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Abstract: Functional brain networks are networks created
with a help of fMRI measurements of the in vivo brain ac-
tivity [3], [4]. I elaborated a dataset, which contains func-
tional brain networks of young participants, healthy el-
derly participants and elderly participants with diagnosed
Alzheimer disease. All networks were measured at the
three different correlation thresholds.

In this paper I present a data driven mathematical model
of functional brain networks. It is based on the threshold
related shape of the degree distribution. The model is nu-
merically simulated and results of the simulation are com-
pared to the real dataset.

1 Functional brain networks

Functional Magnetic Resonance Imaging (fMRI) is a tech-
nique for gaining high resolution images of neural activity
in the brain [3], [4]). FMRI images are captured in a se-
ries of two dimensional slices, with each slice represent-
ing a cross section of the brain less than 10 mm thick. A
single slice is comprised of a rectangular grid of discrete
3D regions (3×3×10 mm) known as voxels (volumetric
pixels). A full 3D image of the brain is achieved by com-
bining these slices together. fMRI is an ideal technique
for deriving functional connectivity. One can ask to which
extend spatially distinct regions of the brain exhibit simi-
lar behavior over time. By modeling this functional con-
nectivity as a network, we can explore the ways in which
regions of the brain interact, and use techniques from the
graph theory to evaluate the topological characteristics of
these functional networks of interaction.

In this paper I used the brain fMRI data collected by
Buckner [1], (data set no. 2-2000-118W from the fMRI
Data Center: http://www.fmridc.org). The participants
were divided into three groups: healthy young (HY) par-
ticipants, healthy elderly (HE) participants and elderly
participants with diagnosed Alzheimer disease (AD) (AE
group). Structural and functional MRI data were acquired
from 41 subjects in total. The HY group had 14 subjects
(9 females/5 males) with the mean age 21.1 years (SD
2.0). The HE had 15 subjects (9 females/6 males) of the
mean age 75.1 years (SD 6.9). The AE group had 12 sub-
jects (7 females/5 males) of the mean age 77.1 years (SD
5.3). There was no statistically significant difference in the
mean age of the latter two groups.

The standardized data were then used in [3], [4] to cre-
ate functional brain networks for each participant in all
three groups. These data were further elaborated by me.

Functional brain networks, contrary to the structural
neuronal brain networks, are temporal networks. Certain
type of the functional brain network exists only during
that time, when the brain is involved in the cognitive task
and reflects the functional cooperation of different brain
areas. Since the smallest unit of the measured fMRI sig-
nal is an integrated signal of the neurons contained in one
voxel, voxels are thus natural candidates for the nodes of
the functional brain network. If the two voxels function-
ally cooperate (based on the underlying physical connec-
tivity), the measured signal is highly correlated over time.
To measure the amount of the signal correlation, the Pear-
son correlation coefficient is calculated for all the voxel
pairs:

r(i, j) = (1)

<V (i, t)V ( j, t)>−<V (i, t)><V ( j, t)>

(<V (i, t)2 >−<V (i, t)>2)
1
2 (<V ( j, t)2 >−<V ( j, t)>2)

1
2

where r(i, j) is the correlation coefficient, V (m, t) is the
measured activity in the m-th voxel at time t, and < . >
denotes the time averages. A link between the voxel pair
(nodes) is established, if |r(i, j)| > θ , where θ is a pre-
scribed correlation threshold. It is opted for an absolute
value of correlation, that is both strongly positively and
strongly negatively correlated voxels are included in the
functional network, because the functional interaction be-
tween neurons can be either positive (excitatory) or nega-
tive (inhibitory). In any case, by nature, such created net-
works are unweighted and undirected, because correlation
is a symmetric function. That means, that the node degree
is simply a number of the closest neighbors.

Simple measures, that characterize the network in gen-
eral are averages: such as average degree, density, average
shortest path, average clustering coefficient, etc. Usually,
these simple measures are not sufficient and one have to
rely on distributions, such as degree distribution for exam-
ple, to acquire more detailed network properties.

2 Data analysis

In this section I complete a basic network analysis of the
measured data, already done and published by [3], [4].
The networks are constructed with respect to the three
different correlation thresholds, namely θ1 = 0.819398,
θ2 = 0.899876 and θ3 = 0.962249. McCarthy et al. [3],
[4] have calculated average properties, i.e. number of
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nodes, density, degree, clustering coefficient, path length,
local and global efficiency, small world index, assortativity
for all classes of functional networks. These values were
compared across each of the three groups, in order to find
differences related to the age and the presence of AD. I
concentrated my attention to the degree distributions in all
three groups of participants at each of the three thresholds.
The reason is, that the dynamical functional brain network
model is based on this.

First, the whole brain networks of the healthy young
(HY) participants are described. Then I mention also the
other participant groups. At the beginning I have to state,
that network is scale free if it has a power law degree dis-
tribution (4). .

For the lowest correlation threshold θ1 = 0.819398 one
can see in Fig. 1, that the degree distribution does not have
a power law character. Thus, the functional brain networks
are not scale free and the tail of the distributions is not
long enough to estimate the power law scaling exponents
correctly.
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Figure 1: HY group. Degree distribution for the functional
brain networks at the lowest threshold θ1 = 0.819398.

For the correlation threshold θ2 = 0.899876 the degree
distribution reveals more pronounced power law tail , with
the average scaling exponent γ2

HY = −1.14 (see Fig.2).
The scaling exponent is calculated as an average of all
scaling exponents of all distributions for the threshold in
question.

The situation changes dramatically for the highest cor-
relation threshold θ3 = 0.962249. The functional brain
networks now have a well defined scale free structure, re-
flected in the power law degree distribution with the aver-
age scaling exponent γ =−1.36 (see Fig.3) with the indi-
vidual differences in the interval [−1.7812,−0.9346].

The same statistical distributions as for the previous
group were analyzed for the HE group of participants. For
the lowest correlation threshold θ1 the degree distribution
shows similar features as in the group of the healthy young
participants, with the exception, that the individual differ-
ences are more pronounced.
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Figure 2: HY group. Degree distribution for the functional
brain networks at the middle threshold θ2 = 0.899876.
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Figure 3: HY group. Degree distribution for the functional
brain networks at the highest threshold θ3 = 0.962249.

For the medium threshold θ2 the degree distribution re-
veals more pronounced tail in the log–log plot and shows
more variability in individuals then the similar degree dis-
tribution of the HY group. Statistical analysis of the net-
works generated for the highest threshold θ3 shows that the
degree distribution seems to be scale free, but with more
individual differences than in the HY group. Average scal-
ing exponent is γHE = −1.3609 and all individual scaling
exponents are in the interval [−2.0396,−1.0500].

We have also analyzed the functional brain networks
of the elderly people with diagnosed mild or very mild
Alzheimer disease (AE group) for all of the three thresh-
olds. In comparison to the first two groups, namely HY
and HE, we have noticed greater individual differences.
Even for the highest threshold not all of the networks are
scale free.

For the θ1 correlation threshold, the networks are not
scale free, There are more pronounced power law tails of
the degree distributions at the θ2 correlation threshold and
the average scaling exponent is γ2 = −0.8641. Four (out
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Figure 4: HY group. The best fit of the model at the
θ2 threshold. Parameters: a = 1.3957, b = 0.0013, a1 =
3.7477, b1 = 243,1351.

of 12) individual distributions do not have the power law
tail at all for this threshold.
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Figure 5: HY group. The best fit of the model at the θ1

threshold. Parameters: a = 12.2377, b = 1.7657, a1 =
14.4403, b1 = 888,3863.

At the highest threshold (θ3), the degree distribution of
the majority of networks has a power law character. The
exception is one outlier. The average scaling exponent is
γ3 =−1.3429 (interval [−2.1867,−0.8046].)

3 Model of the functional brain networks

There are only a few papers, which attempt to model
the dynamics of functional brain networks. For exam-
ple Portillo and Gleiser [5] developed an adaptive com-
plex network model, where different anatomical regions
in the brain are represented by microscopic units, dynami-
cal nodes. They start from a small random network, which
grows by the addition of the new nodes with fixed number
of connections. The newcomers are linked at random, but

then the connections are adaptively rewired according to
coherence. The state of the system is calculated at each it-
eration, and the evolution of nodes is given by the dynam-
ical equation describing a set of non-linear phase oscilla-
tors. The global and local rewiring process depends on the
current state. Gleiser and Spoormaker later adapted this
model to model the hierarchical structure in the functional
brain networks [2]. A different principle to model func-
tional brain networks has been used by Vértes and others
[6]. They proposed a model incorporating the factor of
economy governing a link establishment. The topology
of functional brain networks emerges from the two com-
petitive factors: a distance penalty based on the cost of
maintaining long range connections and a topological term
favoring links between brain regions sharing similar input.
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Figure 6: HY group. The worst fit of the model at the
θ2 threshold. Parameters: a = 1.8655, b = 0.0000, a1 =
3.6148, b1 = 528,5197.

In this paper I follow a different principle. Similar pic-
ture, as with changing the correlation threshold in our
analysis, is described in Scholz et al. [7] for the noisy
scale free networks. The authors started from a network
with pure scale free degree distribution. Then, after fix-
ing the number of nodes to N0, and also the initial number
of edges to L0, this network is disturbed by some type of
noise: i.e. random link removal, random link exchange
and random link addition. The authors have studied, how
the degree distribution drifts from the power law character
with increasing the noise (randomness) in the network.

I observed the same pattern, namely, that the lowering
of the correlation threshold is analogical to increasing the
probability of addition of random links in the functional
networks, which in turn causes, that the degree distribution
is not power law any more. The situation can be described
as follows: To utilize a view of coming nodes at each time
unit, common in the growing network models, I relate time
and threshold. One starts at the highest threshold θ3 (time
t0 = 0), where the network is scale free having N0 nodes,
L0 edges and the power law degree distribution. Then the
threshold is lowered as the time flows. New nodes and
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edges are added to the network by both – a preferential
and random linking. We suppose, that the threshold dis-
crete and infinitesimal “jumps" can be accommodated in
such a way, that only one new node and on average the
same number of new edges appear per iteration. Each new
node brings a1 new edges, which are linked preferentially
and a edges which are linked randomly. The total amount
of edges brought by one node in each time step is there-
fore a+ a1. Simultaneously another process takes place.
As the threshold decreases (time flows), some correlations
between the couples of nodes already present in the net-
work become significant. Therefore new edges are dis-
tributed randomly (b) and preferentially (b1), respectively,
among the nodes being already in the network.

Thus, unlike in the model of Scholz et al [7], the net-
work grows in the number of nodes and edges as well.
Because the network at the highest threshold, which corre-
sponds to time t0, is scale free, it is supposed, that the real
correlations between voxels construct scale free structure,
which is, as the threshold lowers (time grows), disturbed
by the accidental correlations (links). These correlations
are caused either by the real influence between the two
voxels or by an accidental resemblance of the two mea-
sured signals. As we know from the theory of growing
networks, scale free degree distribution is created by the
preferential attachment [8].
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Figure 7: HY group. The worst fit of the model at the
θ1 threshold. Parameters: a = 6.8756, b = 0.0600, a1 =
6.9720, b1 = 824,4624.

The equation describing the above mentioned dynami-
cal processes in the model is:

P(k, t +1) = pk,k−1(t)P(k−1, t)+(1− pk+1,k(t))P(k, t)
(2)

In (2) the transition term pk,k−1(t) reads:

pk,k−1(t) =
a+2b

N0 + t
+

(a1 +2b1)(k−1)
2L0 +A(t)

, (3)

where A(t) = 2(a+b+a1 +b1)t.

In (2, 3) P(k, t) is the normalized number of nodes hav-
ing the degree k at the time (threshold) t. In (3) N0, L0 de-
note initial number of nodes and edges, a,b are the number
of randomly added edges per iteration, where a is the num-
ber of edges fetched by a new-coming node and b is the
number of edges added between an older network nodes.
Similarly a1,b1 denote the number of edges by which a
new node links preferentially (a1) to the network and b1

is the number of edges linking older nodes preferentially.
The transition term pk+1,k(t) describes, how the number of
nodes having the degree k changes due to the above men-
tioned dynamical processes. The first term of the equation
(2) is a gain term and the second one is a loss term. In the
model, it is neglected what happens with the other links,
the attention is payed to the fact how the link addition af-
fects the degree k (2, 3) .

4 Results of numerical simulations

The model (3) have been simulated numerically. Each
simulation have been attempted for all functional brain
networks for all the three groups of participants and com-
pared to the data at the thresholds θ2 and θ1. The best,
and the worst fits for the HY group of participants and for
each threshold are presented here at figs 4 - 7 together with
the best fits for the HE and AE groups (figs 8 - 11). The
networks, which were excluded, and the reasons why they
were excluded, are to be explained later.

First the experimental data have been used to find the
parameters c and γ in the power law distributions at the
highest threshold θ3 (4). This threshold, in the threshold –
time view, corresponds to the initial time t0 = 0, i.e.:

P(k) = ckγ (4)

Both parameters c and γ are derived from the data. The
power law distribution function at the highest threshold
has been normalized by the constant n (based on the data)
calculated from the equation

n =
∫ ∞

1
P(k)dk. (5)

and it has been checked whether the sum of all probabili-
ties of the initial distribution is close to one after the nor-
malization. The networks, for which the integral (5) does
not converge (in a case −1.0 < γ < 0.0 ) were excluded.
Here γ is a scaling exponent of the power law degree dis-
tribution (4) at the highest threshold.

In the numerical simulations I first applied the model
to model the transition between the two highest correla-
tion thresholds, namely θ3. and θ2 of the functional brain
networks. Each model has been iterated N2–N0 times (be-
cause at each time unit only one node appears) for the de-
fined set of parameters a, a1, b, b1. N0, N2 denote the
number of nodes at the initial time (threshold θ3) and at
the time t2 corresponding to the lower correlation thresh-
old θ2. These numbers of nodes I have from the data. In
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Figure 8: HE group. The best fit of the model at the
θ2 threshold. Parameters: a = 2.6028, b = 0.0000, a1 =
2.5687, b1 = 313,4685.

each time step (a discrete small threshold change) a fixed
number of edges is added, namely (L2−L0)

(N2−N0)
, where L2 is the

number of network edges gained from the measured data
at the threshold θ2 and L0 is the initial number of edges.
To find the best set of parameters a, b, a1, b1 we used
the hill climbing algorithm, in which the mean square er-
ror between the measured and simulated datasets has been
calculated. From the best fit parameters in the current sim-
ulation fifteen new sets of parameters have been derived by
slight perturbations of the currently best fit parameter set.
This is a standard procedure in the hill climbing algorithm.
The hill climbing algorithm has been iterated 800 times .
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Figure 9: HE group. The best fit of the model at the
θ1 threshold. Parameters: a = 9.3095, b = 1.7183, a1 =
12.3784, b1 = 3167,9538.

Second, I do the same job as before to model the data at
the threshold θ1. The only difference is, that the hill climb-
ing algorithm has been iterated N1−N0 times, where N1 is
the number of nodes at the lowest threshold θ1 . Also the
number of edges added in each threshold jump (time step)

is different, namely (L1−L0)
(N1−N0)

, where L1 is the number of
edges in the functional brain network created at the lowest
threshold θ1. N1, N0, L1, L0 are estimated from the data.

Because of the lack of place I present here the more
complete results for the HY group only. The best fits in
this group at the thresholds θ2, θ1 are seen at figs (4, 5).
The worst fits for the HY group at the threshold θ2 , θ1

are depicted at figs (6, 7). The best fits for the HE and AE
groups are presented at figs 8 - 11. The comparison of the
groups is described in the discussion.

5 Summary and discussion

In this paper functional brain networks created at the three
different correlation thresholds were analyzed. The net-
works have been measured in a three different groups of
participants, namely the HY (healthy young), HE (healthy
elderly) and AE (elderly with the Alzheimer disease)
group.
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Figure 10: AE group. The best fit of the model at the
θ2 threshold. Parameters: a = 0.1516, b = 0.0000, a1 =
2.0920, b1 = 228,0264.

As a first steps a check at which threshold the networks
are scale free and how they change with the threshold
changes is performed. For this reason the degree distri-
bution for each participant at each correlation threshold
has been created and looked for the power law tails. It has
been found found that:

• In general, the degree distributions of the functional
brain networks changes with the threshold. At the
highest threshold θ3 the degree distributions are scale
free with well developed power law tail (fig. 3). As
the threshold decreases, the degree distributions are
changing and the power law tails are less pronounced.
That means, that the network looses its scale free
structure (figs. 1, 2).

• There are significant intergroup differences in the de-
gree distributions at each threshold. For example, at
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the highest threshold, the power law tails are less pro-
nounced in the AE group in comparison to the HY
and HE group. In one case there is no power law tail
at all in the AE group.

• There are also individual differences in the functional
brain network degree distributions in each group at
each threshold. These individual differences are most
significant in the AE group. The HY group exhibits
the most coherent behavior. In this group my dynam-
ical model is most successful in fitting the data cor-
rectly.
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Figure 11: AE group. The best fit of the model at the
θ1 threshold. Parameters: a = 8.2092, b = 0.0000, a1 =
15.5483, b1 = 1232,3125.

The reason of these studies was to get an insight into the
in group and inter group differences in order to create an
appropriate mathematical model. The overall picture was
very similar to the one produced by the model of the noisy
scale free network with randomly added edges Scholz et
al [7].

As a second step a model of the functional brain net-
works has been suggested. Its detailed description is in
the previous section. The model describes the dynamical
processes which occur in the growing noisy, initially scale
free, network. The noise in the model is due to the ran-
dom distribution of a constant number of edges among a
nodes being already in network. On the other hand, the
preferentially distributed edges among the nodes already
in network, support the scale free structure. The network
also grows by the node addition, each node brings a con-
stant number of a new edges, which are distributed either
randomly or preferentially.

Due to the fact, that the original data in the HY group
were the least noisy and exhibit the greatest coherence of
behavior, the model gives the best results for this group.
The measured data in the other groups (HE, AE) were
rather noisy which influenced also preprocessing and net-
work creation itself [3] [4]. The model gives less accurate

fits in these groups, although they are qualitatively in an
accordance with the data.

In conclusion, I would like to point out, that the same
model accounts for the data from the HY, HE and AE in-
dividuals. This means that there might be a universal prin-
ciple how the brain dynamically organizes its functional
networks regardless of the age and/or onset of a neurode-
generative disease. This is a prediction arising from the
model, which however needs further testing. For example
the model could be enriched by taking into account a fact,
that only one edge can be added at a time step to a cer-
tain node. The others should be added elsewhere. If such
model will perform better, it is possible to test another one,
allowing two, three... edges to be added in one time step
to the same node. This is, however, left for further studies.

Regardless brain functional network, I think, that the
mathematical model of growing noisy scale free network
can be interesting itself as well. There might be another
situations in reality to which such model can be applied.

I would like to thank prof. Beňušková for careful read-
ing of this text. I am also grateful to doc. Rudolf for many
discussions.
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