
Fitness landscape analysis of hyper-heuristic transforms
for the vertex cover problem

Otakar Trunda and Robert Brunetto

Charles University in Prague, Faculty of Mathematics and Physics
Malostranské náměstí 25, Praha, Czech Republic

otakar.trunda@mff.cuni.cz, robert@brunetto.cz

Abstract: Hyper-heuristics have recently proved efficient
in several areas of combinatorial search and optimiza-
tion, especially scheduling. The basic idea of hyper-
heuristics is based on searching for search-strategy. In-
stead of traversing the solution-space, the hyper-heuristic
traverses the space of algorithms to find or construct an
algorithm best suited for the given problem instance. The
observed efficiency of hyper-heuristics is not yet fully ex-
plained on the theoretical level. The leading hypothesis
suggests that the fitness landscape of the algorithm-space
is more favorable to local search techniques than the orig-
inal space.

In this paper, we analyse properties of fitness landscapes
of the problem of minimal vertex cover. We focus on prop-
erties that are related to efficiency of metaheuristics such
as locality and fitness-distance correlation. We compare
properties of the original space and the algorithm space
trying to verify the hypothesis explaining hyper-heuristics
performance. Our analysis shows that the hyper-heuristic-
space really has some more favorable properties than the
original space.

1 Introduction

Hyper-heuristics are becoming more and more popular in
the field of combinatorial search and optimization. They
transfer the search process from the space of candidate so-
lutions to a space of algorithms that create candidate solu-
tions. Such approach combines metaheuristic techniques
with algorithm selection and proved to be efficient on
many domains [2]. Several theoretical results about hyper-
heuristics have been established. For example: given a set
of low-level algorithms, the hyper-heuristic combination
of them can outperform each of those individuals on all
domains. “The hyper-heuristic lunch is free [8].” How-
ever, the efficiency and inefficiency of hyper-heuristics on
some domains is not yet fully understood.

In this paper, we explore the hypothesis, that the effi-
ciency of hyper-heuristics is caused by the fact that the
space of algorithms is easier to explore for local search
techniques than the original space. We use fitness land-
scape analysis to compare properties of hyper-heuristic
space with the original space and to determine which one
is more suitable for local search. We work with the vertex
cover problem, as an example of a well-established and
hard optimization problem.

In the next section, we provide some basic background
on the vertex cover problem, fitness landscape analysis
techniques and hyper-heuristics. The third section presents
our design of a hyper-heuristic for the vertex cover. In the
fourth section, we then define the spaces we analyse and
the results of the analyses are given in the fifth section.
The paper is concluded by a discussion about the results
and possible future work.

2 Background
2.1 Vertex cover problem

An undirected graph G is a tuple G = (V,E), where
V = {v1,v2, . . . ,vn}, E = {e1,e2, . . . ,em}, such that ∀ei ∈
E,ei = {ai,bi},ai,bi ∈ V,ai 6= bi (no loops) and ∀ei,e j ∈
E, i 6= j =⇒ ei 6= e j (no multiple edges). A set S⊆V is a
vertex cover in G iff ∀ei ∈ E,∃s j ∈ S, s. t. s j ∈ ei.

An undirected vertex-labelled graph G is an undirected
graph together with a cost function c : V 7→R+ that assigns
positive costs to vertices. Given an undirected vertex-
labelled graph G = (V,E), the minimal vertex cover prob-
lem deals with finding a set S ⊆ V minimizing ∑si∈S c(si)
under the condition that S is a vertex cover in G. From
now on, by graph we will always mean undirected vertex-
labelled graph.

We use several other standard graph notions: for vi ∈V ,
by Γ(vi) we denote the neighborhood of vi i. e. the set of
all vertices that are connected to vi by an edge. Γ(vi) =
{v j ∈ V | ∃ei ∈ E,e = (vi,v j)}. By deg(vi) we denote the
degree of vertex. deg(vi) = |Γ(vi)|. A vertex v is called
leaf if it’s degree is 1. A graph is called regular, if all its
vertices have the same degree.

We forbid loops in the graph as they don’t present any
new challenge to the problem. Vertices with loops always
have to be in the vertex cover, so by a linear preprocessing
(removing all loopy vertices), we can reduce the problem
with loops to an equivalent problem without loops.

We forbid multiple edges between the same pair of ver-
tices as well. We could simply leave multiple edges in the
graph as they have no effect on the set of vertex covers nor
on the optimality of the solutions, but it would change de-
grees of vertices which might lead our search algorithms
astray.

Many real-life optimization problems from transporta-
tion, scheduling and operations research can be directly
reduced to vertex cover. As for the complexity of the

ITAT 2016 Proceedings, CEUR Workshop Proceedings Vol. 1649, pp. 179–186
http://ceur-ws.org/Vol-1649, Series ISSN 1613-0073, c© 2016 O. Trunda, R. Brunetto

problem, the vertex cover is a well-known NP-complete
problem, a 2-approximation algorithm exists, and using
parametrized complexity, the best known optimal algo-
rithm for the unweighted version runs in time O(kn +
1.274k), where n is the number of vertices and k is the size
of an optimal vertex cover [3]. In practical applications,
heuristics are typically used [1].

2.2 Fitness landscape analysis

In the theory of local search algorithms, like evolution-
ary algorithms, hill-climbing, tabu-search and so on, the
fitness landscape analysis is used to assess efficiency of
the algorithm on a given problem. The theory of fitness
landscapes can also be helpful when designing new meta-
heuristic algorithm for a specific problem [9, 10].

A fitness landscape of an optimization problem is a set
M together with a function f : M 7→R and a distance mea-
sure d : M×M → R+. M denotes the set of all candi-
date solutions, f is the fitness function which tells us how
good the candidate solution is, and d measures distance
between candidate solutions. We work with combinatorial
problems, so the set M will be discrete and finite.

In Figure 1, there is an example of a fitness landscape of
a small instance of the Travelling Salesman Problem [11].
The tree in the upper part enumerates the set of all per-
mutations which constitutes the set M. Beneath it, there
is a graph of the fitness function for each point of M (the
length of a tour corresponding to each permutation). The
points of M are arranged linearly by their lexicographical
order which induces the distance measure and structure.
The marked point corresponds to the solution shown in
Figure 2 which is a local optimum.

Figure 1: Example of a fitness landscape of a small TSP

The measure d is typically not given explicitly, but in-
stead it is derived from the search operators that the al-
gorithm uses. (For example a mutation operator used by
genetic algorithms.) Formally: a unary search operator p
is a map p : M 7→ 2M , where p(m) is the set of all possible
modifications of m - i.e. the set of possible results of the
operator. When applying the operator p to a point m ∈M,
the algorithm replaces m by one of the points from p(m).
The point can be selected randomly, or by some criterion,
e.g. minimum, in case of greedy operators. The algorithm
repeatedly applies operators to move from one candidate
solution to another.

Figure 2: One of the solutions of the TSP example

The role of the distance measure is to introduce a struc-
ture to the set M. For the purposes of analysis, it is es-
pecially important to define neighborhoods of points. For
mi ∈M, we denote the neighborhood of mi as N(mi). It is
a set of all points from M that are close to mi.

If d is given explicitly, then N can be defined as N(mi)=
{m j ∈M | d(mi,m j)≤ ε}. Typically ε is taken to be 1. In
the much more common case when we are given the set
of search operators P instead of d, the neighborhood is de-
fined as NP(mi) = {m j ∈M | ∃p ∈ P,m j ∈ p(mi)}, i.e. the
set of all solutions reachable from mi by an application of
a single operator. The operators can also induce a distance
measure as dP(mi,m j) = minimum number of applications
of operators from P that allow moving from mi to m j. For-
mally:

1. dP(mi,mi) = 0

2. dP(mi,m j) = (minmk∈NP(mi) d(mk,m j))+1

In the following text, we will use a few simple notions
from function analysis and theory of search. Given a func-
tion f : M 7→ R+, that we want to minimize, we say:

• x∗ ∈M is an optimal solution (or global optimum) iff
∀m ∈M : f (x∗)≤ f (m)

• x∈M is a local optimum iff ∀m∈N(x) : f (x)≤ f (m)

• if x is not an optimal solution, then the escape dis-
tance of x is ed(x) = min{m∈M| f (m)< f (x)} d(x,m) =
distance to the nearest point with strictly lower fitness
value

Fitness landscape analysis studies properties of fitness
landscapes that are related to performance of local search
algorithms. For example, smooth and globally convex
function with a single local optimum is much easier to
deal with than highly rugged function with many local
optima. Several methods for analyzing fitness landscapes
have been developed:

• Size of M: smaller |M| leads to higher performance
and vice versa

180 O. Trunda, R. Brunetto

• Number of local optima: many local-search algo-
rithms are attracted to local optima. The higher num-
ber of local optima therefore slows down the conver-
gence to global optimum.

• Average size of neighborhood: large neighborhood
decreases the number of local optima, but dramati-
cally increases time that the algorithm needs to tra-
verse the space, and operators with large range of val-
ues are close to random search. It is therefore impor-
tant to keep the neighborhoods small.

For example, if all points of M are neighbors, then
there are no local optima except the global ones. On
the other hand, if neighborhoods are empty, i.e., no
pair of points are neighbors, then every point is a local
optimum. There is therefore a trade-off between size
of neighborhoods and number of local optima.

• Fitness-distance correlation (FDC): even with only
one local optimum, the algorithm might not be able
to find it if it is surrounded by points with high fitness
values. It is therefore important that the optimal solu-
tions are surrounded by low-fitness valued points and
are far from high-valued points. FDC measures how
the distance between points corresponds to difference
between their fitness values. Ideally, there should be
a strong positive correlation – i.e. the further from the
nearest global optimum the point is, the higher fitness
value it should have.

Formally, the FDC is computed as: FDC =
c f d

ρ(f)ρ(dopt)
, where c f d is a covariance of f and dopt ,

c f d = 1
|M| ∑

|M|
i=1 (f (mi)− f)(dmi,opt −dopt), f is aver-

age fitness value over the whole M, dmi,opt is a dis-
tance between mi and the nearest optimal solution,
and dopt is the average of dmi,opt over the whole M.
ρ(f) and ρ(dopt) are standard deviations of f and
dopt respectively.

FDC is in range [−1,1]. In the ideal case, where
f (mi) = dmi,opt , the FDC = 1, for a random function,
the FDC is close to 0 and FDC = -1 means that the op-
timal solution is “hidden” among high-valued points.

• Ruggedness: rugged function is opposite to smooth
- it is erratic, with large differences in fitness values
between nearby points. Ruggedness is computed as

R =
f (x) f (x)d(x,y)=1−(f)2

f 2−(f)2
. Where overline denotes aver-

age over all values [7]. R is always in [−1,1], value
of 1 indicates constant function, 0 means that values
of neighbouring points are independent and -1 indi-
cates that the neighbouring points have opposite val-
ues (i.e. every point is a local extreme). Note that
higher ruggedness coefficient actually denotes more
smooth function which is favorable for local search.

• Average escape distance: low escape distance allows
the algorithm to quickly find a point with better fit-

ness value. Ideally the ed(m) should be constant for
each m∈M. We only compute average of ed(m) over
local optima since for points which aren’t locally op-
timal, the escape distance is always 1.

The landscape-analysis techniques have to traverse the
whole search-space of the problem multiple times. As
such search-spaces are typically very large, the analysis
can only be done on small instances. There are techniques
that allow to estimate some properties even in large spaces
by sampling, but we won’t be using those here.

Note that our main purpose here is not to actually solve
large instances of vertex cover, but rather to verify the hy-
pothesis, that hyper-heuristic spaces might have very dif-
ferent properties and might be much more favorable for
local search techniques than the original space.

2.3 Hyper-heuristics

Hyper-heuristics represent a new approach to search and
optimization which combines metaheuristics, automated
parameter tuning, algorithm selection and genetic pro-
gramming. Nowadays, the algorithm selection approaches
are becoming more and more popular in combinatorial op-
timization, as it is clear that no single algorithm can out-
perform every other on all domains, and therefore, the
most suitable algorithm has to be selected for the problem
at hand [4, 5].

Hyper-heuristics try to build an algorithm suited for
given task by combining so called low-level algorithms
during the search. A pool of simple algorithms is given
and the hyper-heuristic combines them into more complex
units. The combination procedure is often based on some
kind of evolutionary computation and the quality of re-
sulting units is measured by how well they can solve the
original task. The approach was especially successful in
the area of scheduling and it is now applied to many other
kinds of problems [2].

Instead of searching the solution space directly, hyper-
heuristics search the algorithm space. The approach is
based on an assumption that similar algorithms will find
solutions of similar quality (not necessarily close to each
other) which implies that the algorithm space has some
favorable properties: high locality, i.e., elements close
to each other have similar evaluation, and low number
of local extrema. See figure 3. On spaces with those
properties, optimization metaheuristics can find good so-
lutions quickly. Of course, such improvements come for
a price: evaluating an element from the algorithm space
takes much more time because it involves searching for a
solution in the solution space.

Consider the following example: we want to color a
graph with the fewest colors possible. Using a genetic al-
gorithm, we could come up with a metaheuristic that will
work on the set of all possible assignments of color to ver-
tices a the fitness function will penalize violations (con-
nected vertices having the same color) and high number

Fitness Landscape Analysis of Hyper-Heuristic Transforms for the Vertex Cover Problem 181

Figure 3: The hypothesized schema of a hyper-heuristic transformation

of color used. Such algorithm might converge to globally
optimal solution, but it would take a long time.

We could also use a greedy algorithm which works as
follows: picks a vertex from a graph according to some
criterion and colors it by the lowest color possible, accord-
ing to the colors of its neighbours. Then it picks another
vertex and so on until the graph is colored. The greedy
algorithm is very fast, but in most cases it wont converge
to global optimum.

There are several vertex-picking criteria, for example:

• Largest degree (L) - picks a vertex with the largest
number of neighbours

• Saturation degree (S) - picks a vertex who’s neigh-
bours are colored with the largest number of different
colors

• Incidence degree (I) - picks a vertex with the largest
number of colored neighbours

Based on these three low-level greedy algorithms, a
hyper-heuristic would search a space of all combinations
of them (the algorithm space). On a graph with 5 vertices,
the algorithm space would consist of all sequences of the
length 4 containing symbols L, S and I. To evaluate the
point from the algorithm space, the hyper-heuristic would
use the algorithm to find a solution, then evaluates the so-
lution by the original fitness function and uses the value to
evaluate the algorithm. For example a point ILS (from the
algorithm space) is evaluated as follows:

1. Select a vertex based on the I criterion and color it
with the lowest possible color

2. Select a vertex based on the L criterion and color it

3. Select a vertex based on the S criterion and color it

4. Color the last vertex

5. Compute the total number of colors used and use it as
the fitness value of the point (ILS)

The hyper-heuristic might also be based on an evolu-
tionary algorithm, which would in this case work on the
algorithm space. This is popularly summarized as Heuris-
tics select moves, hyper-heuristics select heuristics. The
hyper-heuristic might be able to find an optimal solution,
and more importantly, it might be able to find high-quality
solutions much faster than the former approach.

3 Hyper-heuristic for minimal vertex cover
We have designed a hyper-heuristic for the vertex cover
in the similar manner as in the example mentioned ear-
lier. We used a pool of simple greedy algorithms and the
hyper-heuristic combines them in order to solve the prob-
lem. The low-level algorithms work sequentially as de-
scribed in Algorithm 1.

Algorithm 1 Greedy vertex cover
1: S← /0
2: while G contains some edge do
3: v← select vertex according to some criterion
4: S← S∪{v}
5: remove v from the graph (with incident edges)

6: return S

As the vertex-selection criteria, we use the following:

• Leightest (W) : selects the vertex with minimal
weight (cost)

182 O. Trunda, R. Brunetto

• Deg (G) : selects the vertex with maximal degree

• Sub (S) : selects the vertex v with maximal [(sum
of costs of neighbors) - cost of v] i.e. selected =
argmaxv∈V (∑{w∈Γ(v)} c(w)− c(v))

• WDeg (G) : selects the vertex with minimal weight /
degree. Selected = argminv∈V (

c(v)/deg(v))

• Div (D) : selects the vertex v with minimal ratio of
cost of v and sum of costs of neighbors. Formally
selected = argminv∈V (

c(v)/∑{w∈Γ(v)} c(w))

• Leaf (L) : selects the vertex v with minimal difference
between cost of v and (sum of costs of neighbors of
v that are leaves), e.i. selected = argminv∈V (c(v)−
∑{w∈Γ(v) |w is a lea f} c(w))

• Neig (N) : selects the vertex with maximal sum of
costs of neighbors

• Next (X) : selects the vertex which is the next in order
after the vertex selected by (W) (we used this as an
example of non-greedy, chaotic algorithm)

We break ties simply by the ordinal numbers of vertices,
i.e., if more than one vertex achieve the optimal value of
the criterion, we select among then the one with the lowest
number.

The space of algorithms consists of all sequences of let-
ters W,G,S,D,L (corresponding to selection criteria) of a
fixed length. The i-th symbol in the sequence determines
the criterion by which the i-th vertex is selected. If a valid
vertex cover is found before all symbols are used, the rest
of the sequence is ignored. In much more frequent case
when we have already traversed the whole sequence but
there are still edges in the graph, we use two strategies: (i)
start over and read symbols from the beginning of the se-
quence (repeat strategy) and (ii) use the last symbol in the
sequence for as long as there are edges in the graph (last
strategy).

4 Analysis of the fitness landscapes
The hyper-heuristic can be viewed as a transformation of
the search space. We will now describe properties of the
original and transformed spaces. We use the notation of
fitness landscapes as defined earlier.

4.1 Original space

• M: set of all vertex covers (not necessarily minimal
in inclusion)

• f : total weight of the vertex cover - sum of costs of
all vertices in the cover

• d: distance between vertex covers is measured as the
number of elements on which the two covers differ.
Formally: S1,S2 ⊆ V : d(S1,S2) = |{S1 \ S2}∪ {S2 \
S1}|

The distance measure is related to the search operators add
vertex and remove vertex. One application of such operator
creates a solution within distance of 1 from the original
point.

4.2 Hyper-heuristic space

• M: set of all fixed-length sequences of symbols cor-
responding to low-level heuristics

• f : total weight of the vertex cover found by the ap-
plication of the sequence

• d: distance between sequences is measured by the
Levenshtein distance which is the minimal number
of operations add symbol, remove symbol and replace
symbol needed to transform the first sequence into the
second.

This distance measure is intuitively related to search oper-
ators add symbol, remove symbol and replace symbol.

We distinguish the hyper-spaces by the set of low-level
algorithms that are used. We do not always use all the al-
gorithms, partially because of the high computational cost
and partially because on some kinds of graphs, the cri-
teria degenerate. For example, on a uniformly-weighted
graph, the algorithm Neig will work exactly the same as
Degree so its not worth using both of them. Furthermore,
we would like to be able to asses performance of single
algorithms, pairs, 3-tuples, 4-tuples and so on.

We work with these types of spaces: original space (de-
noted Cover), hyper-space with a specific set of low-level
algorithms L and a fixed length of sequences k (denoted
HL,k). We distinguish two alternatives as mentioned ear-
lier: (i) a space, where during the evaluation, the sequence
is applied repeatedly from the beginning until a valid cover
is found (denoted Hrepeat

L,k), and (ii) a space, where during
the evaluation, after reaching the end of sequence, the last
symbol is applied repeatedly until a valid cover is found
(denoted H last

L,k).

5 Experiments
We generated a set of graphs, constructed the correspond-
ing spaces and computed fitness landscape metrics for
those spaces. We used graphs of various sizes, densities
and types. For each type of graphs, we generated about
30∼ 40 instances and average the results.

We used graphs of sizes n = 16 ∼ 45 vertices (not all
values from the range were used). The densities were 0.1,
0.2, 0.3, 0.4, 0.5 and 0.7. The density of c means that
there were c

2 · n · (n− 1) edges in the graph. We used two
policies to add edges - uniformly randomly (select ran-
dom pair of vertices and add an edge until the desired
number of edges is reached) and regularly (adds edges
more likely to vertices with low degrees to create a near-
regular graph). Weights of vertices are integers taken uni-
formly from ranges (50∼ 50), (50∼ 60), (50∼ 100) and
(50∼ 1000).

Fitness Landscape Analysis of Hyper-Heuristic Transforms for the Vertex Cover Problem 183

In total, we generated over 24 000 graphs, roughly half
of them were near-regular and half of them used the uni-
form edge distribution. For each graph, we constructed the
vertex covers-space and 20 hyper-spaces (for various com-
binations of parameters - H last

L,k and Hrepeat
L,k with different

sets L). The experiments run on 11 computers with 8 cores
each for 20 hours on each.

We present graphs comparing various metrics between
spaces. On x-axis, there is the number of vertices in the
graph, y-axis shows values of the particular metric. We
plot several color-distinguished series in the same graph,
each series represents one space. The space is described
in the legend by an enumeration of low-level algorithms
used. Exclamation mark at the end denotes the last strat-
egy; no mark means that the repeat strategy is used. The
word cover denotes the original space of all vertex covers.

We use a normalization so that different columns are of
a similar magnitude and can be depicted in the same graph.
Instead of plotting criterion, we plot criterion / number of
vertices - number of vertices. With this normalization, val-
ues related to different number of vertices are not directly
comparable, but values related to the same number of ver-
tices are, which is good enough for our purposes. With this
normalization, we plot weight of the cover divided among
each vertex.

We plot averages over all generated graphs grouped
into categories by number of vertices. We tried to distin-
guish the results further by edge-generation policy (regular
graphs vs. random graphs), edge-density and width distri-
bution. In most cases, such further distinguishing didn’t
provide any new information - the results were very simi-
lar in each of the smaller categories.

Last vs. repeat strategy First, we have tried to com-
pare the two ways of evaluating the sequences - repeat the
whole sequence from the beginning and repeating only the
last symbol, i.e. the spaces Hrepeat

L,k and H last
L,k . We believe

that different algorithms should be used in the beginning
of the search and different one at the end, so the space H last

L,k
should contain better solutions. We measure the value of
the global optimum in each space. The graph is shown in
Figure 4. H last

L,k is slightly better than Hrepeat
L,k for all L.

Solution quality in spaces Hyper-spaces doesn’t contain
all the vertex covers, they only contain some of them. For
example, the set of all vertices is a valid vertex cover,
but it is never generated by any algorithm sequence. On
the other hand, some vertex covers might be generated
by many different sequences of algorithms. To ease the
search, the hyper-space should contain an algorithm that
can generate an optimal solution, there should be a large
number of different sequences that generate high-quality
solutions and very few or none sequences that generate
low-quality solutions.

To assess the quality of solutions generated by points
in the hyper-space, we created a histogram of quality of
all solutions from original and hyper-space. It is depicted

Figure 4: Best solutions in Hrepeat
L,k and H last

L,k

in Figure 5. Red columns come from the original space
and yellow ones come from one of the hyper-spaces. The
hyper-space is smaller in size, so the total volume of yel-
low is smaller. Solutions in the original space seem to fol-
low normal distribution, while in the hyper-space, most of
the points generate near-to-optimal solutions or near-to-
average solutions. The behavior can be explained as fol-
lows: high-quality solutions are generated due to greedi-
ness of the selection criteria and average-quality solutions
are generated since their number in the original space is
very high.

Figure 5: Histogram of distribution of solutions based on
their quality in the two spaces.

We also monitor the average value of solutions in each
space. Results are shown in Figure 6. All three hyper-
spaces show significantly lower average value than the
original space. (I.e. even a blind random search should
provide better solutions in the hyper-space then in the orig-
inal space.)

Combination of algorithms We test the hypothesis, that
the combination of low-level algorithms can out-perform
each of the individual algorithms. In Figure 7 there is the
quality of an optimal solution in several hyper-spaces. Min
denotes the best solution that can by found by repeated
application of just one low-level algorithm. Other col-
ors correspond to combinations. For all graph size, qual-

184 O. Trunda, R. Brunetto

Figure 6: Average quality of solutions in spaces

ity of optimal solution is better for most combinations of
low-level algorithms. This result supports the hypothesis
and suggests that the hyper-heuristic might be worth using
even with its overhead (evaluating points in hyper-space
is costly). TODO in most cases, however cover je lepsi
nez H-H takze transformation vede ke ztrate optimalniho
reseni.

Figure 7: Best solutions of single algorithms and combi-
nations

Fitness-distance correlation Figure 8 shows the FDC for
several spaces. In the original space, FDC decreases with
the number of vertices, while in the original space it stays
high regardless of the size of the graph. (Note that higher
FDC is better for local search algorithms.) This graph is
shown without normalization, as the FDC is naturally in
[−1,1]. The rest of graphs are also without normalization
since it’s not needed.

Ruggedness In Figure 9 there is the ruggedness of our
spaces. Most of hyper-spaces have higher ruggedness that
the original space which is again better for local search
algorithms. The ruggedness seem to be independent on
the size of the graph.

Escape distance Figure 10 shows the average escape dis-
tance (ED) of some of our spaces. The ED is systemati-
cally lower in all hyper-spaces. The difference might not

Figure 8: FDC of spaces

Figure 9: Ruggedness of spaces

be large, but note that the amount of work needed to es-
cape the local minimum is (number of neighbors)ED, so
any savings in the exponent are significant.

Figure 10: Escape distance from local optima

Number of local optima The graph 11 shows frequency
of local minima in our spaces (i.e. the number of local
minima over all nodes). The result is much better in the
original space than in the hyper-spaces. This is partially
caused by the fact that hyper-spaces contain many points
that have the same fitness value and we define local min-
ima as non-strict - i.e. points on plateaus are all considered
local minima.

Fitness Landscape Analysis of Hyper-Heuristic Transforms for the Vertex Cover Problem 185

Figure 11: Frequency of local optima

6 Conclusions and future work

We presented a hyper-heuristic transformation for the
vertex cover problem and constructed several variants
of hyper-heuristic spaces using a set of greedy algo-
rithms. We measured several important features of the
original space and the hyper-spaces and by comparing
them we have experimentally verified the hyper-heuristic-
hypothesis that tries to explain the efficiency of hyper-
heuristics in practise by properties of hyper-space. Our
results can be summarized as follows:

1. Combination of greedy algorithms is in most cases
much better that using single algorithm all the time

2. Only small part of the original space can be generated
from the hyper-space. Most of high-quality solutions
can be generated, but sometimes we loose the optimal
solution by the transformation

3. The transformation improves fitness-distance correla-
tion, escape distance and average solution quality. It
has some positive effect on ruggedness as well, but it
increases the frequency of local optima in the space.

4. There were no significant differences between vari-
ous types of graphs, e.g. regular vs. random. We
believe that this is caused by small size of our test
graphs.

As future work, we would like to continue the analysis
using more landscape analysis techniques, such as neu-
trality [6], decomposability etc. Also, we would like to
add more low-level algorithms into the pool, especially
less-greedy ones. Greediness of the algorithms causes that
only a very small portion of vertex covers are reachable
from the hyper-space. In some cases, more than 50%
of all algorithms in the space generated the same vertex
cover. Such small range of unique fitness values then cre-
ates large plateaus, which contribute to an illusion of high
locality and fine ruggedness. It is also responsible for
the large number of local extrema that we observed in the
hyper-spaces.

It would also be beneficial to actually run some search
algorithm on the hyper-space (for some large instances)
and prove that the hyper-heuristic really works in practice
and is at least comparable to metaheuristics working di-
rectly in the solution space.

Acknowledgement

The research is supported by the Grant Agency of Charles
University under contract no. 390214 and it is also sup-
ported by SVV project number 260 104. We would like to
thank the anonymous reviewers for their useful comments
and suggestions.

References

[1] Eric Angel, Romain Campigotto, and Christian Laforest.
Implementation and Comparison of Heuristics for the Ver-
tex Cover Problem on Huge Graphs. In 11th International
Symposium, SEA 2012, volume 7276 of Lecture Notes in
Computer Science, pages 39–50, Bordeaux, France, June
2012.

[2] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa,
E. Ozcan, and R. Qu. Hyper-heuristics: a survey of the state
of the art. Journal of the Operational Research Society,
64(12):1695–1724, Dec 2013.

[3] Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved Param-
eterized Upper Bounds for Vertex Cover, pages 238–249.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[4] Youssef Hamadi, Eric Monfroy, and Frédéric Saubion. Au-
tonomous search. Springer-Verlag, 2012.

[5] R. Kumar, S. K. Singh, and V. Kumar. A heuristic approach
for search engine selection in meta-search engine. In Com-
puting, Communication Automation (ICCCA), 2015 Inter-
national Conference on, pages 865–869, May 2015.

[6] Marie-Eléonore Marmion, Clarisse Dhaenens, Laetitia
Jourdan, Arnaud Liefooghe, and Sébastien Vérel. On
the neutrality of flowshop scheduling fitness landscapes.
CoRR, abs/1207.4629, 2012.

[7] Peter Merz and Bernd Freisleben. Fitness landscapes,
memetic algorithms, and greedy operators for graph bipar-
titioning. Evol. Comput., 8(1):61–91, March 2000.

[8] Riccardo Poli and Mario Graff. Genetic Programming:
12th European Conference, EuroGP 2009 Tübingen, Ger-
many, April 15-17, 2009 Proceedings, chapter There Is a
Free Lunch for Hyper-Heuristics, Genetic Programming
and Computer Scientists, pages 195–207. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009.

[9] Franz Rothlauf. Representations for genetic and evolution-
ary algorithms (2. ed.). Springer, 2006.

[10] Franz Rothlauf. Design of Modern Heuristics. Natural
Computing Series. Springer, 2011.

[11] Mohammad-H Tayarani-N. and Adam Prügel-Bennett. An
analysis of the fitness landscape of travelling salesman
problem. Evolutionary Computation, 24(2):347–384, Jun
2015.

186 O. Trunda, R. Brunetto

