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Abstract. People are subjected to a multitude of interruptions. This paper 
introduces an approach to predict a person’s presence and interruptability in an 
office-like environment. To determine these two states we record data as audio, 
motion detection, and the time of the day representing a person’s context. We 
show that motion detection data outperforms audio data both in presence and 
interruptability prediction. 

Introduction 

An ordinary office day is often disrupted by interruptions. Some of them might 
provide some benefit to an office worker [1, 16] but others are annoying and 
detrimental to work performance.  

This paper investigates a novel way of predicting a person’s interruptability in an 
office based setup. More specifically, we gather information about the subject’s 
context by considering audio, motion detection, and the time of the day. First, we 
show how well we can predict the subject’s presence in the office from our 
observations where motion detection outperforms the other two data streams. Second, 
we show that we can predict his/her interruptability with good accuracy. Furthermore, 
we demonstrate that motion detection is superior to audio and that a combination of 
all data streams reaches even higher prediction accuracy. Finally, we also show that 
dividing the motion detection information into different sectors representing different 
activity regions of the subject improves the prediction power. The presented analysis 
takes into account the temporal aspect of office work by using machine learning 
algorithms that can detect temporal patterns. 

The paper is organized as follows. First, we succinctly discuss the related work 
focusing on interruptability prediction and context-awareness, specifically for office-
like environments. Then, we introduce the experiment we conducted to support our 
claims. This involves presenting the methodology and the technical setup. After 
evaluating the gathered data and analyzing the results we close with a discussion and 
the prospect of future work. 
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Related Work 

Ever since the landmark study by Minzberg [15], researchers have investigated the 
activity of knowledge workers in organizational settings to find ways on how to 
improve their performance. In the past years, researchers have started to pay more 
attention to the effect of interruptions on individual performance. This issue has 
become increasingly important as new technologies are likely to increase the number 
of occasions for interruption [11]. 

One stream of research is focused on finding the cost of interruption [4, 5]. 
Extending this line of work Hudson and colleagues [8, 9] use an empirical sampling 
technique and qualitative interviews to find research managers’ attitude towards 
interruptions. 

In a series of studies McFarlane, [12-14] examined four methods for deciding 
when to interrupt someone during multitasked computing. 

Summarizing the (recent) findings on the effect of interruption on people we can 
conclude that all studies agree that interruptions can, indeed, have disruptive effects 
on performance. The studies, furthermore, conclude that the extent of the effect is 
heavily dependent on the current context of the interrupted person as well as the 
nature of the interruption, whether it contains a desired piece of information or not.  

Consequently, it is important to be able to predict the nature of an interruption and 
the current context of a person’s activity in order to reduce the interruption’s 
detrimental effects and improve overall work performance. 

In a study called “Coordinate” [7], a prototype service is presented that logs all the 
meeting information stored in a user’s calendar and several additional properties. 
They predict a person’s attendance at the meeting, a person’s interruptability, and 
location. Extending this line of work, Horvitz and colleagues [6] present methods for 
inferring the cost of interrupting users. 

Hudson and colleagues [9] present a so-called “Wizard of Oz” feasibility study to 
predict people’s interruptability. They simulate a sensor-equipped office using a video 
and audio recording of the office, which are then hand-coded by people determining 
features such as the number of people currently in the office, who is speaking, what 
task objects are being manipulated, whether the phone is on or off the hook, and other 
similar facts about the environment. In a follow-up study [3] they equipped an office 
with real physical sensors. They placed microphones in the office, logged the 
beginning and end of each non-silent interval, after applying a speech recognition tool 
that detected conversations. Additionally, two magnetic switches, one near each side 
of the top of the door frame, allowed them to sense whether the door was open, 
cracked, or closed. Two motion sensors were put in each office. Another magnetic 
switch was used to determine whether a person’s phone was physically off its hook. 
Software on each subject’s computer logged, once per second, the number of 
keyboard, mouse move, and mouse click events in the previous second. It also logged 
the title, type, and executable name of the active window and each non-active 
window. The interruptability annotation was done the same way as introduced in the 
preceding study by audibly prompting the subjects (i.e., self-reporting). All this 
information together with the interruptability annotation was used to build 
interruptability predictors. To gain insight into the generalization of their method they 
measured three different types of subjects: “managers”, “researchers”, and “interns”. 
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They found that statistical models of interruptability should adapt to the people and 
they showed that audio is the most predictive dimension for interruptability in their 
setup. 

There also exist several wearable setups to predict a person’s interruptability like 
the SenSay project [18] or [10]. Nomadic Radio [17] is a wearable computing 
platform. The platform is audio-only and uses speech recognition, message priority, 
as well as a contextual notification model to define when a message should be posted 
on the user’s heads-up display. As contextual information they use the likelihood of 
conversation obtained by melscaled filter-bank coefficients and pitch estimates to 
discriminate a variety of speech and non-speech sounds. The notification type is then 
based on the likelihood of speech. Unfortunately, no prediction performance results 
are reported. 

Summarizing, we can say that we did not find any study with the same 
experimental setup (in particular, none of them used any motion detection sensors). 

Experiment 

Requirements to the Collected Data 

In order to be able to make the desired predictions we needed to collect sensor data 
containing sufficient information about the subject’s context in its environment, i.e., 
his/her office. We, therefore, decided to record both audio and video as well as self-
reports provided by the subject on interruptability. 

For the motion detection recording we used a camera reporting changes in different 
sectors of the office as dynamics might be a significant indicator of someone’s 
context or context changes. For simplicity, we did not consider face recognition or 
any other high level image recognition techniques in this work. A microphone 
recorded the auditory surrounding of the person in the office. 

We prompted the subject to report his/her level of interruptability. The self report 
of his/her level of interruptability (e.g. How disrupting would an incoming phone 
call?) has been broken down to five classes in a range from “ok, I don’t care” to “do 
not disturb”. 

Method 

According to [2], there are three ways to conduct experience sampling: 
1. Interval contingent: Sampling occurs at regular intervals. 
2. Event contingent: Events of interest trigger the sampling procedure. 
3. Signal contingent: Sampling is performed randomly over a period of time. 

Our concept of the interruptability self-report on a regular basis corresponds to a 
mixture of interval and signal contingent experience sampling. To ensure an upper 
and lower limit of the number of annotations we generate acoustic signal (or “beep”) 
every 15 minutes. We also used a variance of 10 minutes on the signal to avoid 
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“training” the users to expect the signal and thus altering their behavior. According to 
the subject the frequency of “beeps” turned out not to be too disruptive after some 
days of experimentation but their occurrence was still frequent enough to collect a 
significant number of self-reports. 

The subject was asked to adhere to the following directions during the experiment. 
When a “beep” occurs the subject performed self-report (assuming that the person is 
present in the office). Due to this underlying assumption we can also gather 
information about the subject’s presence in the office.  

Data Collection Setup 

The environment of the experiment is an office with three work places/locations 
(Figure 1). The office is typically used by one person only. The two remaining seats 
are used sporadically by other people as well as by the subject. The subject is a 
researcher [3]. 

The audio and video data were recorded by an off-the-shelf webcam (Logitech 
QuickCam Pro 4000). We added a wide angle lens widening the aperture from 45° to 
75°, such that the entire office could be overviewed as shown in Figure 1. The audio 
recording was set to CD quality but mono instead of stereo (i.e., the settings are 16bit, 
44.1 kHz, mono). The recorded video had 320*240 pixels (in color) at 25 frames per 
second. We compressed the video stream using the XviD codec setting I420 to ensure 
that one day of recording would fit on one DVD, while ensuring good recording 
quality. The recorded files were saved in “avi”-format for further processing, keeping 
the audio and video streams synchronized. 

For the self-report we used a modified keyboard. All information sources were 
collected on a single PC on working days from 8.15am to 6.15pm. 

 

  
    
Fig. 1. On the picture on the left, the office is seen through the webcam. The picture 
on the right, shows the camera mounted in the corner of the office. 
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Sources of Interference 

The experiment was conducted in a real-life environment. As a consequence, much 
interference influenced the experiment. In this section we provide a list of possible 
interferences. 

 

   
Fig. 2. Sources of video inferences. On the left, another person than the subject is in the office. 
On the right an open window covers the office partly. 

The video used as motion detector was sensitive to all kinds of movement in the 
office. Therefore, quality of collected data suffered from the presence of people other 
than the subject in the office – especially, when the subject was not present as seen in 
Figure 2 on the left. Furthermore, disturbances such as objects (like an open window) 
covering part of camera’s view or changing brightness influenced the recording 
quality. 

Background noise interfered with the audio recordings. Sources of such 
background noise originate from outside the office (e.g., people chatting on the 
corridor, or the neighing horse on the paddock next to the university) or from inside 
the office (e.g., computer ventilators). 

Error sources in the annotation procedure stem from the subject ignoring “beeps” 
as well as inadvertent annotation mistakes. Addressing this risk we implemented a 
control mechanism using a feedback message for impossible annotation sequences. 

Finally, as a matter of course this experiment was influenced by the experiment 
itself. The “beeps” prompting for a report on the subject’s interruptability were 
disruptive for the subject. 

Preprocessing 

Beside the synchronization of all data streams we had to preprocess the raw audio and 
video data to get the most appropriate features for our problem. First, we extracted the 
features from audio (spectral center of gravity, temporal fluctuations of spectral center 
of gravity, tonality, mean amplitude onsets, common onsets across frequency bands, 
histogram width, variance, mean level fluctuations strength, zero crossing rate, total 
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power, and the 10 first cepstral coefficients) as described in [19]1. This resulted in 
audio feature vectors of 20 features and one feature vector for every second of the 
recording. 

 

  

   
Fig. 3. Illustration of the motion detector features. 

As we used video as motion detector we calculated the changes between two 
frames separated by one second in the video stream. We divided each frame into 
rectangles of the size of 15x20 pixels resulting in 256 (16x16) distinct fields. To 
measure the motion in the office we summed the number of changed pixels between 
the two frames. Hence, for every second of the recording we obtained feature vectors 
of the size of 256. Based on this large feature set we calculated smaller sets by 
summarizing the values of adjacent rectangles such that we got feature sets of the size 
of 64 (8x8), 16 (4x4), 4 (2x2), and 1 as depicted in Figure 3 on the left. Additionally, 
we created another feature set by dividing the room into five sectors as shown in 
Figure 3 on the right. The borders of the five sectors correspond to different activity 
regions. Three regions are located at the three work places; the two other regions are 
only active when people walk around. Thus, our motion detector is a little more 
sophisticated than the usually used motion detectors because it distinguishes between 
different sectors, except where we employed the feature set of size 1.  

We constructed a two-dimensional feature vector representing the time of the day 
by taking the hour  and distinguishing between am and pm. 

Results 

This section presents the results obtained after conducting the experiment. The 
experiment lasted 41 (working) days. The data set consists of 1349 self-reports. 

                                                           
1 We would like to thank B. Schiele and N. Kern for sharing their audio preprocessing code 

with us. 
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Data Overview (Descriptive Statistics) 

Motion Detection 
The motion detection data shows patterns as depicted in Figure 4. The usual location 
of the subject can easily be identified as the bright area. There are other lighter 
regions near the door and around the second work place. The right picture of Figure 4 
additionally shows the sectors of the five features we have chosen. The borders of the 
particular sections overlap with the motion pattern. 

 
 

Fig. 4. Histogram of the movements recorded by the video camera. On the right the 
same picture as on the left but with the sectors representing the employed features. 

Presence 
Figure 5 shows the overall presence of the subject illustrating that the subject is in 
his/her office about 45.1% of the time. The histogram on the right graphs the presence 
depending on the time of the day. The lunch break manifests itself as a dip at noon. 
The (average) presence decreases at both ends of the day (note that the distinctive 
decrease at 8am and 6pm are mainly due to the partial recording).  
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Fig. 5. The histogram on the left shows the overall presence of the subject in the office; the 
histogram on the right shows the presence vs. the time of the day. 

Interruptability 
When present, the subject self-reported his/her degree of interruptability on a scale 
from 1 “easily interruptible” to 5 “not at all interruptible”. Figure 6 shows the 
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distribution of the interruptability data. Class 2 “quite interruptable” is dominant with 
a prior probability of 29.3% followed by class 5 with 25.2%. 
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Fig. 6. Interruptability self-reports on a scale of five classes.  

Prediction Quality  

In this section, we present the prediction results of the subject’s self-reports from the 
sensor streams. First, we explain the prediction methods followed by the results. 

Applied Classification Methods 
We used the Weka 3 machine learning software package [20] to predict the subject’s 
self-reports. For all classification tasks we tested the data with two standard learning 
algorithms: naïve Bayes and the “J48” decision tree learner. We preprocessed the data 
by normalizing and discretizing it with the standard Weka algorithms for better 
predictions. For the predictions, we took data up to 5 minutes prior to the event into 
account. We incorporated this information by an additional processing of the data by 
averaging the data (with equal weight) for each self-report. The depth of this 
averaging defines how much of the information about the past is incorporated. For 
each original feature the resulting new feature vector then contains the mean and 
standard deviation.2 All results reported below are based on a 10 fold cross-validation. 

Presence 
Both graphs in Figure 7 show the prediction accuracy versus past time. The graph on 
the left shows the prediction from motion detection evaluating all six possible feature-
combinations. The largest feature set (the most finely grained with 256 rectangles per 
frame) turns out to be the most predictive. The graph on the right, compares the best 
motion detector prediction with audio. Both audio and motion detection show a 
distinct maximum at about 20 seconds. Motion detection reaches an accuracy of 96% 
at 20 seconds using the J48 decision tree classifier outperforming audio that reaches 
89.9% using naïve Bayes. By taking only the time of the day into consideration to 
infer the presence we reach an accuracy of 60.3% which is still better than the prior 
annotation distribution of 54.9% (see Fig. 8 for the detailed confusion matrices). We 
combined the three classifications by meta-classifiers on their class prediction 
                                                           
2 We also tried Markov chains and hidden Markov models. However, they were outperformed 

by our coarse approach. 
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probabilities but the results were not better than the prediction from motion detection. 
Thus, audio and the time of the day do not contribute any new information to achieve 
better accuracies but might contribute to higher robustness.  
 

0 50 100 150
75

80

85

90

95

100

Time [s]

A
cc

ur
ac

y 
[%

]

5 sectors
256
64
16
4
1

0 50 100 150 200 250 300
50

55

60

65

70

75

80

85

90

95

100

Time [s]

A
cc

ur
ac

y 
[%

]

Motion Detection (256 features)

Audio

Base

 
Fig. 7. Accuracies of presence prediction dependent on the past time. On the left, we see the 
motion detection with all six features for feature selection, on the right, the presence prediction 
from audio data compared with the prediction of from motion detection. 

  
Presence, audio 

Prediction  1 2 
1 582 159 Self-

Report 2 98 510 
Accuracy: 80.9% 

Base: 54.9% 

 
Presence, motion 

Prediction  1 2 
1 719 22 Self- 

Report 2 32 576 
Accuracy: 96.0% 

Base: 54.9% 

 
Presence, time of day 

Prediction  1 2 
1 570 171 Self-

Report 2 365 243 
Accuracy: 60.3% 

Base: 54.9% 

Fig. 8. Confusion matrices for presence prediction based on 20 seconds of past data. (Class 1 
corresponds to “not present” and class 2 for “present”). 

Interruptability 
We have two data sets to infer the degree of the subject’s interruptability. This 
prediction task is a 5-class classification prediction with a base of 29.3%. Figure 9 on 
the left shows that the 5-sector feature of the motion detector is the most predictive. 
Figure 9 on the right shows the prediction accuracies of audio and motion detection 
vs. the time into the past. Both audio and motion detection show very good results 
with a maximum at 150s. Motion detection is superior (41.6%) to audio (40%) and, 
furthermore, motion detection seems to be more robust to variations on the time 
dimension. Predicting the interruptability from the time of the day using naïve Bayes 
results in an accuracy of 35.9%. Combining audio and motion detection by a naïve 
Bayes meta-classifier results in a remarkably better prediction result (maximum at 
150s: 44.6%) indicating that both sensor inputs provide partly independent 
information. Combining all three information sources (audio, motion detection, and 
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time of the day) results in an even better result with a maximum accuracy of 45.4% at 
150s. Furthermore, the combination of the three sources results in a much more robust 
result in terms of time dependency. Figure 10 shows the performance of the different 
calculations on the basis of confusion matrices.  
 

0 50 100 150 200 250 300
20

25

30

35

40

45

Time [s]

A
c
c
u
ra

c
y
 [
%

]

5 Sectors 256 64 16 4 1

 
0 50 100 150 200 250 300

25

30

35

40

45

50

Time [s]
A

cc
ur

ac
y 

[%
]

Audio

Motion

Audio+Motion

Audio+Motion+Daytime

Base

 
 

Fig. 9. 5-class interruptability prediction accuracies vs. time to past. On the left, there are the 
motion detection predictions from all feature setups. The figure on the right shows the audio 
and motion detection predictions and the combinations.  
 

Interruptability, audio 
 Model prediction (naïve Bayes) 

 1 2 3 4 5 
1 12 51 11 5 24 
2 13 106 17 8 34 
3 8 65 14 5 23 
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 Accuracy: 40.0% (at 150s) 
Base: 29.3%  

Interruptability, motion detection 
 Model prediction (J48) 

 1 2 3 4 5 
1 27 45 6 0 25 
2 22 125 3 3 25 
3 15 75 4 1 20 
4 9 25 0 1 24 
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5 12 33 5 7 96 

 Accuracy: 41.6% (at 150s) 
Base: 29.3%  

Interruptability, time of the day 
 Model prediction (naïve Bayes) 

 1 2 3 4 5 
1 1 40 1 0 61 
2 5 104 4 0 65 
3 4 46 0 0 65 
4 1 19 0 0 39 
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5 4 36 0 0 113 

 Accuracy: 35.9% 
Base: 29.3% 

 
Interruptability, all combined 

 Model prediction (naïve Bayes) 
 1 2 3 4 5 
1 35 24 18 8 18 
2 15 103 38 4 18 
3 7 53 34 3 18 
4 6 11 9 2 31 
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5 8 11 22 10 102 

 Accuracy: 45.4% (at 150s) 
Base: 29.3% 

Fig. 10. Confusion matrices for the 5-class interruptability detection on the “beep” data set. 
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Future Work 

The major drawback of this study is the experimental setup restricted to only one 
single subject. To strengthen the external validity of the experiment we intend to 
conduct this experiment with a broad range of different people. 

We plan to replace the camera simulating a motion detector by one or several (for 
different sectors) daylight and infrared motion detectors for even stronger prediction 
power. 

Finally, we plan to apply our approach to other (non-office based) areas. 

Discussion and Conclusions 

In this study we successfully introduced motion detection to augment context-
awareness in office-like setups.  

In order to reach our overall goals we found the following outcomes. We can 
predict whether a person is present in the office or not, based on motion detection, 
audio, and daytime data, where motion detection clearly outperforms the others. We 
showed that we can predict the person’s degree of interruptability from these three 
information sources, where motion detection again turned out to be the most reliable 
source. 
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