
Fast algorithm for finding maximum clique in scale-free networks

Andrej Jursa

Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava
andrej.jursa@fmph.uniba.sk

Abstract: The maximum clique problem in graph theory
concerns finding the largest subset of vertices in which all
vertices are connected with an edge. Computation of such
subset is a well-known NP-hard problem and there exist
many algorithms to solve it. For our purposes we created
an algorithm specially targeted for solving this problem
in scale-free networks, where many significant search im-
provements may be introduced. We use the general pur-
pose algorithm developed by Östergård in 2002 as subrou-
tine for our new algorithm. We improved the search pro-
cess by initial heuristic. Firstly we compute preliminary
clique size and then reduce the graph by k-core decom-
position of this size. Subsequently, we employ greedy al-
gorithm for coloring of chosen vertex as well as its neigh-
bors. Our algorithm is able to solve maximum clique prob-
lem for arbitrary graphs, but together with these and some
other, less significant pruning techniques, the overall algo-
rithm performs exceptionally well on scale-free networks,
which was tested on many real graphs as well as randomly
generated graphs.

1 Introduction

For our study of functional brain networks we needed
an algorithm to solve maximum clique problem in these
graphs to compare networks of three classes of partici-
pants. We realize that using a general purpose algorithm
for this task may lead to very long computation times.
According to the scale-free structure of functional brain
networks we can implement several pruning techniques
to make the search process faster. Functional brain net-
works we have data for are simple undirected graphs. Off
course there exists randomized or heuristic algorithms like
[3] or [5] which can give solution quickly, but for our
study we needed algorithm which can give us exact so-
lution in shortest possible time. Our algorithm we have
created is based on exact algorithm created by Östergård
and described in [4].

Undirected graph is combinatorial structure which we
can denote as G = (V,E), where V is set of vertices and
E is set of edges or pairs of vertices. We can say that two
vertices are adjacent, if there is edge between them. The
number of edges which are connecting vertex v with other
vertices is denoted as degree k of vertex v (we are denoting
this as deg(v) = k). For vertex v we can get his open set
of neighbors N(v) = {u|u ∈V ∧ (u,v) ∈ E} or close set of
neighbors N[v] = N(v)∪{v}.

Simple graph does not have loops from - to the same

vertices, does not have multiple edges between the same
pair of vertices and does not have weighted edges. Our
algorithm is targeted to solve maximum clique problem
for simple undirected graphs. For simple undirected graph
we can compute density of that graph as D = 2|E|

|V |(|V |−1) .
A clique in simple undirected graph is an subset of ver-

tices V ′⊆V so that ∀v∈V ′,∀u∈V ′ : u 6= v =⇒ (v,u)∈E.
The maximum clique is largest clique in undirected simple
graph. The size of maximum clique is also called clique
number of graph G and can be denoted as ω(G).

Scale-free networks are simple undirected graphs whose
degree distribution asymptotically follows power law.
There is no specific scale in degree distribution. Fraction
P(k) of vertices having degree equal to k scales for large
values of k as P(k) ∼ k−γ , where γ is typically in range
2 < γ < 3. For given graph G we can compute degree dis-
tribution. It can be done by counting how many vertices
in G have particular degree. We can visualize this distri-
bution for scale-free networks in a log-log plot (it can be
seen on figure 1 in part (a)).

The k-core decomposition of the graph G forms an in-
duced subgraph H, where all vertices have the degree at
least k. When we compute k-core decomposition from the
scale-free network, we can remove large amount of ver-
tices with the degree lower than k. In the diagram in (b)
part of figure 1 the red area represents all vertices removed
from scale-free network due to k-core decomposition. By
computing new k-core decomposition each time we know
new size of clique, we can reduce search space for next
iteration of searching.

2 Östergård’s algorithm

The original algorithm is processing graphs vertices
from the highest index to the lowest one. During this pro-
cess it also maintains array called c[i], where i is the index
of already processed vertex. It stores value of max in the
array c[i] after vertex i and his neighborhood is processed.
This algorithm is using subroutine CLIQUE for branching
over neighbors of the initial vertex. To get this neighbors it
is using sets defined as Si = {vi,vi+1,vi+2, . . . ,v|V |}, where
i is an index of starting vertex.

In algorithm 1 one can see pseudo-code of this original
algorithm. At line 8 there is condition for number of ver-
tices remaining in set U with respect of current clique size.
If this condition holds, algorithm is unable to find clique
with size higher than max, so it can return from subrou-
tine. Also similar test is introduced at line 11. In this

ITAT 2016 Proceedings, CEUR Workshop Proceedings Vol. 1649, pp. 212–217
http://ceur-ws.org/Vol-1649, Series ISSN 1613-0073, c© 2016 A. Jursa

Figure 1: Scale-free network degree distribution in log-log plot (a) and vertices potentially removed by k-core decompo-
sition, where k = 0.3 ·degmax(G) (b).

case it is testing if previous search from vertex with index
i have founded clique size hight enough that with respect
to current clique size algorithm can find clique higher than
max. If this condition does not hold, it will return from
subroutine as well.

This algorithm can be used for arbitrary simple undi-
rected graph and it will find maximum clique size. The
values of array c behaves following: c[i] = c[i+ 1] if al-
gorithm does not find new, higher, clique size, otherwise
c[i] = c[i+1]+1.

3 Our algorithm

Our solution is using original Östergård’s algorithm1

[4] as a subroutine. Our algorithm is following the same
principles as the original one by processing vertices from
the highest index to the lowest. In the whole process of
searching for maximum clique size we have global vari-
able named max which contains currently known maxi-
mum size of clique found in the process.

Our algorithm is split in two phases. In the first phase,
which is called initialization phase, the algorithm is using
heuristic function to find preliminary clique size. This pro-
cess may return clique size close to maximum clique size2.
The preliminary size returned by heuristic is set into vari-
able max. When the initialization phase know this value
the algorithm reduces the search space of graph by com-
puting max-core decomposition3. At the end of this phase
it computes new isomorphic graph, where all vertices are
indexed again from 1 to |Vk| but also the vertex degree is
raising with indexes4. The Vk ⊆ V is the set of vertices of
the graphs k-core decomposition.

First step of the initialization phase is to compute pre-
liminary clique size by heuristic function. Similar method

1Östergård’s subroutine CLIQUE is used in our algorithm.
2But there is also chance for returning very small size compared to

maximum clique size in graph.
3It is k-core decomposition of graph, where k = max.
4Vertex with index 1 have minimum degree in a graph and vertex

with index |Vk| have maximum degree in a graph.

Algorithm 1 Östergård’s original algorithm.
Input: Simple undirected graph G.
Output: Clique number ω(G) in global variable max.

1: procedure CLIQUE(U,size)
2: if |U |= 0 then
3: if size > max then
4: max← size
5: found← true
6: return
7: while U 6= /0 do
8: if size+|U | ≤ max then
9: return ⊲ Nothing better can be found.

10: i←min{ j|v j ∈U}
11: if size+ c[i]≤ max then
12: return ⊲ Nothing better can be found.

13: U ←U \{vi}
14: CLIQUE(U ∩N(vi),size+1)
15: if found = true then
16: return ⊲ Higher clique size was found,

return to main loop.

17: procedure MAIN

18: max← 0
19: for i←|V | downto 1 do
20: found← false
21: CLIQUE(Si∩N(vi),1)
22: c[i]← max ⊲ Store clique size for next

iteration, this is used for pruning.

was used in [2] and [5] but our heuristic function is slightly
different. First it needs to determine the threshold value
of the degree (line 11 of algorithm 2) and then for each
vertex in the graph which have the degree equal or higher
than the threshold it runs iterative process to find clique, as
it is described on algorithm 2. After several experiments
on the scale-free networks we have decides that the good
value for this threshold is 0.95 times maximum degree in
the graph G. This will enable the heuristic function to run

Fast Algorithm for Finding Maximum Clique in Scale-Free Networks 213

tests for large number of vertices with almost maximum
degree in graph but not for all vertices in graph, so the
heuristic have good chance to find the preliminary clique
size very close to the real maximum clique size.

Heuristic iteration of finding clique is a greedy function
which adds vertices with maximum degree to the forming
clique and when there is no more vertex to be added the
clique is found. Repeating this for more starting vertices
this process can find clique size very close to clique num-
ber of input graph G. On the other hand the ratio between
clique size of graph G and size found by the heuristic can
be also close to zero in some cases.

Algorithm 2 Preliminary clique size heuristic function.
Input: Simple undirected graph G.
Output: Preliminary clique size in graph G.

1: function CLIQUEHEURISTICSTARTINVER-
TEX(G, i, lastMax)

2: Clique←{vi},Nb← N(vi) ⊲ Initialize clique and
neighbor sets.

3: while true do
4: if |Clique|+|Nb| ≤ lastMax then ⊲ Higher

clique size can not be found.
5: return lastMax
6: if |Nb|= 0 then ⊲ All possible vertices are

processed.
7: return |Clique|
8: j← index of vertex w j ∈ Nb which have max-

imum degree
9: Clique← Clique∪{v j},Nb← Nb∩N(v j) ⊲

Update clique and neighbor sets.

10: function CLIQUEHEURISTIC(G)
11: degthreshold← ⌊0.95 ·max

{
deg(u)|u ∈ GS

}
⌋

12: heurMax← 0
13: for i← 1 to |V | do
14: if deg(vi)≥ degthreshold then
15: max ← CLIQUEHEURISTICSTARTIN-

VERTEX(G, i,heurMax)
16: return heurMax

After heuristic search is completed the algorithm knows
preliminary size of the clique and it saves it to the variable
max. For next phase it is necessary to compute max-core
decomposition which removes possibly large amount of
vertices and effectively reduces search space5. Because al-
gorithm is processing vertices by their indices from higher
to lower we run renumbering procedure on new max-core
decomposition so that vertices will be sorted by their de-
gree. This sorting can improve search process because it
allows to skip several vertices with higher degrees whose
neighbor sets are smaller or equal to the current max.

The process of computing k-core decomposition is very
simple iterative deletion of vertices which degree is lower
than k and it is described on the algorithm 3. In this algo-

5In some cases heuristic can find maximum clique size and max-core
decomposition can be empty.

rithm V (G) denotes the set of vertices V belonging to the
graph G.

Algorithm 3 k-core decomposition of graph G.
Input: Simple undirected graph G, desired value k.
Output: k-core decomposition of graph G.

1: function COMPUTEKCORE(G,k)
2: Gk-core← G
3: repeat
4: Gtmp← Gk-core

5: for all v ∈ Gk-core do
6: if deg(v)< k then
7: V (Gk-core)←V (Gk-core)\{v}
8: until

∣∣V (Gtmp)
∣∣ 6=
∣∣V (Gk-core)

∣∣ ⊲ If there is
no change in graph then the k-core decomposition is
finished.

9: return Gk-core

After completion of the initialization phase the main
search phase follows. The algorithm works with two
nested loops, first is iterating over last k-core decompo-
sition (line 7 in algorithm 4) and starting the second loop.
Here is the algorithm processing vertices from higher in-
dex to lower (inside last computed k-core decomposition,
line 8 in algorithm 4). For each vertex vi is testing number
of colors needed to color vertices from N[vi] which forms
induced subgraph. If this number of colors is higher than
currently know max, there can be clique with higher size
than max.

To obtain neighbors set of vertex vi new metric is in-
troduced. We call it internal degree and it is defined in
equation 1.

degv(u) =
∣∣{w|w ∈ N[v]∧ (u,w) ∈ E

}∣∣ (1)

In the search process our algorithm will processes each
vertex only once. This is guaranteed by checking the array
c (line 10) from the Östergård’s algorithm. If this array
is already set for the given index, then we know that the
vertex with this index was processed before.

In the main loop, where the algorithm is iterating
through all unprocessed vertices, it is running greedy func-
tion for coloring6. Result of this coloring function is sub-
optimal number of minimum colors needed to color vertex
and it neighborhood, which can be performed quickly. It
gives us a good information whether it is promising to find
better clique size when the algorithm starts branching from
this vertex. The process of coloring vertex v and it neigh-
borhood Nv = {v}∪{u|u ∈ N(v)∧deg(u)≥max∧argu >
argv} is described in algorithm 5.

6This function is similar to one mentioned in [2] but in our im-
plementation this is performed in the process of selecting vertices for
branching not before the whole process.

214 A. Jursa

Algorithm 4 Algorithm for finding maximum clique in
scale-free networks.
Input: Simple undirected graph G.
Output: Clique number ω(G) in global variable max.

1: function SORTGRAPHBYDEGREEASCENDING(G)
2: return new GI isomorphic graph, where vertex

with maximum degree have maximum index

3: procedure MAIN

4: max← CLIQUEHEURISTIC(G)
5: Gmax-core ← SORTGRAPHBYDEGREEASCEND-

ING(COMPUTEKCORE(G,max))
6: lastMax← max
7: while true do
8: for i← maximum index in Gmax-core downto

minimum index in Gmax-core do
9: found← false

10: if c[i] is already set then ⊲ Vertex vi has
been already processed.

11: continue
12: if GETMINCOLORS(Gmax-core, i,max) >

max then
13: Nvi ←{

u|u ∈ Si∩N(vi)∧degvi
(u)≥ max

}

14: CLIQUE(Nvi ,1)

15: c[i]← max
16: if found = true then
17: return
18: if lastMax = max then ⊲ All vertices are

processed and there is no better solution.
19: break
20: else
21: lastMax← max
22: Gmax-core← COMPUTEKCORE(G,max)

4 Results and testing

Our algorithm is able to solve maximum clique prob-
lem, as well as Östergård’s algorithm, for all sorts of sim-
ple undirected graphs. But for all graphs with scale-free
property it is our algorithm able to do so much faster. Most
useful improvement here is the heuristic function which
finds preliminary clique size in initialization phase, with
subsequent k-core decomposition throughout whole pro-
cess of searching. By decomposition the algorithm is able
to reduce the graph size by removing vertices which can
not be part of a maximum clique. Also degree distribu-
tion after each decomposition step is changing from orig-
inal (asymptotically following power law) to linear look-
ing one. When the final clique is found7 and last compu-
tation of max-core decomposition the remaining vertices
does not forms scale-free network anymore and they must
be processed all to confirm found clique number. It is also
possible that the last max-core decomposition will return

7The one representing one of maximum cliques in graph.

Algorithm 5 Greedy algorithm used to find minimum col-
ors needed to color vertex i and it’s neighbors.
Input: Simple undirected graph G, index of vertex i.
Output: Suboptimal number of minimum colors needed

to color vi and it immediate neighborhood.
1: function GETMINCOLORS(G, i,minDegree)
2: colors← 1, colorMap[vi]← 1
3: Neighbors ← {u|u ∈ N(vi) ∧ deg(u) ≥

minDegree∧ argu > i}
4: AllNodes← Neighbors∪{vi}
5: for all u ∈ Neighbors do ⊲ Iterate over neighbors

u of vertex vi.
6: Nu← N(u)∩AllNodes ⊲ Assemble set of

neighbors of u within neighbors of vi.
7: minColor← 1, UsedColors←{}
8: for all w ∈ Nu do ⊲ Iterate over all neighbors

w of vertex u ...
9: if colorMap[w] 6= null then ⊲ ... and

collect all colors already used.
10: UsedColors ← UsedColors ∪
{colorMap[w]}

11: for color← 1 to colors+1 do
12: if color 6∈ UsedColors then ⊲ New unused

minimum color is found.
13: minColor← color
14: break
15: colorMap[u]← minColor
16: colors←max(colors,minColor) ⊲

Remember the highest color number used.

17: return colors

empty graph, this means immediate finish of the algorithm
without additional need to confirm found clique number.

In the search phase an additional pruning techniques
were introduced. First was computation of minimum col-
ors needed to color starting vertex and his neighborhood.
This is greedy function so it can not compute optimal so-
lution, but approximative solution is good to decide if pro-
cessing of neighbors of the starting vertex is promising to
find higher clique size. Second pruning here is neighbors
node selection by testing their internal degree (according
to equation (1)). Because connections outside neighbor-
hood of the starting vertex does not contribute any vertex
to the clique that we look for inside this neighborhood, we
may omit these vertices when we deciding if vertex from
neighborhood have to be added to the set of neighbors used
for branching. This can reduce search space for each start-
ing vertex and speed up the algorithm.

We have tested our algorithm on our FMRi data of
functional brain networks as well as on simple undi-
rected graphs from the database which can be found
on https://snap.stanford.edu/data/8 and on some graphs
from DIMACS dataset. We also generated some test-

8Stanford dataset and FMRi functional brain networks represents
real world graphs.

Fast Algorithm for Finding Maximum Clique in Scale-Free Networks 215

ing graphs using Bernoulli graph distribution, Barabáshi-
Albert graph distribution [1] and Watts–Strogatz graph
distribution [6]. Our implementation is written in Java and
all tests were preformed on computer with Inter core i7
4790K@4.0GHz processor with 16GB of RAM. Running
process of our algorithm have heap size of 12GB.

Table 1 contains some results from test runs. The graph
name is represented by G, D is the density of edges in-
side graph G. |V | and |E| represents the sizes of vertices
and edges set of graph G. Preliminary size of clique is de-
noted here as sp while maximum clique size is denoted as
clique number of graph ω(G). There is also ratio between
sp and ω(G) which represents how close the initialization
phase heuristic search was to the real maximum clique in
the given graph. Also times are displayed here, the „Time
of phase 1” is time needed to compute preliminary clique
size9 and „Time of phase 2” is time needed to complete
iterative branching of search phase.

The graph „C125.9” is from DIMACS dataset. It is the
smallest one from DIMACS and it does not represent the
scale-free network. It is random graph with edge proba-
bility of 0.9, with 125 vertices and 6963 edges. It takes
1637 seconds for our algorithm to process this graph. This
is clear demonstration that our algorithm is able to find
a maximum clique in an arbitrary undirected graph, but
the time to process it is not better than the time needed
by Östergård’s algorithm10. Also graphs called „BG_n_p”
are random graph, generated by Bernoulli graph distribu-
tion, where n is number of vertices and p

100 is probability of
edge between two vertices. The time needed to solve these
graphs is exponentially rising with number of vertices (the
probability of edge is the same for both of them).

The graph called „facebook”, as well as „as-
skitter”, „Email-Enron”, „CA-AstroPh”, „CA-CondMat”
and „CA-HepPh” represent scale-free networks from Stan-
ford snap datasets. One may see that the „facebook” graph
have higher density than other graphs from dataset and the
time needed to compute the maximum clique is around
379 seconds for just 4039 vertices and 88234 edges. On
the other hand graph „as-skitter” with has 1696415 ver-
tices and 11095298 edges, and very low density is pro-
cessed in only 99 seconds. Initialization phases heuris-
tic time for this graph is 28.6 seconds due to the large
amount of vertices. We may say that number of vertices
and the edges density is the key factor of the algorithm
speed. Graph „CA-HepPh” is an example of a graph,
where heuristic function finds maximum clique size and
resulting k-core decomposition forms an empty graph. We
also tested some randomly generated graphs by Barabási-
Albert graph distribution. These graphs are „BA_n_k”,
where n is number of vertices and each new vertex is con-

9Graph loading and construction as well as post heuristic renumber-
ing of graph and k-core decomposition is not included in this time.

10Actually by using additional techniques like k-core decomposition
and others which are not included in Östergård’s algorithm, the run time
of our algorithm for graphs of these types is higher than time needed by
original algorithm.

nected with k edges. These graphs was also solved quite
fast and initial heuristic have found preliminary clique
sizes very close to graphs clique numbers.

Graphs „awith_*”, „awout_*” and „young_*” repre-
sents FMRi functional brain networks for adult partici-
pants with Alzheimer disease, without this disease and
young participants without disease. All are scale-free net-
works having from 5400 to 8200 vertices. Here we can
also see that the key factor is a density of edges and the
number of vertices. We can see that some graphs were pro-
cessed under one second by our algorithm. We also tested
the performance of the original Östergård’s algorithm on
these graphs, which needs tens of minutes or several hours
to process them.

Last dataset of graphs are named „WS_n_p_k”, these
are random graphs generated using Watts–Strogatz graph
distribution, where n is number of vertices, p

100 is rewiring
probability starting from 2k-regular graphs. One can see
that our algorithm is also performing well on small-world
networks even it was not designed for this type of graphs.
Results of heuristic here is also very close to final graph
clique numbers.

For our scale-free brain functional networks or other
graphs with scale-free property our algorithm gives us ex-
act results much faster than the Östergård’s one. That
means we are able to analyze scale-free graphs for our pur-
poses very quickly.

References

[1] ALBERT, R., AND BARABÁSI, A.-L. Statistical mechanics
of complex networks. Reviews of Modern Physics 74 (Jan.
2002), 47–97.

[2] EBLEN, J. D., PHILLIPS, C. A., ROGERS, G. L., AND

LANGSTON, M. A. The maximum clique enumeration
problem: Algorithms, applications and implementations. In
Proceedings of the 7th International Conference on Bioin-
formatics Research and Applications (Berlin, Heidelberg,
2011), ISBRA’11, Springer-Verlag, pp. 306–319.

[3] NEHÉZ, M. Analysis of the randomized algorithm for clique
problems. In Proceedings of the 15th Conference on Applied
Mathematics APLIMAT 2016 (Bratislava, Slovak Republic,
Feb. 2016), SUT Publishing, pp. 867–875.

[4] ÖSTERGÅRD, P. R. J. A fast algorithm for the maximum
clique problem. Discrete Appl. Math. 120, 1-3 (Aug. 2002),
197–207.

[5] PATTABIRAMAN, B., PATWARY, M. M. A., GEBREMED-
HIN, A. H., LIAO, W., AND CHOUDHARY, A. N. Fast al-
gorithms for the maximum clique problem on massive sparse
graphs. CoRR abs/1209.5818 (2012).

[6] WATTS, D. J., AND STROGATZ, S. H. Collective dynamics
of ’small-world’ networks. Nature 393, 6684 (1998), 409–
10.

216 A. Jursa

G |V | |E| D
Preliminary

size (sp)
Time of
phase 1

ω(G)
sp/ω(G)

ratio
Time of
phase 2

C125.9 125 6963 0.8984516129 32 0.016 34 0.94118 1636.768

BG_500_40 500 49820 0.3993587174 9 0.031 11 0.81818 21.386
BG_1000_40 1000 199909 0.4002182182 11 0.169 12 0.91667 2031.105

facebook 4039 88234 0.0108199635 7 0.068 69 0.10145 378.944
as-skitter 1696415 11095298 0.0000077109 37 28.609 67 0.55224 98.769
Email-Enron 36692 183831 0.0002730976 17 0.177 20 0.85000 1.974
CA-AstroPh 18771 198050 0.0011242248 23 0.202 57 0.40351 0.934
CA-CondMat 23133 93439 0.0003492312 4 0.142 26 0.15385 0.297
CA-HepPh 12006 118489 0,0016441731 239 0.097 239 1.00000 0.068

BA_300_20 300 5790 0.1290969900 20 0.003 21 0.95238 0.008
BA_1000_20 1000 19790 0.0396196196 17 0.019 21 0.80952 0.071
BA_10000_20 10000 199790 0.0039961996 20 0.191 21 0.95238 0.430
BA_100000_20 100000 1999790 0.0003999620 20 3.249 21 0.95238 7.786
BA_250000_50 250000 12498725 0.0003999608 51 25.653 51 1.00000 25.013

awith_09 7558 102091 0.0035748773 23 0.078 29 0.79310 0.884
awith_37 6218 73880 0.0038223046 33 0.058 36 0.91667 0.324
awith_02 7529 66494 0.0023463649 28 0.077 41 0.68293 0.302
awith_40 5677 17200 0.0010675720 11 0.018 12 0.91667 0.012

awout_13 7416 139482 0.0050730283 62 0.116 68 0.91176 31.105
awout_14 6849 172969 0.0073757698 80 0.149 94 0.85106 12.116
awout_04 8000 183940 0.0057488436 45 0.152 55 0.81818 4.518
awout_15 5439 20276 0.0013710523 36 0.017 38 0.94737 0.014

young_26 8183 211232 0.0063098303 103 0.192 124 0.83065 335.649
young_17 7553 134565 0.0047182467 84 0.091 94 0.89362 40.639
young_16 7032 131887 0.0053350197 88 0.102 108 0.81481 18.437
young_34 7131 93643 0.0036835396 66 0.069 89 0.74157 0.884

WS_500_25_50 500 25000 0.2004008016 13 0.011 16 0.81250 1.345
WS_500_40_50 500 25000 0.2004008016 9 0.012 11 0.81818 0.892
WS_5000_25_50 5000 250000 0.0200040008 13 0.165 16 0.81250 13.091
WS_5000_40_50 5000 250000 0.0200040008 8 0.172 11 0.72727 8.630
WS_10000_25_50 10000 500000 0.0100010001 14 0.405 16 0.87500 25.030
WS_10000_40_50 10000 500000 0.0100010001 9 0.485 12 0.75000 15.354

Table 1: Results of test runs of our algorithm for different datasets. Times are in seconds.

Fast Algorithm for Finding Maximum Clique in Scale-Free Networks 217

