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Abstract: Classical ancestor trees, descendant trees, Hour-
glass charts, and their visual variants such as node-link di-
agrams or fan charts are suitable for assessment of peo-
ple’s relationships when one is focused on a particular
person (the so-called main person) and his/her direct an-
cestors and descendants. Such tree-based representations
miss a broader context of relationships and do not allow
quick assessment of several interlinked families together.
We propose utilization of directed acyclic graph visual-
izations with constraints specified by layers and ordering
of groups of nodes within layers. The computed con-
straints can be mapped, at least partially, into the DOT
language property directives used by the Graphviz tool-
box. We demonstrate achievements on datasets containing
1600 people (a private family tree collection) and 3000
people (an Egyptology database of officials from 4th, 5th,
and 6th dynasty).

1 Introduction

Although it is more than 55 years since Tutte introduced
barycentric embedding, research of graph visualization
techniques remains a highly active field attracting a lot of
attention [1, 2, 3]. Graph visualization can help to form
an overview of relational patterns and detect data struc-
ture much faster than data in a tabular form. The form in
which the graph is presented has a significant impact on
how the graph is understood and the time that is necessary
to achieve this. Nodes placed close to one another might
be interpreted by the user as a true relationship whether or
not this relationship exists [4, 3]. Working with genealog-
ical graphs is no exception in this sense.

Tree based drawing methods of genealogical graphs
have been among the standard techniques for centuries.
Ancestor trees, descendant trees and Hourglass charts [5]
belong to a set of traditional tools implemented by a ma-
jority of freeware, shareware, or commercial tools, for ex-
ample Gramps [6] or MyHeritage [7]. These tools provide
a clear description of a situation when the user needs to
investigate direct ancestors and/or descendants of a given
person (often the so-called main or center person). The
main person is placed into the root of the tree. Thus, the
generation of the main person consists of only one person
and the size of other generations grows exponentially with
a branching factor often over 2. Therefore, the graphical

representation results in a triangular shape. Such a classi-
cal node-link tree representation wastes about one half of
the drawing area. There are other more space-efficient rep-
resentations such as fan charts or H-charts [8, 9, 10, 11].
As any pure tree representation enables any ordering of
node predecessors/successors, it is possible to specify the
type of ordering, such as children ordered by their birth
dates. It is also possible to extend any such tree represen-
tation with additional nodes that can be attached as single
nodes to any tree node (in the Gramps tool [6] this type of
graph is called a Relationship Graph). In this way a tree
with direct ancestors/descendants can cover, for example,
spouses/partners. Therefore, tree representations can be
laid out in such a way that family members are grouped
together. The obvious drawback of the pure tree represen-
tations is that selecting a different main person leads to a
different graph that must be rendered again.

However, the situation with family members grouping
changes significantly if the assumptions of one main per-
son and direct ancestors/descendants are dropped. In a
number of cases it is highly beneficial if the entire net-
work of families or at least a significant part can be dis-
played in one layout. Then we face issues with challenges
linked with edge crossing and preferences on node clus-
tering [12, 13, 14]. The genealogical tools often do not
provide such specialized visualizations. At present it is
possible to use methods dedicated to a general graph lay-
out. Hierarchical layouts are suitable for genealogical di-
rected graphs, for example, implemented and provided by
tools such as dot.exe (DOT) in Graphviz package [15]
or yEd [16]. Unfortunately, these tools, and others we are
aware of, do not support any kind of constraints that would
allow the setting of node cluster preferences. Based on our
own experience and observations made during our cooper-
ation with Egyptologists, the researchers prefer grouping
based on families.

Fig 1 depicts Nyankhkhnum’s and Khnumhotep’s fam-
ily reconstructed from the database of the Egyptian offi-
cials [17]. In this case, the layout was produced using the
yEd tool. Although it is possible to improve such a layout
manually, one cannot waste time redoing the layout for all
database families whenever the database is updated.

It is possible to group children or their parents (but
not both). Unfortunately, directed hierarchical draw-
ing methods such as the very good one implemented as
dot.exe [18] results in layouts with mixed generations
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Figure 1: A family tree component presented using a tree layout which is illustrative of Nyankhkhnum’s and
Khnumhotep’s family. The people rectangles contain additional information such as their titles.
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Figure 2: A sample private family tree consisting of 1671 people as rendered using the DOT tool without any further
constraints. Colored rectangles represent people (reddish women, blueish men). Ovals capture their marriages. Although
the visualization seems to be correct, there are many cases when people are moved into different generation layers and
many children from different families are mixed. The quality of the picture is decreased to keep family privacy.

and groups mixing several families. Such layouts are dif-
ficult to read and comprehend. We are not aware of any
method that would enable the definition and use of the
necessary constraints. In this paper we focus on several
principles that allow the determination of such constraints
and how such constraints can be managed. At least par-
tially, the proposed constraints can be mapped to addi-
tional graph specifications that result in the DOT algorithm
producing the required layout.

More specifically, we focus on two most critical aspects
discussed in [13] and dealing particularly with the first
two steps of the approach proposed in [18]: 1/ determi-
nation of generations (layers, node ranks), and 2/ enforc-
ing family grouping based on propagation of children and
marriage orders through generations. We propose several
approaches for handling such aspects and we provide ef-
ficient algorithmic solutions for them. Of course, one can
consider other aspects as well. In this paper we focused
only on these two.

The rest of the paper is organized in the following way.
In the next section we provide an algorithm that allows
setting ranks of nodes for an acyclic graph representing
a traditional representation of family tree using marriage
nodes. In the next section we design a method that allows
propagation of children and parent ordering across gener-
ations (ranks). Finally, we discuss some results achieved if
the constraints are mapped into DOT language and tested
on datasets with thousands of nodes.

2 Ranking of Genealogical Graph Nodes

Even a DOT graph specification does not contain any con-
straints on node layers. Its implementation ranks nodes as
proposed by many authors [13, 18]. In many situations the
result layout is produced as required, see Fig 2. Unfortu-
nately, the general criterion used in the DOT implemen-
tation leads to node placement breaking generation layer-
ing as it is usual and expected in genealogical graphs, i.e.
children of one family at the same level and similarly their
parents. The DOT language enables the specification that
a subset of nodes shares the same rank. The majority of
algorithms computing ranks are derived from the topolog-
ical order computation (O(n) time complexity) [19] and
select one of many possible solutions that satisfy layer in-
tervals of node placements. In this section we present an
algorithm, using which the ranks of nodes can be deter-
mined for any genealogical graph. A genealogical graph is
an acyclic bipartite directed graph G(VP,VM,E) with two
sorts of nodes, people VP and marriages/partnerships VM .
The edges E are directed from parent nodes to marriage
nodes and from marriage nodes to children nodes. With-
out loss of generality we can assume that the index of the
generation layer of parents (also denoted as ranks) is lower
than the index of their marriage node, and further that the
index of the marriage node is lower than the index of chil-
dren nodes.

In the following algorithm we assume that the pro-
cessed graph is directed and acyclic. Classical algorithms
start from a single node, the only one with no predeces-

220 R. Mařík



sors. Generally, a genealogical graph can consist of sev-
eral nodes without predecessors and several nodes without
successors. Let us use a convention that generation lay-
ers are identified by numbers λ (v) and successors have
higher levels. Each node is assigned an interval of gener-
ation levels at which the node can appear with regard to
a base level. The following proposed algorithm uses two
simple passes through a graph. Each node is assigned the
highest possible level with respect to the current highest
base level of successors during the first pass.

λ1(v) =

{
max(v,w)∈E λ1(w)−1 if v has successors
0 otherwise

Thus, the node(s) with the lowest level can be deter-
mined. A generation level for each node is set as the max-
imum level of the node predecessor levels increased by
one during the second pass. The second pass starts from
the nodes with the lowest level.

λ2(v)=





0 if v has the lowest level
λ2(w)−1 if w has predecessors

partially processed
(v,w) ∈ E and
λ2(v) is not assigned

min(w,v)∈E λ2(w)+1 if v has all predecessors
processed

Each node is visited twice during each pass using depth
first search (DFS) using an explicit LIFO queue. The first
visit ensures that all successors/predecessors are processed
already. When the node is visited again, its level is de-
termined as minimum/maximum of successors/predeces-
sors levels. As children from a single marriage have only
one common predecessor, the marriage node, they share
the same generation level. However, parent nodes can be
assigned to different levels. Nevertheless, the algorithm
guarantees that parents linked to a marriage node always
have a lower layer number than the marriage node and
children attached to the marriage node have higher layer
numbers than the marriage node. Any layout with nodes
placed in layers following, for example, increasing genera-
tion levels always has the same direction of all edges. The
edge layout direction cannot be reverted ever as it might
occur in methods based on a general optimization criterion
such as the one used in the DOT.

The algorithm uses two DFS passes with linear com-
plexity. Therefore, the time complexity is O(N), where N
is the number of graph nodes. Two arrays are used for the
maintenance of minimum and maximum levels for each
node. A DFS pass requires an implicit or explicit stack.
Different implementations of the stack, a graph represen-
tation, and the related DFS implementation can result in
different space requirements ranging from the maximum
depth of the acyclic graph (its diameter) to the number of
all nodes. The length of the queue in our implementation

is constrained by O(d ∗b), where d is the maximum depth
of the graph and b is the maximum branching factor. Both
d and b parameters do not cross value 15 in the majority of
cases (the maximum number of generations, the maximum
number of children/partners). Thus, the space complexity
is again in the range of O(N).

3 Same Generation Nodes Ordering

Using the state of art of graph layout techniques such as
those implemented in Graphviz [18] leads to results that
are almost acceptable, however, with some drawbacks.
Assuming that a genealogical graph is layered according
to the generation levels determined by the algorithm pro-
posed in the previous section, the main complaint stems
from mixing of children/partners from different families.
When several families linked through a partnership rela-
tionship are visualized, one can cluster either children or
partners, but generally not both. For example, Relation-
ship graph visualization implemented in the DOT creates
subgraphs of partners. Siblings from different families can
be mixed.

In this section we support the approach when siblings of
one family are clustered tightly while partnerships/parents
might be mixed. The obvious reason behind this variant is
that the number of children is much higher than 2, often
reaching values over 10. Thus, an injected edge crossing
because of mixed parents is much lower than when it oc-
curs when children are mixed, and families can be iden-
tified easily by a number of parallel edges leading from
marriage nodes to children nodes.

The problem of a layout design might then be reduced
to a determination of the order of people belonging to one
generation. We propose that children belonging to a sin-
gle family are ordered by their birth dates. Subtrees of the
child descendants, including descendant marriage nodes,
hold this order. In the opposite direction, i.e. from a mar-
riage node to its spouses, the order of spouses can be de-
termined according to birthdates of spouses. There might
be cases when two or more people from two or more dif-
ferent families create partnerships. In such situations we
cannot insist on the order of marriage nodes as the order
requirements might be contradictory, for example, in the
case of two families both with two children that creates
two marriages in the opposite order of their birthdates. We
would need other constraints to resolve them. In this pa-
per we provide only a simple solution based on a random
order of families. As these cases are not common, the re-
sulting edge crossing is acceptable. A more sophisticated
solution would create three sets of marriage nodes. The
middle set, consisting of nodes representing marriages of
children from both families and determining the order of
families, in a way minimizes edge crossing. The other two
side sets of marriages can follow the order of the two fam-
ilies and the order of their children. Nevertheless, the gen-
eral situation with more than one marriage involving two
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and more families is rather complex and is considered be-
yond the scope of this paper. We denote the defined order
of children and spouses as basic order subsequences.

The proposed solution is based on a propagation of ba-
sic order subsequences from lower levels of generations to
higher ones, and similarly in the opposite direction. A lin-
ear graph composed of a disjoint sequences of nodes be-
longing to a given generation layer is maintained. That
means, at a particular step of the algorithm, the set of
nodes belonging to the processed generation layer is de-
composed into a set of linear sequences. Each sequence
determines an order of its nodes that is kept unchanged. In
each propagation step, the nodes of a sequence in one gen-
eration layer are projected into their successor/predecessor
nodes in the next/previous generation layer. The result-
ing sequence is fused from sequences already defined in
the next/previous generation layer. In fact, any contradic-
tory order requirements leading to loops must be dropped.
We are aware that more sophisticated techniques of such
requirements dropping can be implemented and can lead
to better layouts. Nevertheless, our present basic solution
uses a strategy adding additional order constraints in a step
by step manner. If a requirement would create a loop, it is
dropped.

As the genealogical graph is assumed to be acyclic and
connected, the shortest trail linking any two nodes can
be found. Any triple of nodes spouse-marriage-spouse or
child-marriage-child defines the order of the two nodes.
As any two nodes in a given generation layer can be or-
dered, a single sequence of totally ordered nodes in each
single layer can be created. In other words, basic order
subsequences fully specify a topological order of all nodes
in the graph. Of course, different layouts can be achieved
if we select a different dropping criterion of redundant or-
der requirements.

Let us describe a propagation technique using just sub-
sequence structures. Initially, the sequence of siblings
based on their birthdates belonging to a family is com-
puted for each family with children. Similarly, a sequence
of marriage nodes is created for spouses with multiple
marriages. Then the process iterates from lower to higher
generations. In each iteration all edges of sequences from
the lower generation are propagated to edges linking the
related sequences in the higher generation.

It is obvious that the critical operation is the mapping
from nodes to sequences and linking of sequences. There
are several possible solutions. Firstly, a given genera-
tion layer of nodes can be represented as a directed graph.
Whenever we need the first or the last node of a sequence
to which a given belongs we can find it through a path
against or along the direction of edges, respectively. As
sequences get longer, the processing time of this operation
grows exponentially. Secondly, it is possible to maintain
a mapping from each node to its sequence first and last
nodes. Initially, each node references itself as the first and
the last node of a primitive sequence consisting of the node
itself. Whenever two sequences are merged, all its node

references of the first and the last nodes must be updated.
At present, our implementation uses this approach. We
do not perceive any performance issues if used on graphs
with several thousands of nodes. Thirdly, as merging of
sequences can be considered as a union of two sets, the
very efficient union-find algorithm can be used. Further-
more, we would need to maintain a reference to the first
and last nodes for each such union sequence representa-
tive node. We will describe this efficient method further in
this section.

A special treatment must be paid to linking of se-
quences. It is very easy to create a loop, for example, if
there are two families, one with two boys and one with
two daughters, and they create two families when the older
boy is married with the younger daughter and the younger
boy is married with the older daughter. In such a case we
have contradictory requirements for the order of marriage
nodes of young couples. If all such order requirements are
propagated, a loop in the order sequences is created. At
present we propagate an order requirement only if it does
not create a loop. Loops can be created over a merged se-
quence or over the input sequences. All possibilities must
be checked and avoided.

An actual efficient implementation of the propagation
method is not complicated, and it is rather simple using
a union-find technique and a binary tree. A sequence of
nodes is projected into the other sequence through order
edges linking subsequent nodes in the source layer. The
resulting destination sequence of nodes must be decom-
posed into subsequences already existing in the destination
layer. We can employ a combination of two techniques,
the union-find method with its fast searching for a subse-
quence (set) representing node and a binary tree structure
that is able to represent a subsequence as the preorder of
its leaves and to accomplish two subsequences merging by
adding a new binary tree root referencing the tree roots of
subsequences as its children (O(1) time). In other words,
the union-find structure maps the graph layer nodes into
their current maximum subsequence tree roots (O(α|V |),
where α is inverse Ackermann function [19]) and the se-
lected binary tree roots are then merged. Thus, processing
of any graph node can be performed in almost constant
time. The algorithm must make three passes through all
layers of the genealogical graph, i.e. each constraint must
be propagated fully in both directions. Thus, the over-
all asymptotic amortized time complexity is O(1+ ε). It
should be noted that subsequence merging using a binary
tree does not suffer from possibilities of creating loops as
each graph node is referenced just once and the binary tree
node always represents a properly oriented subsequence.

4 Implementation, Experiments, and
Discussion

We have not attempted to implement a completely new
acyclic genealogical graph layout algorithm. We precom-
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{ edge[style=invis]; node[style=invis]; "p0"->"p1"->"p2"->"p3";}

{ rank = "same"; "p0"; "I1436"; "I1221"; "I1140"; "I1073"; "I1141";}

{ rank = "same"; "p1"; "F0417"; "F0497"; "F0405"; "F0414";}

{ rank = "same"; "p2"; "I1185"; "I1417"; "I1224"; "I1236"; "I1152"; }

{ rank = "same"; "p3"; "F0477"; "F0415"; "F0413"; "F0475"; }

Figure 3: A snippet of a graph specification controlling node ranks.

pute the constraints on generation layers and node or-
ders in each generation. These constraints can be mapped
into a graph specification of some already implemented
tools. In particular, the DOT specification implemented
by Graphviz tools enables such extensions.

Constraints on generation layering can be mapped eas-
ily to rank directives of the DOT language. A special node
is created for each generation layer. The several additional
subgraphs are generated. The first subgraph determines
the sequence of generation layers using special generation
nodes. Both nodes and edges can be set with the attribute
style=invis so that these nodes and edges are not shown
in the generated drawing although they control the layout.
Then, other unnamed subgraphs are generated for each
generation layer with the attribute rank=”same” as a list
of node identifiers belonging to that generation prepended
with the node identifier of the given generation layer. A
snippet of such an additional DOT specification is shown
in Fig 3. The snippet also demonstrates how generations
of people with node identifiers starting with “I” are inter-
leaved with generations of marriages nodes starting with
“F”.

We selected two datasets for an evaluation of the pro-
posed constraints contribution. The first dataset consists
of 1671 people of the author’s private family relationship
genealogical graph. The set is created as a merge of sev-
eral family trees ranging over 14 generations with the first
records dated the year 1647. The second dataset con-
sists of 3057 people of the database created by Egyptol-
ogists [17]. The database covers high rank officials from
the 4th, 5th, and 6th dynasties and their families. One can
reconstruct over 160 families with up to 6 generations. The
database has been filled over ten years. Generated graphs
covering more families help greatly Egyptologists to as-
sess quickly investigated social phenomena.

The graph of the entire private family database was de-
picted on Fig 2. The layout was generated by DOT tool
when the graph specification contains only a description of
nodes representing people and marriages and genealogical
edges (links between partners and their marriages, links
between marriages and children). Although the overall ap-
pearance of the graph seems to be correct, there are seri-
ous deficiencies. Some parts of generations were moved
upwards or downwards. Thus, the generations are mixed.
In many cases, members of different families are mixed or
some children are placed with a different family even if it
causes obviously more edge crossing or longer edges.

When the constraints on generation layers are specified,
the DOT tool might create a layout holding the rank spec-
ifications as depicted on Fig 4. One can spot immediately
families as ovals followed by several rectangles. Not only
family members are close to each other, but also their par-
tial family trees are close, too. Unfortunately, one can
also identify heavy crossing among spouses from several
families with more children on the right side of the graph.
There is always a marriage couple linking two large fami-
lies together. An appropriate constraint avoiding such phe-
nomena was proposed earlier in this paper. However, it
must be properly combined with the computation of the
constraints for children order and marriage order. Also,
the solution must deal with a set of families that might
be linked in a pairwise manner. At present, we are ex-
perimenting with several techniques to propose their best
combination.

Experiments with families of the Egyptian database did
not exhibit any breaking of these specifications as the fam-
ilies are quite simple and not larger than 50 family mem-
bers.

A layout generated using the constraints proposed in
this paper only without any further influence of the DOT
tool is shown in Fig 5. The ranks of nodes were placed
uniformly in a horizontal direction while their nodes were
placed uniformly in a vertical direction. The nodes were
linked with straight-lined edges. The layout is created very
quickly (below 0.5 second with a Python script on DELL
XPS 13 using an Intel i7 2GHz processor.

Nevertheless, there are also other issues connected with
the DOT tool. The DOT tool takes the proposed order
of nodes only as initial advice that does not need to be
followed. Thus, if the DOT implemented criterion pro-
duces stronger values, it can break the specified node order
and the layout can be again very confusing. For example,
several ranks might be merged to save space if a gener-
ation layer is sparse. One might link children of a fam-
ily with directive subgraph, but there is no specification
on how ranking and subgraph specifications are combined
and how they worked together. We performed a number of
experiments with such more complex combinations with
rather unpleasant results. We are not aware of any other
tool that would allow a specification of a graph where one
part controls the layout and the other part is presented, i.e.
only coordinate positions of nodes are computed and edges
are routed.
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Figure 4: A visualization of the sample private family tree consisting of 1671 people if it is rendered using the DOT tool
with the constraints on node ranks and their order within their ranks. Green edges control the layout. The top sequence of
nodes defines ranking/generations. The quality of the picture is decreased to keep family privacy.

5 Conclusion

In this work we proposed two simple constraints on node
order with regard to their ranks and to their order in ranks.
The constraints produce graph layouts that are more ac-
ceptable for the user if they deal with large family trees
combining several trees into a single acyclic graph. In
fact, the constraints result in a fully specified topologi-
cal arrangement of the graph nodes in plane. The con-
straints can be computed very efficiently. The experiments
demonstrate clearly a significant improvement in graph
comprehension and indicate that the results provided by
the present state of the art tools are quite far from the op-
timum layout, at least for special sorts of graphs such as
genealogical ones.

The proposed constraints do not cover properly a situa-
tion when more families with many children and a larger
number of their mutual marriages are involved. Some hints
on a better treatment were provided, but the search for their
best combination is the current subject of our research.
The proposed approach performs well if genealogical data
resembles a composition of structures similar to trees with
occasional crossovers of large families with many chil-
dren.
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