ITAT 2016 Proceedings, CEUR Workshop Proceedings Vol. 1649, pp. 42—-47
http://ceur-ws.org/Vol-1649, Series ISSN 1613-0073, © 2016 T. Jelinek

A
ITAT

Partial accuracy rates and agreements of parsers: two experiments with
ensemble parsing of Czech

Tomas Jelinek

Charles University, Prague, Czech Republic
Tomas.Jelinek@ff.cuni.cz

Abstract: 'We present two experiments with ensemble
parsing, in which we obtain a 1.4% improvement of
UAS compared to the best parser. We use five parsers:
MateParser, TurboParser, Parsito, MaltParser a MST-
Parser, and the data of the analytical layer of Prague De-
pendency Treebank (1.5 million tokens). We split training
data into 10 data-splits and run a 10-fold cross-validation
scheme with each of the five parsers. In this way, we ob-
tain large parsed data to experiment with. In one exper-
iment, we calculate partial accuracy rates of each parser
according to a list of parameters, which we then use as
weights in a combination of parsers using an algorithm for
finding the maximum spanning tree. In the other experi-
ment, we calculate success rates for agreements of parsers
(e.g. Mate+MST vs. Turbo+Malt), and use these rates in
another combination of parsers. Both experiments achieve
an UAS above 90.0% (1.4% higher than TurboParser), the
experiment with accuracy rates achieves better LAS.

1 Introduction

For some tasks in NLP (such as corpus annotation, cre-
ation of gold standard using human corrected parser output
etc.), the accuracy of dependency parsing is far more im-
portant than parsing speed. For such cases, ensemble pars-
ing (the combination of several parsers) may do the best
job. In this paper, we present two experiments with en-
semble parsing, in which we obtain a 1.4% improvement
of UAS compared to the best parser. We use five parsers
and the data of the analytical layer of Prague Dependency
Treebank. We run a 10-fold cross-validation scheme over
the training data with each of the five parsers. In this way,
we obtain large parsed data to experiment with. In one
experiment, we calculate partial accuracy rates of each
parser (e. g. the proportion of correct attachments of a to-
ken with a given POS to another token), which we then use
as weights in a combination of parsers. In another experi-
ment, we calculate a success rate for agreements of parsers
(e. g. Mate+MST vs. Turbo+Malt), and use these rates in
another combination of parsers.

We focus only on Czech, as our main goal is to create a
well parsed Czech treebank, but we plan to test our ap-
proach on other languages, in subsection 6.3 we enumer-
ate the steps necessary to reproduce our experiments on

The work has been supported by the grant 16-07473S (Between
lexicon and grammar) of the Grant Agency of the Czech Republic.

other languages.

Similar experiments with ensemble parsing have been per-
formed, e. g. [3] and [2] for the first experiment and [10]
for the second one.

2 Parsers and data

In our experiments with ensemble parsing, we use five de-
pendency parsers: TurboParser [6], a dependency parser
included in Mate-tools [1] (MateParser), Parsito [9], Malt-
Parser [8] and MSTParser [7]. The experiments are based
on the data from the analytical layer of Prague Depen-
dency Treebank[4] (PDT: 1.5 million tokens, 80.000 sen-
tences). PDT data are split into training data (1.170.000
tokens), development test data (dtest, 159.000 tokens) and
evaluation test data (etest, 174.000 tokens). We performed
morphological tagging of the data using the Featurama
tagger' with a precision of 95.2%. One of the parsers,
Mate-tools, does its own tagging, with a slightly lower pre-
cision of 94.1%.

In the two following sub-sections, we describe two steps
we take before the training of the parsers and parsing in
order to improve parsing accuracy. They are not directly
related to the subject of this paper, but they influence the
results of the experiments.

2.1 Text simplification tool

In previous experiments with parsing, we found out that
parsing accuracy can be significantly increased by reduc-
ing the variability of the text.

In the process of training, the parsers create a language
model based on the training data. Because of phenom-
ena like valency the parsers cannot rely on morphological
tags only, they need to consider lemmas (and occasionally
forms) of the tokens. But the data are sparse, in PDT 45%
of lemmas occur only once and many more Czech lem-
mas are completely out-of-vocabulary. Consequently, the
model formed by the parser is incomplete which limits the
quality of parsing new text.

We have devised (see [5]) a partial solution to this prob-
lem: a text simplification tool. In many syntactic construc-
tions, the choice of any lemma inside a group of words
yields the same dependency tree: president Clinton / Bush
/ Obama declared. We identify members of about fifty

ISee http://sourceforge.net/projects/featurama.

Partial Accuracy Rates and Agreements of Parsers: Two Experiments With Ensemble Parsing of Czech

43

such groups of words with identical syntactic properties
and replace them with one representative member for each
group. The text loses information (kept in a backup file),
but the reduced variability facilitates parsing. Both train-
ing and new data are simplified. The variability of lem-
mas in text is reduced by approx. 20%, resulting in an
increase of parsing accuracy of 0.5-1.5% (some parsers,
e. g. Malt, benefit more from text simplification than oth-
ers, e. g. MST). Mate-tools lemmatizes and tags the text it-
self, and therefore it could not use our simplification: only
a limited simplification of the raw data (based mostly on
word forms) is performed.

2.2 MWE identification and replacement

We use a list of multi-word expressions with suitable syn-
tactic properties and replace them in the text (both train-
ing data and new text to be parsed) by one proxy item.
This replacement can be only if either there cannot be any
tokens dependent on any member of the MWE, or it is
known to which token of the MWE each dependent to-
ken has to be attached. Our list of MWESs includes com-
pound words, e. g. compound prepositions such as v sou-
vislosti s ‘relating to’, phrasemes/idioms (leZet ladem ‘lie
fallow’) and multi-word named entities (Kolin nad Rynem
‘Cologne upon the Rhein’).

2.3 Parsing the training data

In order to obtain detailed information on the behavior of
the parsers, we parse all the training data (1.2 million to-
kens) using a 10-fold cross-validation scenario (the train-
ing data are split into 10 parts, we use 90% as training
data and 10% as test data in 10 iterations) with each of the
five parsers. Using these data, we test two approaches to
ensemble parsing.

2.4 Parsing the test data

All five parsers were also trained on the whole training
data (1.2 M tokens) and used to parse PDT dtest and etest
data (approx. 150.000 tokens each). The output of the
parsers was then merged in one file to allow experiments
with ensemble parsing. Table 1 shows the accuracy of the
parsers on PDT etest data. Four accuracy measures are
shown: UAS and LAS (unlabeled and labeled attachment
score for single tokens), SENT_U and SENT_L (unlabeled
and labeled attachment score for the whole sentences).
TurboParser achieved the best UAS score (88.63%), but
performed only slightly better than MateParser, which has
all four scores very high (TurboParser has comparatively
poor labeled scores).

3 Analysis of merged parsed data

The results of the parsing by the five parsers of all the data
(train data, dev. test, eval. test) are merged in three files.

Table 1: Accuracy of the parsers (etest)

UAS LAS SENT_U SENT_L
Mate 88.58 83.09 45.87 33.77
Turbo 88.63 82.37 44.86 28.75
Malt 86.74 81.32 42.40 32.68
Parsito 86.71 81.42 41.81 32.65
MST 86.41 79.30 38.93 24.64

We use merged train data to gather information on the be-
haviour of parsers for the purpose of the ensemble pars-
ing experiments, dev. test is used for fine-tuning both ap-
proaches, eval. test is used for final testing.

In this section, we provide a brief analysis of the parsed
data based on the dev. test. We count how frequently the
parsers agree among one another and what the accuracy
corresponding to the occurrences is when a given num-
ber of parsers agree. We calculate a hypothetical floor and
ceiling for the accuracy rates (UAS, LAS etc.) of any en-
semble parsing experiment using these data. We detect and
count potential cycles in the data.

3.1 Agreements and disagreements of parsers

In the dev. test data, we calculate how often any given
number of parsers agree on a dependency relation (unla-
beled scores) or on a dependency relation and a depen-
dency label (labeled scores), then we calculate the accu-
racy rate of the dependency relation chosen by the highest
number of parsers. For example, we find 8330 tokens for
which any three parsers agree on one dependency relation
and two other parsers agree on another one (“3+2” in Ta-
ble 2), and the proportion of correct tokens chosen by three
parsers in these 8330 tokens is 56.95%.

Table 2 and 3 present these statistics for unlabeled and la-
beled relations, respectively. The first column indicates the
size (number) of agreeing groups of parsers (‘5 means all
parsers agree, ‘“2+2+1” means two parsers agree on one
dep. relation, other two parsers agree on another one, one
parser has chosen a third possible dependency relation).
The second column shows the number of such occurrences
in dev. test data. The third column shows the accuracy, i.
e. the portion of correct dep. relations chosen by the high-
est number of parsers; for “2+2+1” and “1+1+1+1+1", the
number expresses the accuracy of a random choice (num-
ber of occurrences when at least one of the two pairs or
five individual parsers is correct divided by two or five,
respectively).

For 88.68% of the tokens, four or five parsers agree on
an unlabeled dependency relation, with an unlabeled accu-
racy rate of 94.99%.

For labeled agreements, the parsers disagree more fre-
quently and the accuracy is lower, but for the majority of
tokens, 83.24%, four or five parsers agree, with a labeled
accuracy of 92.59%.

44

T. Jelinek

Table 2: Unlabeled agreements of parsers (dtest)

Agree Occurrences Accuracy
5 123751 97.32
4+1 17215 78.32
3+2 8330 56.95
3+1+1 4515 58.51
242+1 2830 35.38
2+1+1+1 2003 35.90
1+1+1+1+1 318 14.33

Table 3: Labeled agreements of parsers (dtest)

Agree Occurrences Accuracy
5 111083 95.90
4+1 21237 75.31
3+2 10221 54.59
3+1+1 7058 54.61
2+2+1 4117 33.57
2+1+1+1 4133 32.71
1+1+1+1+1 1113 11.16

3.2 Floor and ceiling

We calculate a hypothetical floor and ceiling for any en-
semble parsing experiment using these data: the floor is
the worst possible outcome of any experiment (every to-
ken, for which at least one parser has an incorrect dep.
relation (or label) is considered incorrect), the ceiling is
the best possible outcome (if at least one parser has found
the correct dep. relation, the token is counted as correct).
We calculate also the floor and ceiling for a simple com-
bination of parsers, in which the dependency relation (or
a labeled dep. relation) for which the most parsers agree
is always taken. Only if all parsers disagree or two pairs
of parsers disagree, the incorrect attachments are counted
for the floor of the combination and correct attachments (if
any) are counted for the ceiling of the combination.

In neither case, the cycles formed are counted or resolved,
therefore the numbers do not reflect accurately the possi-
bilities of a real ensemble parsing experiment.

Table 4 shows the accuracy rates for the floor and ceil-
ing of any experiment and of a simple combination. The

Table 4: Floor and ceiling for ensemble parsing (dtest)

UAS LAS SENT U SENT_L
Floor any 75.76 67.02 25.95 16.84
Floor comb. 89.34 83.86 46.29 33.46
Ceiling comb. 90.75 85.99 48.74 36.12
Ceiling any 9572 92.55 69.03 55.27

difference in accuracy measures between the floor and the
ceiling of the simple combination is small, because a de-
cision has to be made only for approx. 2% of the tokens
(when all five parsers disagree or two pairs of parsers and
one single parser each choose a different dep. relation).

3.3 Potential cycles

We calculate also the number of sentences, where a com-
bination of the results of the five parsers may form a cy-
cle. If any unlabeled dependency relation proposed by any
parser can be chosen, the cycles can form in 46.35% of the
sentences. For the simple combination described above, a
cycle can form in 8.76% of sentences.

4 Ensemble parsing using partial accuracy
rates

Our first approach to ensemble parsing is based on the
observation (experimentally confirmed) that each parser
tends to make consistently the same types of mistakes
when using similar training and testing data. Using parsed
training data, we determine the strengths and weaknesses
of each parser and use them as additional input when com-
bining the parses of new sentences.

4.1 Partial accuracy rates

Based on the parsed training data, we calculate partial ac-
curacy rates for each parser, comparing parsed data with
the gold standard. These rates are calculated as the ra-
tio of correct attachments (and labels, in case of labeled
rates) of tokens with a given morphosyntactic parameter
(e. g. POS) in the total number of such tokens, partial ac-
curacy rates have values between 0 and 1. For example,
an accuracy rate 0.92 calculated for the MateParser for
the unlabeled parameter POS2POS with the value “NV”
means that among all dependency relations with nouns as
dependent tokens and verbs as governing tokens, 92% are
correct. Twelve parameters are calculated using more or
less fine-grained morphosyntactic and syntactic parame-
ters: overall accuracy of the parsers, POS of the depen-
dent token and POS of the governing token, the distance
between the dependent and the governing tokens (11 inter-
vals: distance O/root, 1, 2-3, 4-6, 7-10, 11 and more, de-
pendent to the left or to the right), POS and more detailed
morphological properties of the dependent token (subtype
of POS and case). There are approx. 1400 values alto-
gether for each parser (7000 values in the table of partial
accuracy rates).

Table 5 presents a fraction of the table of partial accuracy
rates: two values of the unlabeled parameter POS2POS
calculated for all five parsers. The value “NA” indicates
nouns attached to adjectives, as in plny ryb ‘full of fish’,
“NV” denotes nouns attached to verbs, e. g. chytil rybu ‘he
caught a fish’.

4.2 Ensemble parsing using the MST algorithm

These partial accuracy rates (of a chosen parameter or
combination of parameters) are used as weights of edges
in ensemble parsing, where all five parses of a sentence

Partial Accuracy Rates and Agreements of Parsers: Two Experiments With Ensemble Parsing of Czech

45

Table 5: Example of partial accuracy rates

Parser parameter un/lab value e. rate
Malt POS2POS UAS NA 0.769
Mate POS2POS UAS NA 0.796
MST POS2POS UAS NA 0.757
Parsito POS2POS UAS NA 0.741
Turbo ~ POS2POS UAS NA 0.810
Malt POS2POS UAS NV 0.898
Mate POS2POS UAS NV 0.921
MST POS2POS UAS NV 0.894
Parsito POS2POS UAS NV 0.903
Turbo ~ POS2POS UAS NV 0.909

are merged into one oriented graph. If some parsers agree
on an edge (dependency relation), the sum of the accuracy
rates of the parsers is used. An exponent can be also in-
cluded in the calculation of weights: it raises the accuracy
rate to the power of the chosen number (e. g. 0.741°), in-
creasing the differences between good and bad error rates,
as suggested in [3].

We use Chu-Liu-Edmonds’ algorithm to find the maxi-
mum spanning tree in the graph (see [2], p. 526), de-
termining the best outcome of the combination of depen-
dency parses of any sentence according to the chosen pa-
rameter. If parsers agree on a dependency relation, but
disagree on a dependency label, weights (labeled, even if
unlabeled parameter is chosen for edges) are also used to
determine the best label.

Using PDT dtest data, we run a series of experiments with
various parameters and combinations of parameters to de-
termine the best parameter and exponent to use for the cal-
culation of weights.

The results vary between the baseline (MateParser) and
a 1.4/1.7% increase in UAS/LAS. Table 6 shows six ex-
amples of ensemble parsing using PDT dtest data, with
various parameters (UAS/LAS and exponent for the best
results with the given parameter are chosen). The first col-
umn indicates the parameter used, the second one indicates
whether labeled or unlabeled attachments were used to cal-
culate error rates, the third column presents the exponent.
LAS, UAS, SENT _U and SENT _L scores are shown. The
accuracy scores of MateParser are included in the table as
baseline.

“ALL” parameter reflects the overall accuracy of each
parser (UAS or LAS score). “2POS” parameter is based
on POS of the governing token. “POS” parameter is based
on POS of the dependent token. “POS2POS” combines
both. “POSCASE” uses POS of the dependent token and
its case. “DIST” parameter expresses the distance between
the governing and dependent tokens (see subsection 4.1).
For each parameter (and some of their combinations), 18
tests of ensemble parsing were run, with labeled and unla-
beled accuracy rates and exponents of 1 to 9 (in our tests,
higher exponents than 9 never led to an increase in accu-
racy).

Table 6: Tests of parameters for ensemble parsing (dtest)

Parameter un/lab exp. UAS LAS SENT U SENT_L

MateParser 88.62 83.11 4591 33.79

2POS LAS 1 88.82 83.62 41.70 31.47
DIST UAS 2 89.67 84.09 46.01 32.98
ALL LAS 1 89.74 8443 47.20 34.17
POS LAS 4 89.82 8453 47.22 34.20
POSCASE LAS 2 90.02 84.76 47.51 34.54
POS2POS UAS 6 90.07 84.83 47.61 34.78

The best results were obtained with the parameter
POS2POS, unlabeled, with the exponent 6. For some
combinations of two or more parameters (for example,
POS:LAS+POSSUBPOS:LAS, with exp. 4 achieves an
accuracy of 89.83/84.55/47.24/34.26), we did get better
than average results, but no such combination has achieved
better accuracy in all categories than the POS2POS param-
eter.

5 Ensemble parsing using agreements of
parsers

Our second approach to ensemble parsing stems from the
observation of the interaction of parsers. Using the parsed
training data, we calculate how reliable parsers are in the
task of assigning dependency relations to tokens, when
they agree or disagree with other parsers. We sort pairs
and triples of parsers by their accuracy and use this piece
of information to choose the dependency relation deter-
mined by the most reliable combination of parsers. A sim-
ilar (simpler) approach was proposed in [10].

5.1 Accuracy rates of agreements of parsers

We start with a file containing the training data parsed by
all five parsers, the same way as in the case of our first
approach with error rates. From these data, we calculate
a reliability rate (accuracy) of “agreements” of parsers,
i.e. of instances when two or more parsers agree on a
prediction of a dependency relation for a token and some
other parsers disagree.

We count the number of occurrences when a group of
parsers (or just one single parser) chooses a dependency
relation for a token and another group agree on another (or
the others disagree), and the number of occurrences when
such a choice is correct. For example, there are approx.
10.000 cases when Mate, Turbo and MST agree on a de-
pendency relation for a token and Malt and Parsito agree
on another one. In 62.8% of such cases, the choice of the
three parsers is correct (identical to the gold standard). So
the “agreement” accuracy of Mate+Turbo+MST versus
Malt+Parsito is 62.8%. There are 7.000 cases when Mate,
Turbo and MST agree, and Malt and Parsito each choose
another dependency. In 61.2% of such cases, the choice of

46

T. Jelinek

the three parsers is correct. The “agreement” accuracy of
Mate+Turbo+MST versus Malt and Parsito (not agreeing)
is 61.2%.

Table 7 presents a part of the table recording the accuracy
of “agreements” of parsers. Scores for unlabeled relations
are presented (first column). The second column indicates
which parsers agree on a dependency relation, the third
column shows the agreement or disagreement of the other
parsers. The fourth column shows the accuracy score,
i. e. the ratio of correct dependency relations among
all occurrences of this combination of agreements. The
fourth column presents the number of occurrences. The
table is sorted by accuracy.

Table 7: Accuracy of “agreements” of parsers

Un/lab Parser(s) Other parsers Accuracy Occurr.

UAS all agree none 97.16 867999
UAS Malt+MST+Parsito Mate+Turbo 47.25 5543
UAS Mate+Turbo Malt+Parsito | MST 46.96 2329
UAS Mate+Turbo Malt+MST | Parsito 45.71 1426

UAS Mate+Turbo
UAS Mate+Turbo
UAS Mate+Turbo

Malt+MST+Parsito 44.70 5543
Malt | MST | Parsito 44.53 2237
Malt | MST+Parsito 44.34 1449

When using unlabeled dependency relations, any three
parsers agreeing outperform any pair of parsers. With la-
beled dependencies, one pair of parsers, Mate+Parsito, has
slightly better results when opposing the other three agree-
ing parsers.

5.2 Ensemble parsing using agreements of parsers

We sort agreements of parsers by their reliability and use
this information in a combination of parsers. In new sen-
tences (test data) parsed with all parsers, we detect for each
token, which parsers agree and which disagree, and we
choose for each token one dependency relation which has
the highest “accuracy of agreement” value, for example, if
Malt+MST+Parsito chooses one dependency relation for
the given token and Mate+Turbo chooses another one, we
choose the dependency indicated by the three parsers.
Should any cycle occur in the output of the combination
of parsers, the algorithm assigns a new governing token to
the member of the cycle with the lowest value of agree-
ments of parsers.

Unlabeled and labeled reliability of agreements of parsers
can be applied. If unlabeled scores are used, first the de-
pendency relation is determined, then the dependency la-
bel is chosen amid the labels proposed by parsers which
initially agreed on the dependency relation according to la-
beled agreement scores. If labeled scores are used, depen-
dency relation and dependency label are treated together
from the start.

Table 8 shows the results of both approaches (labeled and

unlabeled agreement scores).

Table 8: Accuracy of combinations of parsers (dtest)

Un/lab UAS LAS SENT_U SENT_L
Agreements LAS 88.58 80.89 46.07 29.62
Agreements UAS 90.11 80.55 47.67 28.53

The procedure using unlabeled accuracy scores of
agreements of parsers has better results in UAS, and the
difference between the LAS scores is low. The approach
using unlabeled agreements has very good unlabeled re-
sults (UAS, SENT_U), but comparatively poor labeled re-
sults (LAS, SENT_L).

6 Results

In this section, we summarize the results of our experi-
ments, we present our baseline and an hypothetical ceiling,
and we discuss parsing speed.

6.1 KEtest results

As the baseline for our results, we use the accuracy of
MateParser which has a slightly lower UAS than Tur-
boParser, but its labeled scores are far better. We calcu-
late a hypothetical floor and ceiling for the accuracy of the
combination of our five parsers (see 3.2). Table 9 shows
the results of our two experiments with ensemble parsing.
UAS, LAS, SENT_U and SENT_L scores are presented.
The best settings for our ensemble parsing methods (tuned
up on the dtest data) were tested on PDT etest data.

Table 9: Accuracy of combinations of parsers (etest)

UAS LAS SENT_U SENT_L
Floor 7452 65.33 26.54 17.61
MateParser 88.58 83.09 45.87 33.77
Error rates 90.04 84.77 47.57 34.70
Agreements 90.07 81.91 47.61 30.65
Ceiling 95.51 92.18 69.36 55.71

A 1.5% improvement in UAS and a 1.7% improvement
in SENT_U (unlabeled attachment score for the whole
sentences) compared to the baseline was achieved by both
ensemble parsing methods. As for labeled scores, the ap-
proach using error rates attained a 1.7% LAS and a 0.9%
SENT_L improvement, whereas the method using agree-
ments of parsers has worse labeled results than the base-
line (but better than the average of the parsers). The reason
for this difference lies probably in the more sophisticated
way in which dependency labels are chosen by the method
with error rates, which reflects better the strengths of the
parsers in the domain of dependency labels. The method

Partial Accuracy Rates and Agreements of Parsers: Two Experiments With Ensemble Parsing of Czech

47

of dealing with cycles in the experiment with the agree-
ments of parsers is perhaps also to blame, in the future, we
plan to use a maximum spanning tree algorithm, too.

6.2 Speed

We claimed in the introduction that parsing speed is not
important for some tasks in NLP, such as corpus annota-
tion. It can still be an issue when the data to be parsed are
large, even if most of the process can be parallelized.

We measured the speed of all five parsers and of the pro-
gram handling the combination of parsers on an Intel Xeon
ES5-2670 2,3GHz machine on the PDT etest data (approx.
8.000 sentences), using a single thread mode. Table 10
shows both speed (in sentences per second) and parsing
time (in seconds per sentence) for the five parsers we used
and for our ensemble parsing tools.

Table 10: Speed of parsers and ensemble parsing tools

Parser Speed Parsing time

(sent/s) (s/sent)
MateParser 2.08 0.48
TurboParser 8.33 0.12
MaltParser 0.47 2.12
Parsito 16.67 0.06
MSTParser 11.11 0.09
Ensemble error rates 25 0.04
Ensemble agreements 50 0.02

The speed of the whole process of ensemble parsing in
our experiments was determined by the speed of the slow-
est parser (MaltParser), which needs 3x more time per sen-
tence than all the other parsers together. The merging of
outputs of parsers and their combination (a perl program)
requires only a negligible amount of time. Excluding the
slowest parser would increase parsing speed considerably,
but it would significantly decrease parsing accuracy (only
0.2% UAS, but almost 1.0% SENT_L), it would be there-
fore better to try to replace MaltParser by another parser,
faster, but with good results in ensemble parsing. Malt-
Parser trained with liblinear algorithm instead of libsvim is
faster, but with far worse results in parsing PDT data.

6.3 Applicability to other languages

We did not test our approach on other languages because
of a lack of time and computational resources, we intend
to do that in the future. The most important points in the
procedure are: optimize four or five parsers, parse train-
ing data using 10-fold cross-validation, gather information
about the behavior and quality of the parsers from parsed
training data. Then train all parsers again using training
data and parse train data, merge parsing results and use
the previously gathered information (using morphosyntac-
tic parameters or agreements of parsers) in ensemble pars-
ing as weights using an algorithm for finding a maximum

spanning tree.

A 10-fold cross-validation over the whole data is also pos-
sible, but it would require a great amount of computational
resources, as it would necessitate 110 cycles of training
and parsing multiplied by the number of the parsers used.

7 Conclusion

In this paper, we have presented two methods of ensemble
parsing which both achieve a significant (1.4%) increase
in unlabeled attachment score compared to the best parser
used. The approach using error rates calculated for each
parser as weights in a combination of parsers using an al-
gorithm for finding the maximum spanning tree in an ori-
ented graph attains also very good labeled scores (1.7%
increase in LAS).

References

[1] B. Bohnet, J. Nivre, “A Transition-Based System for Joint
Part-of-Speech Tagging and Labeled Non-Projective De-
pendency Parsing,” in Proceedings of EMNLP 2012, 2012.

[2] N.D. Green, Improvements to Syntax-based Machine
Translation using Ensemble Dependency Parsers (thesis).
Faculty of Mathematics and Physics, Charles University,
Prague, 2013.

[3] N.D. Green, Z. Zabokrtsky, “Hybrid combination of con-
stituency and dependency trees into an ensemble depen-
dency parser” in Proceedings of ACL 2012, 2012.

[4] J. Haji¢, “Complex Corpus Annotation: The Prague De-
pendency Treebank,” in Simkova M. (ed.): Insight into the
Slovak and Czech Corpus Linguistics, pp. 54-73. Veda,
Bratislava, Slovakia, 2006.

[5] T. Jelinek, “Improving Dependency Parsing by Filtering
Linguistic Noise,” in Proceedings of TSD 2013, 2013.

[6] A.ET. Martins, M.B. Almeida, N.A. Smith, “Turning
on the Turbo: Fast Third-Order Non-Projective Turbo
Parsers,” in Proceedings of ACL 2013, 2013.

[7] R. McDonald, F. Pereira, K. Ribarov, J. Hajic, “Non-
projective Dependency Parsing using Spanning Tree Algo-
rithms,” in Proceedings of EMNLP 2005, 2005.

[8] J. Nivre, J. Hall, J. Nilsson, “MaltParser: A Data-Driven
Parser-Generator for Dependency Parsing,” in Proceedings
of LREC 2006, 2006.

[9]1 M. Straka, J. Hajic¢, J. Strakov4, J. Haji¢ jr., “Parsing Uni-
versal Dependency Treebanks using Neural Networks and
Search-Based Oracle,” in Proceedings of TLT 2015, 2015.

[10] D.Zeman, Z. Zabokrtsky, “Improving Parsing Accuracy by
Combining Diverse Dependency Parsers,” in Proceedings
of IWPT 2005, 2005.

