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Abstract: In the last 12 years, there has been a big progress
in the field of unsupervised dependency parsing. Different
approaches however sometimes differ in motivation and
definition of the problem. Some of them allow using re-
sources that are forbidden by others, since they are treated
as a kind of supervision. The goal of this paper is to define
all the variants of unsupervised dependency parsing prob-
lem and show their motivation, progress, and the best re-
sults. We also discuss the usefulness of the unsupervised
parsing generally, both for the formal linguistics and for
the applications.

1 Introduction

Dependency parsing is one of the traditional tasks in nat-
ural language processing. It gets a tokenized sentence as
input (in most cases, individual tokens (words) are labelled
by part-of-speech (POS) tags), and produces a rooted de-
pendency tree, in which the nodes correspond to words and
edges correspond to syntactic relations between the words.

Rule-based approaches of dependency parsing were
suppressed by the statistical dependency parsers, which
achieved better quality compared to the human annota-
tions. Important milestones in dependency parsing were
the CoNLL shared tasks in 2006 [4] and 2007 [22]. They
provided about 20 treebanks of different languages avail-
able in the same format. This became the standard for
measuring quality of dependency parsers in fact up to
now. 1

At the same time, there were efforts to develop a
parser that does not need any annotated data. The un-
supervised parsers infer the dependency structures based
on language- and tagset-independent properties of depen-
dency trees, which is mainly the low entropies of the
governing-dependent word pairs and low entropies of the
word fertilities (number of dependents).

One general motivation is to be able to parse languages
for which no annotated treebanks exist. Less sound mo-
tivation is to create a dependency structure which better
suits a particular NLP application, e.g. machine transla-
tion.

This is a survey paper about unsupervised dependency
parsers. Since different approaches have different moti-

1In recent years, many researchers work on a project called Uni-
versal Dependencies [21], a collection of treebanks for many languages
(51 treebanks and 40 languages in its current version 1.3), where the
morphological and dependency annotation styles are unified across the
languages.

vations, allow to use different kinds of data and different
amount of knowledge about them, they cannot be com-
pared because of different degree of (un)supervision. The
aim of this paper is to cluster the approaches to several
groups in which they are comparable and to show the most
important ones together with the results.

The paper is structured as follows: In Section 2, we de-
fine different unsupervised parsing problem settings and
summarize the motivations and advantages. Section 3 de-
scribes different evaluation measures developed for unsu-
pervised parsers. In Section 4, we go through the works
done in this field and describe the most important ap-
proaches. In Section 5, we compare the results across data,
parsers, and languages. Section 6 discusses generally the
usefulness of unsupervised parsing methods in linguistics
and in applications. Section 7 concludes.

2 Problem Settings

Some unsupervised parsing approaches use different kinds
of data for the grammar inference than others. What is
used in one is treated as not allowed kind of supervision
in another. We therefore categorize the approaches into
four groups. They are described in the following subsec-
tions and sorted from the least unsupervised (more data
and knowledge) to the most unsupervised (less data and
knowledge).

2.1 Using supervised POS tags and some knowledge
about them

In the first group of approaches, there are parsers that need
the sentences labelled by supervised POS tags, i.e. by a
manually designed tagset. On top of that they also some-
how utilizes the knowledge about the tagset. For example,
they know which tags are used for verbs and therefore treat
them differently through the grammar inference. This is
the main difference from the second group (Section 2.2)
and it is sometimes considered as a bit of cheating. If we
know the meaning of the POS tags, we could easily build
a simple rule-based parser, which would definitely not be
unsupervised. This also relates to so-called delexicalized
parsing, where the parser is trained on a different language
with the same POS tagset and the model can then be used
for languages without treebanks. This is however beyond
the scope of this paper. The approaches we assigned to
this group however use only a bit of such knowledge that
help the inferred structures to be in a required shape.
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2.2 Using supervised POS tags without any
knowledge about them

The majority of works describing unsupervised depen-
dency parsing utilize supervised POS tags without any
knowledge about them. In other words, the parsers take
the POS tags only as labels without any meaning. It is
a bit strange not to tell the parser anything, for example:
“ADJ are adjectives and often depends on the following
NOUNs”, if there is such possibility, however allowing
it would bring the parsers to the first group (Section 2.1)
whose unsupervisedness is sometimes disputable.

Nevertheless, what is more strange, is the usage of su-
pervised POS tags. The POS tags carry a lot of syntac-
tic information. Imagine a sequence of POS tags “ADJ
NOUN VERB PREP ADJ NOUN”. You would easily
build the most probable dependency tree. The motivation
of this problem setting may be:

1. We want to compare supervised and unsupervised
parsers operating on the same tagset.

2. We want to evaluate an unsupervised parser and, in
the future, we will use the unsupervised word classes
instead of the supervised tags on low-resourced lan-
guages and hope that it will work as well.

3. We have a language without treebank and we have
a POS tagger. However, we are not able to find the
meaning of POS tags used.

The third option is rather hypothetical. We always find
someone who speaks that language or have a parallel cor-
pus from which we could get basic meanings of individual
words and tags.

It is also worth to mention that almost all the experi-
ments and evaluation in the papers were done using gold
standard POS tags, i.e. the POS tags assigned manually
by human annotations. This is not surprising. While the
qualities of unsupervised parsers are substantially lower
than the qualities of supervised parsers, it is not worthy to
make experiments also with the predicted POS tags.

2.3 Using unsupervised POS tags

The lower attention was given to fully unsupervised
parsers using unsupervised POS tags (words classes). The
only source they use is raw text. The motivation is obvious
here: If we want to analyze a language without any manu-
ally annotated resources, we need exactly this approach.
Other motivation could be the need of having different
structures from that present in annotated treebanks. Ma-
jority of works here used the same parser as for supervised
POS tags (Section 2.2) and obtain the unsupervised POS
tags by some of the best word clustering tools available.

2.4 Direct parsing from raw text without POS tags

The last setting we describe is unsupervised parsing from
raw texts. Here we do not use any POS tags or word
classes. The only units the parser plays with are the words.
The results should be theoretically compared with the pre-
vious category (2.3), where unsupervised word clustering
is used. However, the word classes are typically inferred
on much larger text corpora than dependency trees are.
This approaches use therefore much less data for the in-
ference and that is why we assign them into a separate cat-
egory. Such approaches would be the most elegant way of
parsing, however, they naturally achieve very poor results.

3 Parsing Evaluation

The unsupervised parsing approaches sometimes differ
also in evaluation metrics. The standard attachment score
is sometimes found too strict to evaluate the inferred struc-
tures and therefore new, more tolerant metrics, are de-
signed. The following three evaluation metrics exists:

1. Directed attachment score (unlabeled attachment
score2) is a standard metric for measuring depen-
dency parsing quality. It is a percentage of words cor-
rectly attached to their parents. It does not allow even
the slightest local structural differences, which might
be caused just by more or less arbitrary linguistic or
technical conventions.

2. Undirected attachment score disregards the direc-
tions of edges and is therefore less biased towards
such conventions. For example, there is no difference
whether the parser attaches prepositions to nouns or
nouns to prepositions. Nevertheless, this holds for all
edges, including these with undoubted directions.

3. Neutral edge direction3 metric proposed by [24] is
even more tolerant in assessing parsing errors than
the undirected attachment score. It treats not only
node’s parent and child as the correct answer, but also
its grandparent.

Even though the alternative scores were proposed and
sometimes used, the majority of experiments were evalu-
ated by the directed attachment scores, probably because
of its simplicity and the tradition in the field and also be-
cause the other two did not prove to be substantially better.

4 Unsupervised Dependency Parsers

In this Section, we summarize and describe the most im-
portant works in the field of unsupervised dependency

2We do not want to use the abbreviation UAS for the unlabeled at-
tachment score here, since it could be mistaken for undirected attachment
score.

3http://www.cs.huji.ac.il/ roys02/softwae/ned.html
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parsing through the last 12 years. Even though there were
a couple of works before, the first paper with results better
than a chain baseline 4 was the Dependency Model with
Valence by Klein and Manning [13].

We first describe the methods using supervised POS
tags without any other knowledge (Section 2.2) in Sec-
tions 4.1 and 4.2, then we switch to other settings. A de-
tailed table with results over different methods and differ-
ent problem settings is shown in Section 5.

4.1 Dependency Model with Valence

We start with Dependency Model with Valence (DMV),
which was introduced by Klein and Manning [13]. It is
the most popular approach, which was followed by many
other researchers and improved in many ways. It is a gen-
erative model that generates dependency trees using two
submodels:

• Stop model pstop(·|tg,dir) represents probability of
not generating another dependent in direction dir to
a node with POS tag tg. The direction dir can be left
or right. If pstop = 1, the node with the tag tg cannot
have any dependent in direction dir. If it is 1 in both
directions, the node is a leaf.

• Attach model pattach(td |tg,dir) represents probability
that the dependent of the node with POS tag tg in di-
rection dir is labeled with POS tag td .

The grammar consisting of probability distributions
pstop and pattach is learned using the Expectation Max-
imization inside-outside algorithm [12]. The learning
is further improved by Smith et al. [26] and Cohen et
al. [8]. Headden et al. [11] introduce the Extended Va-
lence Grammar and add lexicalization and smoothing. Be-
sides the POS tags, the parser begin to operate with word
forms as well. Blunsom and Cohn [2] use tree sub-
stitution grammars, which allow learning of larger de-
pendency fragments by employing the Pitman-Yor pro-
cess. Spitkovsky [30] improves the inference using iter-
ated learning of increasingly longer sentences. Further
improvements are achieved by better dealing with punc-
tuation [32] and new “boundary” models [33]. Spitkovsky
also improves the learning itself in [31] and [34].

Mareček and Straka [16] use so called reducibility prin-
ciple to predict pstop probabilities for individual POS tags
from raw texts, add it to the Dependency Model with
Valence and use Gibbs sampling to infer the grammar.
In [19], they suppose that the function words, which can
be predicted by they shortness, have fixed low number of
dependents and move the parsing results even a bit higher.

4In the left or right chain baseline, each word is attached to the next
or previous one respectively.

4.2 Other approaches using supervised POS tagset

There are also approaches not based on DMV, even though
their models are not far from it. Mareček and Žabokrt-
ský [18] use a fertility to model number of children for
particular POS tags instead of the pstop model.

Sogaard [27] explores a completely different view in
which a dependency structure is among other things a par-
tial order on the nodes in terms of centrality or saliency.

Cohen et al. [7] do the grammar inference multilin-
gually on more languages. The data do not need to be
parallel, they only have to share the tagset. The inference
is then less prone to skew to bad solutions due to the lan-
guage differences.

Bisk and Hockenmaier [1] use the Combinatory Cate-
gorial Grammars for dependency structure induction.

4.3 Approaches using some knowledge about the
POS tags

The “less unsupervised” approaches utilizing an external
knowledge of the POS tagset reach often better attach-
ment scores than the previous approaches. Any additional
knowledge about the tags used can be very strong and
can change the inferred structures dramatically. For ex-
ample, Naseem et al. [20] follow Eisner [9] and make use
of manually-specified universal dependency rules such as
Verb→Noun or Noun→Adjective to guide grammar induc-
tion and improve the results by a wide margin. Mareček
and Žabokrtský [17] show that only the information that
“the POS tags for nouns are more frequent than the POS
tags for verbs” very much improves the baseline. This
however fails for example in case the POS tags for nouns
are subcategorized in some way. Then we would need to
know which POS tags are for nouns and group them to-
gether. Rasooli and Faili [23] identify the last verb in the
sentence, minimize its probability of reduction and push it
to the root position, and also make a huge improvement.

Such approaches achieve better results; however, they
are useless for grammar induction for languages, for which
the tagger is not available.

4.4 Approaches using unsupervised POS tags

These approaches mostly do not bring any new methods.
The authors only take their unsupervised parsers we pre-
sented in Section 4.1, take a word clustering tool to pro-
duce unsupervised POS tags and run their parser on them.
Spitkovsky [29] took the clustering tool by Clark [6] and
Brown et al. [3] and showed that the parsing with super-
vised POS tags can be outperformed for English, if the
word classes are used instead. Mareček [15] performed
similar experiments on 30 languages and showed that on
some of them the use of unsupervised word classes instead
of supervised POS tags improve the parsing accuracy. The
average score across the languages was however signifi-
cantly worse.
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Christodoulopoulos et al. [5] try to do inference of POS
tags and dependency structure together. After random ini-
tialization, they alternate the prediction of the structure
based on the POS tags and prediction of the POS tags
based on the structure.

4.5 Approaches using raw text only

There are couple of approaches, which do not need any
word categorization. We only mention the incremental
parsing by Yoav Seginer [25]. His algorithm collects lists
of labels for each word, based on neighboring words, and
then directly uses these labels to parse.

5 Results

In Tables 1, 2, and 3, we summarize the results over the
individual parsers, data, and settings. Unfortunately, dif-
ferent parsers were evaluated on different data. In the be-
ginnings, the parsers were evaluated mainly on the En-
glish Penn Treebank [14] (transformed to dependencies)
and some only on the short sentences of length up to 10
(ptb10), since the shorter sentences were easier to parse
and the resulting scores did not look so bad. See Table 1.

After the unsupervised parsers were improved and
achieved much better results than simple baselines, they
started to be evaluated across languages and on sentences
of all lengths (Table 2).

In 2012, there has been a shared task on unsupervised
dependency parsing named “The PASCAL challenge on
Grammar Induction” [10]. Seven competing parsers were
evaluated on new datasets comprising ten different lan-
guages, including simpler English used by small children.
See Table 3.

Unfortunately, some of the parsers were evaluated on
non-standard data or with non-standard metrics and there-
for their results could not be added into any of the three
tables.

All the tables share the same format: each method is la-
belled by a link to the references and by a group label: SP
for using supervised POS tags, UP for using unsupervised
POS tags, and SP+K when an additional knowledge about
the supervised tags was used.

6 Usefulness of Unsupervised parsers in
linguistics and applications

We could see a lot of work done in the field of unsuper-
vised parsing in the last 12 years. The quality of induced
structures are better than before, but the supervised parsers
are still better then the unsupervised ones by a wide mar-
gin. However, for low resourced languages, for which no
annotated data exists, this is the way, how to obtain their
syntactic structure.

A more serious problem with unsupervised parsing is
that, according to our knowledge, there were so far no

works incorporating any kind of unsupervised parsing into
applications, even though many papers mention that in
some cases, an unsupervised structures, different from
manual annotations following a given schema, may be
very beneficial.

Moreover, in the last two years, no new strong paper
about unsupervised parsing appeared in NLP conferences.
Instead, a new techniques have arrived: The recurrent neu-
ral networks, which may fulfill the previous motivations
for unsupervised parsing – to find a structure of language
that would help machines to understand it better. Instead
of dependency trees, some structures are hidden in hidden
states of the deep neural networks.

From the linguistic point of view, the structures inferred
by unsupervised parsers can be compared to the manually
annotated treebanks. What are the differences? How the
unsupervised methods deal with phenomena that are not
clear how to parse? Should prepositions depend on nouns
or vice versa? And what about coordinations? Many such
questions could be answered, however, neither this topic
was studied so far.

7 Conclusions

We categorized the unsupervised dependency parsers into
four groups according to their needs of data, so that they
could be fairly compared. We make a survey over the most
important papers and works that reached state-of-the-art
results when they were published. We showed a compari-
son of the results across the methods and languages. It is
apparent that there is a big variance over the attachment
scores for individual languages. The good performance
of a method on one language tells nothing about the per-
formance on another language. We hope that this paper
brings to readers some system in the world of unsuper-
vised parsing.
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