
Semantic and syntactic modeling of
component-based services for context-aware

pervasive systems using OWL-s

Davy Preuveneers and Yolande Berbers

Department of Computer Science, K.U.Leuven
Celestijnenlaan 200A, B-3001 Leuven, Belgium,

{davy.preuveneers, yolande.berbers}@cs.kuleuven.ac.be,
http://www.cs.kuleuven.ac.be

Abstract. In this paper, we present a service design methodology and
specification as a basis for a pervasive context-aware service infrastruc-
ture. The service specification is based on the OWL-s specification, a
standard proposed to add a semantic layer on top of WSDL web ser-
vice descriptions. We have defined a set of OWL-s concepts that make it
possible to express various pervasive service related properties, including
service adaptation, relocation, personalization, deployment and runtime
requirements. Though not straightforward to parse within strict resource
boundaries, OWL-s provides an open, flexible specification language for
expressing syntactic and semantic pervasive service characteristics and
it increases service interoperability.

1 Introduction

The growing presence of mobile devices, such as laptops, PDAs and smartphones,
along with advances in wireless network communication technologies, have cre-
ated new opportunities for making the applications and services available on
these hosting devices more intelligent and supportive to the user. This trend
will lead us to a new computing future, often called ubiquitous and pervasive
computing, where people are surrounded by and interacting with many small
embedded networked devices. These devices and services will support users in a
large variety of tasks, while allowing users to be mobile at the same time. Two
important aspects to be considered within this ubiquitous and pervasive com-
puting paradigm are (1) the highly dynamic environments in which services will
operate and (2) the notion of user related information for supporting personal-
ized assistance. While the first is the result of the high availability of hardware
systems with different resource characteristics and the desire to be able to change
the serving host of a running application without interrupting it, the second is
the driving force behind services becoming more sensitive to user requirements
and preferences while becoming less dependent on user attention. Both require
applications and services to be more adaptive.

Although the design and implementation of reliable and robust applications
is already a difficult task, it is clear that the development of adaptable pervasive

services will even further increase the complexity. The effort to cope successfully
with this complexity requires a firm foundation, consisting of: (1) a sound gen-
eral service design methodology to support discovery, adaptation, composition
and distribution as important properties of services within ubiquitous computing
environments, and (2) the adequate modeling of relevant information for charac-
terizing the user-service interaction that drives the service personalization and
adaptation.

The information being considered in the attempt to adapt and personalize a
service is referred to as the context [1] of a user or device and its environment,
and it often includes properties such as current location, time, user preferences
and activities, available devices, services and resources in the neighborhood, etc.
The use of this context information allows services to be adapted to a device’s
capabilities and to user preferences. However, this requires that the underlying
context infrastructure be capable of acquiring and transforming context infor-
mation and of reasoning on the basis of this information, thus showing the need
for a uniform and interchangeable context representation. Additionaly, these so-
called context-aware systems will need to support user mobility and enhanced
service cooperation, including service discovery and composition. As discovery
and composition require a different granularity of machine interpretable informa-
tion, it is paramount to include both semantic and syntactic service information
within the context specification as part of the information describing available
services in the neighborhood. In this paper we show how OWL-s [2] can be used
to provide a multi-functional service description.

In section 2 we describe our novel methodology for designing services to be
deployed on context-aware mobile embedded devices. In section 3 we discuss
how these services can be semantically and syntactically specified using OWL-s
and we introduce new OWL-s concepts related to pervasive services for a formal
concretization of our design methodology. Section 4 provides an overview of
related work. We end with conclusions and future work in section 5.

2 Design methodology for pervasive services

In several computer science domains the concept of services refers to a com-
putational entity that offers a particular functionality to a possibly networked
environment. Typical examples of where this term is used are in the domains
of web services, telematics, residential gateways and mobile services. Although
web services target different users, all the services have in common the fact that
they are deployed to offer users a certain functionality through the use of a well-
defined interface, thereby providing a comfortable way for users to achieve their
goals and perform their tasks.

However, the different services within the context of ubiquitous and perva-
sive computing have different characteristics and requirements compared to web
services, for example, and they require an adequate design methodology to sup-
port these needs from the bottom up. These requirements will be presented in
the following subsection. In subsection 2.2 we discuss how our component-based
development approach is able to fulfill these requirements.

2.1 Functional requirements and characteristics of pervasive
services

The following paragraphs give an overview of the requirements of pervasive ser-
vices to be supported within our service design methodology.

R.1 User personalization
A user may have requirements or preferences regarding services he, or a device
on his behalf, wants to execute. These requirements and preferences will result in
constraints on which services are selected, how they are adapted and composed
and how they behave at runtime. Ideally, vague preference descriptions in nat-
ural language would need to be transformed into formal machine-interpretable
specifications.

R.2 Deployability on embedded systems
Service interaction will mainly occur between users and small, embedded sys-
tems. This means that the execution of services on these devices is subject to
tight resource constraints, including limited memory, processing power and net-
work bandwidth. Above all, it is very likely that these devices will have to share
resources while serving several users concurrently, thus causing a highly dynamic
fluctuation in currently available resources. Hence, it should be clear before de-
ployment whether an available service is able to execute properly or whether
optimizing adaptations are needed to better exploit the available resources.

R.3 User mobility
User mobility is the cornerstone of the future. However, while pervasive services
are mobile and interact with fixed remote services, their network performance
tends to vary unexpectedly and, in the worst case, the network connections can
get lost. Also, a user may wish to run a service offline to increase the autonomy
of his handheld device by disabling the highly power-consuming wireless net-
work communication. For this reason, users should be able to select a remotely
provided service and run it locally.

R.4 Service relocation
Related to the previous requirement, it is possible that users may want to make
use of a service that cannot currently be deployed and run on their own device,
either because the resource requirements are way beyond what the device is able
to offer, or because the device is already running so many applications that the
new application does not fit within the currently available resources. The user
should then be able either to run the new service on a more powerful device in
the neighborhood or to relocate (parts of) the already running services.

R.5 Adaptability
The offering of personalized services and the running of them on devices with
different resource characteristics requires support for adapting the services. This
means that services should not be monolithically designed, but rather that they
should have a modular structure that makes it possible to replace parts of the
service without changing the overall functionality of the service as requested by
the user.

R.6 Flexibility
Flexibility is the result of having pervasive services with well-defined interfaces
that support automatic service interaction and composition without looking into
the inner workings of the service. A description of the interfaces and message
formats for inter-service communication, however, is not enough in and of itself
to decide whether a service will provide the user-requested functionality, since
this description will not define the semantic meaning of a service. We will further
elaborate on modeling the semantics of services in section 3.

2.2 A component-based design for pervasive services

In the following sections we will propose a component-based service design with
support for service adaptation, interaction and composition within a mobile con-
text. The proposed service design is based on the SEESCOA methodology [3],
which means that it incorporates components and connectors as functional build-
ing blocks. However, the service specification includes not only functional aspects
but also non-functional information, which makes service discovery and interac-
tion possible. A general overview of the service specification is given in Figure 1.

Functional entities of a service
The following entities together form the business logic of a service and define its
functional aspects:
– Components: Services are created through the assembling of components.

As services need to be deployed on devices with varying characteristics, the
use of components makes it possible to dynamically adapt services either by
relocating components or by replacing them with others in order to optimize
deployment on a specific device. Adaptable components support require-
ments R.1, R.2 and R.5.

– Connectors: Connectors, which are linked to the component ports of a com-
ponent, provide communication channels between components within a ser-
vice.

– Service Ports: Service ports are the visible interfaces of a service to the
external world. These service ports are mapped onto ports of internal com-
ponents, and hence are communication gateways to other services or com-
ponents, thus fulfilling requirement R.6. As other services and components
can only communicate with a service through these ports, the service itself
can be considered as a component. Hence a service imposes a hierarchy of
components.

– Service Control Interface: The Service Control Interface is a standard dedi-
cated interface for controlling a service. It allows the service to be (re)started,
updated, relocated, stopped and uninstalled. By making this an obligatory
interface, no knowledge about the other service ports is requiered for basic
service management. The Service Control Interface is responsible for require-
ments R.3 and R.4.

Non-functional entities of a service
Services have non-functional characteristics defining restrictions on how services

Fig. 1. Functional and non-functional entities within a component-based service

are discovered, adapted and composed. These characteristics also provide con-
textual information, both semantic and syntactic in nature, which is intended
to be used by other services for better service cooperation.

– Contracts: Contracts [4] impose non-functional constraints on a component
or a group of interacting components. Contracts can be used, for example,for
guaranteeing memory or bandwidth constraints within a service internally.
If, however, contracts involve component ports that are mapped onto the
ports of a particular service, then they can be considered dependencies for
connecting this service to other components or services. Contracts can be
used to specify user requirements and to ensure optimal deployment on em-
bedded devices, hence fulfilling requirements R.1, R.2, R.4 and R.5.

– Service Information Interface: To fulfill requirement R.6, the Service Infor-
mation Interface provides a static description of the semantics and syntax
of a service and its service ports, and hence of how the service can be inter-
faced, so that other components or services can discover and use the service
without any manual configuration or wiring. This information is expressed
in OWL-s, as will be discussed in section 3.

– Context Interface: The Context Interface is responsible for the sending and
receiving of the context information, which is available only at run-time when
the service is active. Among other things, it allows the service to be notified
of new resources, and to inform other services or devices about resources
currently in use by this service. This context interface sustains requirement
R.5.

– Context Control Block: The Context Control Block is not an interface to the
outside world, but rather is responsible for the management and processing
of context information. This block can be shared by several services being
hosted on the same device and it acts as any normal component within

the service. Its inner working, which is beyond the scope of this paper, is
described in [5].

Figure 1 shows that a service can be considered to be a component with a fixed
set of predefined interfaces (context interface, service control interface, service
information interface) and an optionally shared subcomponent for managing the
service and making it context-aware (context control block).

The necessary infrastructure for this service model was developed on top of
Draco [6], an extensible runtime system for components designed to be run on
embedded devices. The base system is very small and lightweight with support
for extensions such as component distribution, live updates, contract monitoring
and resource management. This runtime environment with extensions provides a
unique test platform for validating the proposed service concepts in an ambient
intelligence context.

3 Semantic and syntactic service specification using
OWL-s

Within the context of ubiquitous and pervasive computing, services should be
able to work together automatically with other services in the neighborhood. To
support cooperating mobile services, the services need to be able to discover and
interact with each other. This implies the need for a uniform service specifica-
tion containing both the functional and the non-functional aspects, as a service
is more than just a collection of APIs. The non-functional part is responsible,
among other things, for describing the semantics and syntax of a service. Syn-
tactic descriptions of service interfaces are useful for the processing of service
invocations, but are less relevant when high-level semantic information about a
service is required during service discovery, when a service discovery protocol
(SDP) such as UPnP, Jini, Salutation, SLP or Bluetooth SDP [7] is used.

Service ontologies provide a solution for this problem as they describe con-
cepts and relationships between service concepts, and specify rules and con-
straints on certain service attributes. The OWL Services Coalition has recently
described an ontology specifically for web services, namely OWL-s [2]. The idea
behind this ontology is that web services alone offer poor support for the match-
making in service discovery. The XML based Web Service Description Language
(WSDL) [8], which is used to describe a web service interface, specifies the func-
tionality and message formats of a service at a syntactic level and hides imple-
mentation details, thus increasing cross-platform interoperability. The interpre-
tation of their meaning, however, is left to the user, a fact which reveals the
lack of semantics within these service descriptions. The Semantic Web commu-
nity, using the OWL-s ontology specification, addresses this problem by adding
a semantic layer to achieve automatic discovery, composition, monitoring and
execution of web services.

After giving a short overview of OWL-s, we will show how to use and extend
OWL-s for our component-based service model to specify the typical pervasive
service characteristics as described in section 2.

3.1 Overview of OWL-s

OWL-s is an OWL-based web service ontology used for expressing the semantic
meaning of a web service, with a binding to WSDL for providing a syntactic
description of the service. A service description in OWL-s has three parts, each
of which is responsible for specific information relating to a service: a Service
Profile, a Service Model and a Service Grounding.

The Service Profile is mainly used for automatic discovery. Apart from very
general information on the organization that provides the service, such as contact
information and a textual description, it provides a functional description of the
service, specifying its inputs, outputs, preconditions and results, as well as an
unbounded list of service parameters that can contain any type of information,
such as for example a quality rating or classification.

The Service Model, on the other hand, describes the control flow and data
flow within a service by specifying the service either as a simple process or as a
composite process of several atomic processes combined by one or more control
constructs specifying sequential or parallel execution, with or without if-then-
else conditions or repeat-until loops, etc.

While the previous models provide an abstract description of a service, the
Service Grounding provides a concrete description with details on how to access
a service, specifying message and protocol formats, serialization, transport and
addressing.

3.2 Extending OWL-s for pervasive services

As mentioned before, each service is described by a Service Profile, a Service
Model and a Service Grounding specification. In this section we will define a
set of OWL-s concepts to specify various requirements as described in section 2.
The new concepts will be introduced briefly, after which we will illustrate their
implementation by means of a short example.

Required Resources
Services on embedded systems are subject to tight resource constraints and are
therefore not guaranteed to always run optimally on any given device, as already
mentioned in requirement R.2. For this reason, minimal resource requirement
specifications for a service to be deployed and executed are needed, such as
requirements for minimum available memory, processing power, bandwidth, etc.
Other requirements may include the presence of certain input or output facilities
on the hosting device.

<profile:requiredResources>

<resource:Resource rdf:ID="CommunicationService">

<resource:memory>1 MiB</resource:memory>

<resource:cpu>40 MIPS</resource:cpu>

<resource:bandwidth>64 kbps</resource:bandwidth>

</resource:Resource>

</profile:requiredResources>

<profile:requiredOutput rdf:resource="#Speaker"/>

Contracts
Contracts provide a way to define an agreement between two or more parties. For
example, a memory contract between a service and the system ensures that the
service will have the specified amount of memory at its disposal until the contract
has been ended by the requester or after mutual agreement. Contracts can also
be specified between internal components or component ports of a service. A
service may provide several contracts in which it specifies and ensures different
behaviour when other conditions are fulfilled, hence fulfilling requirements R.2
and R.6.

Contracts can also be used to enforce user specific requirements or preferences
as discussed in requirement R.1. While user requirements impose an obligation
to the service, user preferences assume a best effort in trying to comply with
user demands.

<process:hasContract>

<expr:ContractCondition>

<expr:expressionBody>

$port:audio_out->bandwidth <= max_bandwidth

</expr:expressionBody>

</expr:ContractCondition>

</process:hasContract>

Runtime Adaptation
The flexibility of a service can be measured in terms of its ability to adapt itself
to given circumstances. The easiest way to provide service adaptation in our
service design methodology is to specify alternative components and optional
components. Alternative components provide similar functionality, but require
different runtime resources. Optional components, such as filters, provide added
functionality to the service: they specify an internal wiring that will bypass their
functions when they are disabled, just as if the component were not there. When
a user or device has a choice between services with similar functionality, the most
flexible one for adaptation will be selected.

<process:hasAlternative>Mpeg2Encoder</process:hasAlternative>

<process:hasAlternative>DivxEncoder</process:hasAlternative>

<process:hasOptional rdf:resource="#VideoRescaler">

$port:video_in => $port:video_out

</process:hasOptional>

The new concepts, which were introduced by subclassing the Service Profile
and Service Model, have resulted in a specialized service specification. The Ser-
vice Grounding is a matching between the previous models and the component
implementation. It is very similar to how it is done with the WSDL binding as
a WSDL [8] service description also defines message types for communication.
For example, a grocery list message is defined by elements declaring product as
a string, and quantity as an integer. Instances of these message types are then
later on defined as ingoing or outgoing messages of a service port, which loca-
tion is addressed by its URL. This differs with our component specification as

we address a port by its name. The intercomponent communication itself is more
straightforward and is not using a protocol such as SOAP or HTTP.

4 Related work

Some well-known service architectures include the .Net and the J2EE platforms.
These architectures are more oriented to developing multi-tier enterprise appli-
cations, however, and less applicable than our service design methodology for
services in a mobile computing environment. OSGi [9], on the other hand, is a
service platform intended to provide both servers and embedded devices with
the capability of managing the life cycle of the software components in the de-
vice without having to disrupt the device’s operation. The difference between
OSGi and our service design is that OSGi has no semantic or syntactic service
descriptions that specify how a service can be adapted internally to meet user
demands or resource requirements.

The Semantic Web has provided us with specification languages such as
DAML+OIL [10] and OWL [11] for describing ontologies as the ideal candi-
date for knowledge representation and processing. DAML-s [12] was one of the
first ontologies to add semantic meaning to web services, though it was later
replaced by OWL-s as a more mature semantic service specification.

METEOR-S [13] is another proposal for enhancing web service descriptions
and composition. METEOR-S focuses more on the communication aspects be-
tween services. The fact that semantics using DAML+OIL ontologies have been
added to WSDL [8] and UDDI [14], makes this specification highly linked to
the concept of web services and less suited for our component-based pervasive
service methodology.

Similar recent proposals for semantic web service infrastructure support in-
clude the Web Services Modeling Framework [15], the Web Service Modeling
Ontology [16] and the Web Services Modeling Execution [17] specifications.

5 Conclusions and future work

In this paper we have presented a novel service design methodology support-
ing discovery, adaptation, relocation, composition and deployment on resource
limited devices from the bottom up. This methodology is an ideal candidate for
developing applications and services within ubiquitous and pervasive computing
environments.

As the success of this methodology largely depends on the specification of
services, we have investigated how OWL-s can be used and extended to concretize
this design methodology. The main advantage of using OWL-s is, in the first
place, that it is an open and extendible specification for describing semantics
and syntax, which accordingly supports better service interoperability between
devices.

The focus of our future work will be on further enhancements to the process-
ing of context information. Other research to be carried out includes determining

how general user requirements or preferences can be mapped to complex OWL-s
rules and constraints.

References

1. Preuveneers, D., Van den Bergh, J., Wagelaar, D., Georges, A., Rigole, P., Clerckx,
T., Berbers, Y., Coninx, K., Jonckers, V., De Bosschere, K.: Towards an extensible
context ontology for Ambient Intelligence. In: Proceedings of the Second European
Symposium on Ambient Intelligence, Springer (2004)

2. The OWL Services Coalition: OWL-S: Semantic Markup for Web Services, Release
1.1. http://www.daml.org/services/owl-s/1.1/index.html (2004)

3. Urting, D., Van Baelen, S., Holvoet, T., Berbers, Y.: Embedded Software Develop-
ment: Components and Contracts. In: Proceedings of the IASTED International
Conference Parallel and Distributed Computing and Systems. (2001) 685–690

4. Wils, A., Gorinsek, J., Van Baelen, S., Berbers, Y., De Vlaminck,
K.: Flexible Component Contracts for Local Resource Awareness.
http://www.cs.kuleuven.ac.be/ andrew/stuff/ecoop2003.pdf (2003)

5. Preuveneers, D., Berbers, Y.: A Component-based Approach for Managing Con-
text Information. Technical Report CW397, Department of Computer Science,
Katholieke Universiteit Leuven, Belgium (2004)

6. Vandewoude, Y.: Draco : An adaptive runtime environment for components .
(http://www.cs.kuleuven.ac.be/˜yvesv/Draco/index.html)

7. Preuveneers, D., Berbers, Y.: Suitability of existing service discovery protocols
for mobile users in an ambient intelligence environment. In: Proceedings of the
International Conference on Pervasive Computing and Communications, CSREA
Press (2004) 760–764

8. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) 1.1. http://www.w3.org/TR/wsdl (2001)

9. Open Services Gateway Initiative: OSGi Service Gateway Specification, Release
3.0 (2003)

10. Horrocks, I., van Harmelen, F., Patel-Schneider, P.: DAML+OIL, Darpa Agent
Markup Language and Ontology Interference Layer (2001)

11. Smith, M.K., Welty, C., McGuinness, D.L.: OWL Web Ontology Language Guide
(2003)

12. The DAML Services Coalition: DAML-S: Semantic Markup for Web Services.
http://www.daml.org/services/daml-s/0.9/daml-s.html (2003)

13. Sivashanmugam, K., Verma, K., Sheth, A., Miller, J.: Adding Semantics to Web
Services Standards. In: Proceedings of the 1st International Conference on Web
Services (ICWS’03). (2003) 395–401

14. OASIS: The Universal Description, Discovery and Integration (UDDI) (2000)
15. Bussler, C., Fensel, D., Maedche, A.: Web Service Modeling Framework WSMF

(2002)
16. The SDK WSMO working group: The Web Service Modeling Ontology.

(http://www.wsmo.org/2004/d2/v1.0/)
17. Zaremba, M., Haller, A., Zaremba, M., Moran, M.: WSMX - Infrastructure for

execution of semantic web services. In: Proceedings of the 2nd International Con-
ference on Web Services (ICWS’04), Springer (2004)

