a sufficient num-
ber of generations infeasible due to expensive evaluation.
To address this issue, techniques that involve a surrogate
regression model of the fitness have been proposed.

Two major requirements of incorporating a surrogate
model (also called metamodel in the literature) into evo-
lutionary strategies are model management and model se-
lection.

Model management is the task to control the surrogate
model’s impact on algorithm’s convergence by using the
original fitness alongside its surrogate model in the course
of the search.

In evolution control, a certain fraction of individuals or
generations is controlled, i.e. evaluated with the fitness
function, while the remainder is evaluated with the surro-
gate model [8].

For example, Metamodel-Assisted Evolution Strategy
(MAES) uses a surrogate model to pre-select the most
promising individuals before they enter a selection proce-
dure of a standard ES [3].

In contrast to evolution control, surrogate approach [2]
directly optimizes the model output in an iterative proce-
dure, thus avoiding the issue of determining the correct
fraction of controlled individuals. In each iteration, a fixed
number of candidate solutions are found by minimizing
the model with an evolution strategy. These solutions are
thereafter evaluated on the real fitness and the model is
updated.

Regarding the model selection, Gaussian processes
(GPs) are a non-parameterized regression model that is ap-
pealing for the task as it gives its prediction in terms of a
Gaussian distribution. The variance of this prediction can
be utilized as a confidence measure that promotes explo-
ration of insufficiently modelled areas.

This paper reviews two traditional algorithms intercon-
necting Gaussian process-based surrogate models with the
CMA-ES: Metamodel-Assisted Evolution strategy with
improved pre-selection criterion by Ulmer, Strechert and
Zell [13] and Gaussian Process Optimization Procedure
(GPOP) by Büche, Schraudolph and Koumoutsakos [2].
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The former is a GP-based MAES with probability of
improvement (POI) as a pre-selection criterion.

The latter represents the surrogate approach – in each
iteration, a local GP model is built and four functions de-
signed to balance predicted value and variance are opti-
mized.

While both algorithms are GP-based, they differ both
in the model-management approach as well as in utilizing
GP’s confidence.

The framework COCO/BBOB (Comparing Continuous
Optimizers / Black-Box Optimization Benchmarking) [7]
provides an experimental setup for benchmarking black-
box optimizers. In particular, its noiseless testbed [6] com-
prises of 24 functions with properties that are to different
extents challenging for continuous optimizers.

Both tested methods had been proposed before the
BBOB framework originated. In the research reported in
this paper, we evaluated both methods on the noiseless part
of the BBOB framework. For that purpose a new imple-
mentation1 was required as the original source codes were
not available to us.

In the following, we first briefly introduce Gaussian pro-
cesses as a suitable surrogate fitness model in Section 2.
An exposition of the tested methods is given in Section 3
and experimental setup in Section 4. Section 5 presents
experimental results and finally Section 6 concludes the
paper.

2 Gaussian processes

Both algorithms under review feature the choice of Gaus-
sian processes as a surrogate fitness function model.

GPs are a probabilistic model with several properties
that make it well suited for fitness function modelling: its
hyperparameters are comprehensible and limited in num-
ber and it provides a confidence measure given by standard
deviation of predicted value at new data points.

In the following, we define a GP using notation and
equations from Büche [2].

Consider f : RD→ R an unknown real-parameter func-
tion to be approximated. GP model is specified by a
set XN =

{
xi |xi ∈ RD

}N
i=1 of N training data points with

known function values tN = {ti | f (xi) = ti}N
i=1. The data

are assumed to be a sample of zero-mean multivariate
Gaussian distribution with joint probability density

p(tN |XN) =
exp(− 1

2 tT
NC−1

N tN)√
(2π)Ndet(CN)

(1)

where the covariance matrix CN is defined by means of
a covariance function C(xi,x j,Θ) i, j ∈ {1, . . . ,N} with
a fixed set of hyperparameters Θ.

1The sources are available at ❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴r❡♣❥❛❦✴

s✉rr♦❣❛t❡✲❝♠❛❡s✴

For a set tN+1 that includes a new observation tN+1 =
f (xN+1), we obtain

p(tN+1 |XN+1) =
exp(− 1

2 tT
N+1C−1

N+1tN+1)√
(2π)N+1det(CN+1)

. (2)

Using Bayesian rule for conditional probabilities, the pre-
diction at a new data point has the density function

p(tN+1 |XN+1, tN) =
p(tN+1 |XN+1)

p(tN |XN)
. (3)

The covariance matrix CN+1 can be written with the use
of the covariance matrix CN as

CN+1 =

(
CN k
kT κ

)
(4)

where k = (C(xi,xN+1))
N
1 is a vector of covariances be-

tween the new point and XN and κ =C(xN+1,xN+1) is the
new point’s variance.

Using (1) and (2) together with the fact that the inverse
C−1

N+1 can also be expressed by the means of C−1
N , (3) can

be simplified to a univariate Gaussian [2]

p(tN+1 |XN+1, tN) ∝ exp

(
−1

2
(tN+1− t̂N+1)

2

σ2
tN+1

)
(5)

with mean and variance given by

t̂N+1 = kT C−1
N tN ,

σ2
tN+1

= κ−kT C−1
N k.

A comprehensive exposition of Gaussian processes can
be found in [9].

The covariance function plays an important role as it ex-
presses prior assumptions about the shape of the modelled
function. The vector Θ of model’s hyperparameters is usu-
ally fitted with the maximum likelihood method.

One of the most commonly used covariance functions is
squared exponential covariance function:

C (xp,xq) = θexp

(
−1

2
(xp−xq)

T (xp−xq)

r2

)
(6)

where the parameter θ scales the covariance between two
points and radius r is the characteristic length scale of the
process.

When two points are close to each other compared to the
characteristic length scale r, the covariance is close to one
while it exponentially decays to zero with their distance
growing.

The squared exponential covariance function can be im-
proved with automatic relevance determination (ARD):

C (xp,xq) = θexp

(
−1

2

D

∑
i=1

(xp,i− xq,i)
2

r2
i

)
(7)
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where the radii ri scale the impact of two points distance
on their correlation separately in each dimension.

To address the need to balance the exploitation of a fit-
ted model prediction and the exploration of regions where
model’s confidence is low, the standard deviation of GP’s
prediction can be utilized.

One possibility are merit functions proposed in [12]
for the purpose of balancing exploration and exploitation
in engineering design optimization. Consider M to be a
trained Gaussian process model. A merit function com-
bines the goals of finding a minimum predicted by the
model M and improving the accuracy of M into a single
objective function:

fM,α(x) = t̂(x)−ασ(x) (8)

where t̂(x) is the mean of the prediction of the function
value in x, σ(x) is the prediction standard deviation and
α ≥ 0 is a balancing parameter.

Another option is the probability of improvement (POI).
Let us assume Gaussian process prediction to be a ran-
dom variable Y (x) with mean t̂(x) and standard deviation
σ(x). For a chosen threshold T less than or equal to the
so-far best obtained fitness value fmin, the probability of
improvement in point x is defined as:

POIT (x) = p(Y (x)≤ T ) = Φ

(
T − t̂(x)

σ(x)

)
(9)

where Φ is the cumulative distribution function of the dis-
tribution N (0,1).

3 Tested Methods

3.1 GP Model Assisted Evolution Control

A standard ES operates on λ offsprings generated from
µ parents by evolutionary operators of recombination and
mutation. After the fitness of the offsprings is evaluated, a
population of µ best individuals is selected to reproduce to
a new offspring in the next iteration. In (µ,λ ) ES, µ best
individuals are selected from the λ offsprings, whereas in
(µ +λ ) ES, µ best individuals are selected from the union
of the offprings and their parents.

MAES [3] modifies the standard evolution strategy with
producing λPre > λ instead of λ individuals from µ par-
ents by the same operators of recombination and mutation
(steps 4 and 5 in the Algorithm 1). Given a fitted Gaus-
sian process M, individuals xi, i = 1, . . . ,λPre are then pre-
selected according to a criterion χM defined for the model
M to create λ offsprings (step 6).

The GP model is trained in every generation on a set of
Ntr most recently evaluated individuals (step 8).

In this paper we consider two pre-selection criteria in
accordance with [13]: mean model prediction (MMP) (5)
which selects λPre points with the best mean predicted fit-
ness t̂(x) and POI (9). The authors of [13] prefer POI to
merit functions (8), as it does not depend on finding the
appropriate value of the scale parameter α .

Algorithm 1 GP Model-Assisted Evolution Strategy
Input: f – fitness function

µ – number of parents
λ – population size
λPre – size of pre-selected population
Ntr – size of training dataset
χM – the preselection criterion that depends on a GP
model M, e.g. mean model prediction or POI

1: Pop← generate and evaluate λ initial samples
2: M← a GP model trained on points from Pop
3: while termination criteria not reached do
4: Offspring← reproduce Pop into λPre new points
5: Offspring← mutate Offspring
6: Offspring ← select best λ points according to the

pre-selection criterion χM

7: evaluate Offspring with f
8: M ← update model M on Ntr points most recently

evaluated with f
9: Pop← select µ points best according to f

10: end while

3.2 Gaussian Process Optimization Procedure

Gaussian Process Optimization Procedure is due to Büche,
Schraudolph and P. Koumoutsakos [2]. A Gaussian pro-
cess is trained on a subset of already evaluated data and
optimized by an ES instead of the original fitness. As
optimization of the surrogate is cheaper than optimization
of the original fitness, this can be repeated until reaching
some termination criteria.

CMA-ES is used as the evolution strategy, with the
number of parents µ set to 2 and the population size λ
set to 10.

The pseudocode is given in Figure 2. After generating
an initial population, a local GP model is built and utilized
in an iterative procedure. Considering possibly low ac-
curacy and computational infeasibility of global models,
the training dataset is restricted to NC points closest to the
current best known solution xbest (step 6) and NR most re-
cently evaluated points (step 7).

If the GP model M has been successfully trained then
the CMA-ES optimizes four merit functions fM,α (8) for
each α ∈ {0,1,2,4}. Areas that might be approximated
inaccurately are avoided by bounding the ES to the hyper-
cube spanning the set of NC points selected from xbest’s
neighborhood (steps 10 and 12). The points that are op-
tima of the considered merit functions are evaluated by the
original fitness and added to the dataset of known points.

In the case that no new solution is found, a random per-
turbation (step 23) is evaluated and added to the dataset.
Unfortunately, authors don’t specify the parameter m that
occurs in 23. We set it to the value m = 1.

The authors used the following covariance function in
their GP model:
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C (xp,xq) = θ1exp

(
−1

2

n

∑
i=1

(xp,i− xq,i)
2

r2
i

)

+θ2 +δpqθ3

(10)

where ri, θ1,θ2,θ3 > 0 and δpq is the Kronecker delta.
The function is the sum of the squared exponential covari-
ance function with ARD (7), constant shift θ2 and a white
noise scaled with θ3.

Algorithm 2 Gaussian Process Optimization Procedure
Input: NC – number of training points selected according

to their distance to xbest

NR – number of training points selected according to
most recent time of evaluation
f – fitness function
µ – the number of parents for CMA-ES
λ – population size for CMA-ES

1: {x1, . . . ,xNC/2} ← a set of NC/2 points generated by
CMA-ES

2: yi← f (xi) i ∈ {1, . . . ,NC/2}
3: A←{(xi,yi) | i ∈ {1, . . . ,NC/2}}
4: xbest← argminx∈{xi | i∈{1,...,NC/2}}( f (x))
5: while stopping criteria not reached do
6: TC ← NC points from {u |∃z(u,z) ∈ A} closest to

xbest

7: TR← NR points most recently evaluated
8: M← a GP model trained on TC ∪TR

9: S← /0
10: d← (di)

D
i=1 , di = maxx∈TC(xi)−minx∈TC(xi)

11: for all α ∈ {0,1,2,4} do
12: B←

{
x |xbest− d

2 ≤ x≤ xbest + d
2

}

13: x← optimize fM,α within B by (µ,λ )-CMA-ES
14: if 6 ∃z (x,z) ∈ A then
15: y← f (x)
16: S← S∪{x,y}
17: end if
18: end for
19: if S 6= /0 then
20: A← A∪S
21: xbest← argminx∈{u |∃z(u,z)∈A}( f (x))
22: else

23: xR←
(

xbest
i + zidi

100 m
)D

i=1
zi ∼N (0,1)

24: yR← f (x)
25: A← A∪

{
(xR,yR)

}

26: end if
27: end while
28: return xbest

4 Experimental Setup

The framework COCO/BBOB (Comparing Con-
tinuous Optimizers / Black-Box Optimization

Benchmarking) [6] [7] is intended for systematic ex-
perimentation with black-box optimizers. We use the
noiseless testbed of the BBOB framework, which is
comprised of 24 real-parameter benchmark functions
with different characteristics such as non-separability,
multi-modality, ill-conditioning etc.

Each function is defined on [−5,5]D for all D ≥ 2. For
every function and every dimensionality, 15 trials of the
optimizer are run. A different instance of the original
function is used for each trial. We used dimensionalities
2,3,5,10, thus 1440 trials in total were run for each set of
parameters and each method.

Since source codes were available for neither of the
tested methods, we implemented them in MATLAB.

For Gaussian processes, we chose MATLAB’s default
implementation, ❢✐tr❣♣, a part of Statistics and Machine
Learning Toolbox. The GP hyperparameters fitting was
done with a quasi-newton optimizer, which is the default
in ❢✐tr❣♣.

Parameters of the benchmarked algorithms were set as
follows:

CMA-ES. A multi-start version with the population size
doubled after each restart was used in the tests (MATLAB
code v. 3.62.beta). Number of restarts was set to 4,
while other parameters settings were left default: λ =
4+ ⌊3log10D⌋, σstart =

8
3 , IncPopSize = ⌊λ/2⌋.

MAES. We implemented GP Model Assisted Evolution
Strategy on top of a framework developed for S-CMA-ES
algorithm, which employs a GP model in conjunction with
a generation evolution control [1]. The S-CMA-ES imple-
mentation allows to conveniently replace the population
sampling step of the CMA-ES with a custom procedure.
In this case, a population intended for pre-selection is sam-
pled and processed as described in Subsection 3.1. The
control is then handed over back to the CMA-ES.

The number of parents and population size were set to
correspond with the CMA-ES settings.

Two pre-selection criteria were tested: MMP and the
POI with threshold equal to the so-far best sampled fitness
value fmin. In both cases λPre was set to 3λ . The training
set was comprised from 2λ most recently evaluated points.

We used the same covariance function as in the GPOP
case, i.e. (10).

GPOP. We adhered to [2] in usage of the proposed covari-
ance function (10).

The termination criteria were chosen as follows:

• number of consecutive iterations with no new solu-
tion found is larger than 2 while the tolerance on the
two points euclidean distance for them to be consid-
ered equal is 10−8

• the overall change of fitness values during the last 10
iterations is lower than 10−9
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• the target fitness value is reached

Training set size parameters NC and NR were chosen in
accordance with empirical results reported in [2], particu-
larly NC = NR = 5∗D.

Although the performance is measured in terms of the
number of fitness evaluations, other operations such as op-
timizing a surrogate model may also be costly in bench-
marking scenarios. If we consider functions in 10 D, a
run of GPOP on one core of a computational grid took ap-
proximately 27.8 real hours per function on average. For
those reasons, we limited the maximum number of fitness
evaluations to 100∗D for all tested methods.

5 Experimental Results

Results from experiments on all the 24 noiseless BBOB
benchmark functions are presented in Figures 1–3.

The expected running time (ERT) depicted in Figure 1
depends on a given target value, ft = fopt +∆ f , i.e. the
true optimum fopt of the respective benchmark function
raised by a small value ∆ f . The ERT is computed over
all relevant trials as the number of the original function
evaluations (FE) executed during each trial until the tar-
get function value ft reached, summed over all trials and
divided by the number of successful trials, i.e. trials that
actually reached ft: [7]

ERT( ft) =
#FE( fbest ≥ ft)

#succ
(11)

In the graphs for functions 1, 2, 5, 8, 9, 12, 14, GPOP
achieved significantly better results compared to all other
algorithms for some dimensions. In contrast, the differ-
ences between MAES and CMA-ES are rather small, re-
gardless of the pre-selection criterion.

The graphs in Figure 2 summarize the performance
over subgroups of the benchmark functions for the high-
est tested dimension 10. The graphs show the proportion
of algorithm runs that reached a target value ft ∈ 10[−1..2]

(see the figure caption for further details).
The GPOP speedup is most eminent on the group of

separable functions (functions 1–5), that is functions, op-
timization of which can be reduced to D one-dimensional
problems [6]. On the other hand, GPOP has the worst re-
sults of all methods on multi-modal functions (functions
15–19).

Similar results may be observed on Figure 3 that for
each function shows the dependence of the relative best fit-
ness value on the number of evaluations in 10 D. As can be
seen on the graphs for functions 13 and 24, GPOP in some
cases outperforms all other algorithms in early stages, but
then gets trapped in a local minimum.

On the graph for functions 21 on Figure 3, MAES with
MMP as the pre-selection criterion visibly outperforms all
other algorithms.

6 Conclusion

In this paper, we compared the CMA-ES and our im-
plementation of two traditional methods which improve
upon the CMA-ES with Gaussian process-based surrogate
models: MAES, which extends the CMA-ES with a pre-
selection step, and GPOP, which iteratively optimizes the
GP model.

The benchmarks on the BBOB framework did not
show any significant speedup of MAES compared to the
CMA-ES. On the other hand, GPOP in many cases out-
performs all the other methods, especially in early opti-
mization stages. On some functions, though, it tends to
get trapped in local minima. This might be explained with
the fact that GPOP requires considerably fewer function
evaluations per iteration than other methods. However, the
model is built locally and might not be sufficient for ex-
ploration of the search space in later phases.

Our MAES implementation relies on a modification of
the sampling step in CMA-ES, thereby changing the dis-
tribution of the sampled population. This might mislead
CMA-ES a bit and requires further research, in particular
considering the proposal in [5].

Another area for further research is the exploration of
various confidence measures across tested methods, espe-
cially in connection with GPOP.
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Figure 3: Relative fitness of best individual as log10 value versus number of evaluations divided by dimension for all
functions in 10 D. Best fitness value at each number of evaluations is computed as the median of all trials.
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