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Abstract. Developing context-aware applications needs facilities for 
recognizing the context, reasoning on it and adapting accordingly. In this paper, 
we propose a context-based multi-agent architecture consisting of context aware 
agents able to learn how to discern relevant from non relevant context on one 
hand, and to make appropriate decisions based on it on the other hand. This 
multi-agent system interacts with a context manager layer, based on an 
ontological representation of context, which is able to answer context-related 
queries. The use of this architecture is illustrated on a test MAS for agenda 
management, using the JADE-LEAP platform on PCs and PDAs. 

1. Introduction 

The rise of pervasive computing has stressed the importance of context. As defined 
in [4], this concept consists in “any information that can be used to characterize the 
situation of an entity”. This intuitive definition does not specify how to choose among 
all the available context information the one that is relevant or how to deal with it to 
make contextualized decisions. Existing works handle this problem in an explicit or 
implicit manner. In this paper, our goal is to draw a common base for context-aware 
reasoning. We propose a general layered architecture composed of different Context 
Manager Services (CM Service) on which a context-based multi-agent architecture is 
defined. Since pervasive applications are inherently open, they may be composed of 
several “societies” of heterogeneous and situated agents sharing or not the same 
context that changes over time. Thus, agents must be able to sense and manage context 
but also to communicate and to understand each other about it. We propose an 
ontology-based representation for contextual information. The defined agents can 
learn how to discern relevant from non-relevant context and how to make appropriate 
decisions based on it. They are also able to share with other agents the way they use 
context knowledge in solving similar problems.  

In this paper, we illustrate our proposal with a case study of an open and 
interoperable context-aware agenda management Multi-Agent System (MAS). It is 
composed of several meeting schedulers called mySAM (my Smart Agenda 
Manager). A mySAM agent assists its user in fixing meetings by negotiating them 
with other mySAM agents and by using context knowledge to decide to accept or 
reject a meeting proposal made by another agent. Knowledge about how to choose the 



relevant context and how to use it to deal with a meeting proposal is acquired through 
individual and multi-agent learning (knowledge sharing). 

Before describing the proposed architecture (section 3), we will present the 
ontology-based representation for context (section 2). In section 3, we will also 
describe how agents are able to learn context for decision-making. We then illustrate 
our work in the agenda management application (section 4). Before concluding, we 
will situate our approach in related work. 

2. Representation of context for MAS   

In this section, we define “context” and describe how we represent it to design and 
implement our proposed context-based MAS. 

2.1. Definition and classification 

From Dey’s definition given in introduction, context may be further described as a 
set of attributes and a finality. The finality, f, is the goal for which the context is used 
at a given moment (e.g. to decide whether a proposal for an appointment should be 
accepted or not, to see whether the current situation is similar to another one or not, to 
understand a conversation, etc.). Let’s note F the set of finalities.  

A context attribute (a) designates the information defining context, e.g. 
“ActivityLocation”, “NamePerson”, “ActivityDuration”. We consider a context 
attribute as a function, with one or more parameters, returning a value. For instance, 
context attribute “NamePerson” is a function defined on the set of Persons, returning a 
String value corresponding to the name of a person. Let’s note Va the definition 
domain of a, the set of possible values that a may take (example: Vtime =[0,24[ ). We 
define valueOf as an application from A x Pa to P(Va), where A is the set of all 
attributes, P(Va) is the power set of Va, and Pa is the set of parameters needed to 
compute the value of a . 
 Not all attributes are relevant for a finality. We define is_relevant(a,f), a 
predicate stating that attribute a is relevant for the finality f. Let’s call RAS(f) the 
Relevant Attribute Set for the finality f: RAS(f) = { a∈ A | is_relevant(a,f)=true }. 

We will note an instantiation of context attribute a∈ A as a pair (a,v) where v is the 
set of values v∈ P(Va ) of a at a given moment. For instance, (Day, {14}), 
(roleOfPersonInGroup, {Team Manager}), (PersonIsMemberOf, {MAS Group, 
Center_X, University_Y}) are instantiation of respective context attributes Day, 
roleOfPersonInGroup, PersonIsMemberOf. Let’s note I the set of instantiated context 
attributes as I = {(a,v) | a∈ A ∧  valueOf(a)=v}. We call Context Knowledge Set of a 
finality f, noted CKS(f), the set of instantiated context attributes relevant to finality f: 
CKS(f) = {(a,v) | a∈ RAS(f) ∧  (a,v) ∈  I}.  

Let’s notice that in related work ([12], [18], [19]), the notion of “context” is often 
understood as being what we defined as the CKS. To explain the difference between 
RAS and CKS let’s consider the following example. Given finality f = ”deciding 
whether to accept or not a meeting”, RAS(f)={“RoleOfPersonInGroup”, 
“ActivityScheduledInSlot”} is considered, i.e. role played by the person who made the 



proposal and if the receiver has something already planned for the proposed time slot. 
The resulting CKS for a student may be CKSstudent(f)={(RoleOfPersonInGroup, 
{teacher}), (ActivityScheduledInSlot, {Activity001})} and for a teacher CKSteacher(f)={ 
(RoleOfPersonInGroup, {student}), (ActivityScheduledInSlot, {Activity255)}. As we 
can see, the difference between CKS of student and teacher may lead to different 
rational decisions. Usually RAS used is almost the same for different users when 
needed to make decisions for the same finality, but the decision itself is CKS-
dependent. Taking into account the definitions that we proposed so far we now 
describe the representation that we defined. 

2.2. Representing context elements 

Our aim is to represent context in a general and suitable manner for all applications 
that need to represent and reason about it. Several representations of context exist: 
contextual graphs ([1]), XML (used to define ConteXtML [17]), or object oriented 
models ([6]). All these representations have strengths and weaknesses. As stated in 
[7], lack of generality is the most frequent weakness: each representation is suited for 
a type of application and express a particular vision on context. There is also a lack of 
formal bases necessary to capture context in a consistent manner and to support 
reasoning on its different properties. A tentative answer in [7] was the entity-
association-attribute model, which is an extension of the “attribute-value” 
representation, where contextual information are structured around an entity, every 
entity representing a physical or conceptual object. We base our proposal on this idea.  
To take into account the need for generality,  and also considering the fact that we aim 
at having several MAS, each dealing with different contexts (that we will need to 
correlate in some way), an ontology-based representation seems reasonable. This is 
not a novel idea, Chen et al. ([2]) defined context ontologies using OWL ([14]). In 
their model, each context attribute is represented as an OWL property 
(DataTypeProperty or ObjectProperty, depending on the range of values). We 
extended this representation due to the limitations it imposes when we need to 
represent more complex context attributes (like role, activities already planned, etc.).  

Fig. 1. The description of the class #ContextAttribute 

What we propose is to add to the ontology the class “#ContextAttribute” (see fig. 
1.) corresponding to our definition of a context attribute as defined in section 2.1. This 
class is composed of the following properties: name, number and list of entities 
(parameters) it connects to, type of its value. Instances of that class will be the context 
attributes that are known and used in that system by the CM Service. In our domain 
ontology, the class “#Entity” is the super class of all concepts, e.g. in MySAM, 

Property Name Property Type Domain Range Multiple values 

name Datatype #ContextAttribute String No 
noEntities Datatype #ContextAttribute Integer No 
entitiesList Object #ContextAttribute #Entity Yes 
valueType Object #ContextAttribute #Entity No 
multipleValue DataType #ContextAttribute Boolean No 



#Person, #Group, #Room, #Activity, etc. are subclasses of #Entity. In Fig. 2 we give 
the list of context attributes that we defined in MySAM application. For instance, the 
context attribute RoleOfPersonInGroup is described with the following instance 
of class #ContextAttribute: 

- Name =  roleOfPersonInGroup 
- NoEntities = 2 (we need to connect this attribute to a person and a group) 
- valueType = #Role (value for this attribute is an instance of the class #Role) 
- multipleValues = “false” (a person can only play one role in a group) 
- entitiesList = { #Person; #Group} (connected entities are instances of class 

#Person and of class #Group) 

Person - related 
InterestsPerson 
MailPerson 
OriginPerson 
IsSupervisorOf 
StatusPerson 
Supervises 
RoleOfPersonInGroup 
GenderPerson 
DateOfBirth 
PersonIsMemberOf 

Environment – related 
 
DevicesAvailableInBuild
ing 
DevicesAvailableInRoom 
DevicesAvailableAtFloor 
TransportAvailable 
WeatherForecast 

Time-related 
Year 
Month 
Day 
TimeZone 
DayOfWeek 
Seconds 
Minutes 
HHour 
TimeOfDay 

Location - related 
PersonIsInRoom              InCountry 
PersonIsAtFloor             InCity 
PersonIsInBuilding          InBuilding 
PersonIsInCountry           InRoom 
PersonIsInCity              RoomInBuilding 
RoomAtFloor                 AtFloor 

Agenda - related  
BusyMorning 
BusyAfternoon 
BusyEvening 
TimeSlotAvailable 

 
Agent – related 

CurrentUser 
   StatusAgent 
 

Activity – related 
ActivityStartsAt 
ActivityEndsAt 
ActivityScheduledInSlot 
AcivityGoal 
ActivityEmergency 
ActivityImportance 
ActivityDescription 
ActivityParticipants 
ActivityLocation 
ActivityType 
ActivityDuration 

Fig. 2. Context attributes defined in MySAM ontology for agenda management      

3. Architecture for a context-based learning MAS  

The proposed layered architecture is composed of mySAM agents (Fig. 3), that assist 
a user. Agents interact with each other and with a context management layer 
composed of context manager services (CM Service). Being connected to the current 
state of the environment, a CM Service provides agents with context. The CM Service 
and not agents have the responsibility to compute the values of context attributes in the 
environment. Agents learn how to recognize relevant context and how to act 
accordingly. We start by describing the CM service and continue by the details of the 
dedicated learning part of the agent’s architecture. 

3.1. Context manager service (CM Service) 

The main functionalities of CM Service are to let the agents know which is the context 
attributes set (defined in the ontology) that it manages and to compute CKS 



corresponding to RAS given by the agents at some point of processing. When entering 
a society, an agent asks the corresponding CM Service to provide it with the context 
attributes that it manages. Acting as intermediary between agents and the 
environment, CM Service is able to answer requests regarding its managed context 
attributes. This way, if, for instance, CM Service answers “Date” and 
“ActivityLocation” to an agent querying it about context attributes for managing 
rendez vous, even if the agent knows that other context attributes exist – e.g., 
“roleOfPersonInGroup”– it knows that it cannot ask CM Service for the value of  this 
attribute since this latter is not able to compute it.  

Figure 3. Context-based agent architecture 

The Context Knowledge Base contains the ontology of the domain, defined as a 
hierarchy with #Entity as root, and all instances of class #ContextAttribute that will be 
managed by the CMService. The instantiation module computes the CKS(f) for a 
given RAS(f). The dependencies module computes the values for derived attributes by 
considering possible relations between context attributes concerning their relevance: if 
one attribute is relevant for a situation and it has a certain value, then another attribute 
could also be relevant for that situation. 

3.2. Context-based learning agent 

Although a mySAM agent has some negotiation modules (in order to establish 
meetings), we focus here on its management and reasoning on context modules. The 
context-based agent architecture that is the core of a MySAM agent is general and it is 
not restrained to the kind of application considered to illustrate our approach. It has 



two main modules (see Fig. 3): selection of relevant attributes for a certain finality f 
(RAS(f)) and decision based on instantiated attributes (CKS(f)) provided by CM 
Service.  

For example, for a finality relative to deciding whether accepting or not a “2 
participants” meeting, the RAS built by the selection module could be 
{“ActivityScheduledInSlot”, “roleOfPersonInGroup”}; or, for a finality relative to a 
“several participants” type of meeting, the RAS could be {“ActivityParticipants”, 
“ActivityDescription”, “PersonInterests”, etc}. The decision module knows how to 
accept a meeting if we have nothing planned for that period of time and if the person 
that demands this meeting is our chief, for instance.  

Several approaches have been proposed [20], [23] in the recent years concerning 
multi-agent learning. Since the specific mono-agent learning method that is used for 
learning modules attached to the decision-making based on CKS is application 
dependent, we will not detail it here. We just highlight the necessity to add a multi-
agent learning perspective and to point out what are the consequences. 

Learning how to choose the RAS. Learning how to choose the relevant context 
attributes is important in our targeted applications since the amount of available 
context information is too large and the effort needed to compute the values for all 
those attributes rise efficiency problems. From an individual learning perspective, 
agents use the user’s feedback to learn how to choose among context attributes those 
that are relevant for a given situation. In our application, mySAM memorizes the 
attributes chosen by the user as being relevant for that situation before making a 
decision. Next time the agent will have to deal with the same type of situation, it will 
be able to propose to the user all known relevant attributes, so that the user adds or 
deletes attributes or uses them such as they are. 

Using the context ontology defined in the previous section (3.1), agents are able to 
share a common understanding of the manner of using context attributes and 
knowledge. To improve the method used in individual learning of how to choose 
relevant context attributes, we made agents able to share knowledge, focusing on 
attributes that other agents in the system have already learnt as relevant in that 
situation. When an agent does not know which attributes are relevant for the 
considered situation f, it can ask other agents what are the attributes which they 
already know as being relevant in that situation (their RAS(f)). In the same way, if an 
agent needs more feedback on attributes in a specific situation, it can again try to 
improve its set of relevant attributes, by asking for others’ opinion. The resulting 
RAS(f) is the union of the ancient RAS with the new relevant attributes proposed by 
other agents. Next time the agent will be in the situation f, it will propose the new 
obtained RAS to the user, so he can choose to keep the new attributes, to add some 
more or to delete some of them that seem not relevant for him. For example, when 
deciding about a meeting with a friend, the agent’s RAS is {ActivityStartsAt, 
ActivityDuration}. The agent asks others what their RAS is and, at the end of the 
sharing session, its RAS will become {ActivityStartsAt, ActivityDuration, 
dayOfWeek, BusyEvening}. The user can then choose to keep the attribute 
“dayOfWeek” as relevant and to remove “BusyEvening” from the list of relevant 
attributes for this finality. 



Learning how to use the CKS. Learning how to use relevant context may be realized 
by any machine learning method developed in AI, suited to the type of application that 
we develop. In our case, a mySAM agent uses a classification based on association 
(CBA) tool developed at School of Computing, University of Singapore, in the Data 
Mining II suite ([3]). We will show in the following section some results we obtained 
using this approach. 

For multi-agent learning on how to use context knowledge, we modified the 
knowledge sharing method so that the agents can choose between (i) sharing only the 
solution to the problem, keeping for themselves the knowledge used to find that 
solution, or (ii) sharing the problem-solving method itself, so that others can use it for 
themselves. The choice depends on the application and more particularly on privacy 
matters. The second solution is more efficient in that it gives an agent the method to 
solve the problem, not just the answer to its problem. This way, next time the agent 
needs to solve the same type of situation, it will directly apply the method, without 
asking again for help from other agents. But if, as considered in mySAM, the agents 
should not share all their criteria for accepting or rejecting a meeting, then sharing just 
the solution (an “accept/reject” decision) should be preferable. We implemented the 
latter solution in our agenda management case study. 

4. Implementation and results 

In order to validate our proposal, we developed the system proposed as a case 
study in section 2, a multi-agent system containing several mySAM agents and one 
CM Service. Agents were deployed with the JADE/LEAP platform ([8]) to run on 
handheld devices. Each mySAM agent is a JADE agent with a graphical interface that 
allows a user to manage her agenda. This graphical interface has been simplified to 
deploy mySAM agents on a HP iPAQ 5550 Pocket PC. Due to limited resources 
available on PDAs, mySAM agents deployed on them execute only the negotiation 
task, without any learning methods. Learning methods are deployed on a proxy agent. 
Agent running on PDA and on proxy constitute a MySAM agent.  

For learning how to use relevant context (for acceptance or refusal of meeting 
proposals), mySAM agents use CBA (Classification Based on Association) algorithm. 
That gives better results than C4.5 [3]. Another advantage is that it generates 
behaviour rules comprehensive for both agents and humans. The obtained rules have 
been used with Jess ([10]) inference engine.  

In order to provide examples for learning algorithm, the system has been used (for 
meeting negotiations) by several members in our department for several weeks. Here 
is an example of the rules we obtained using CBA on the examples generated by using 
mySAM: IF ActivityDuration = 120 AND BusyMorning = true AND BusyEvening = 
true  THEN class = no (“class” specifies whether the agent should accept or refuse the 
proposed meeting). When no rule matches the specific context, mySAM is constrained 
to use a multi-agent knowledge-sharing session on how to use this specific context 
(CKS) to find the solution. It starts a voting system: it asks all known agents in the 
system for their opinion on the situation, and counts each opinion as a vote for 
“accept”, “reject” or “don’t_know”. The agent then adopts the decision that has the 



most votes. Agents consider an “unknown” result as a “reject” (by default, an agent 
will reject all meeting proposals that neither it, nor other agents know how to handle). 
We chose to use this “voting” procedure because it was faster than trying to share the 
rules for themselves and because, in this application, the privacy matter is important. 
Not all agents will want to share their decision-making techniques, but an 
“accept/reject/unknown” answer is reasonable. In this way, agents do not explain how 
they inferred that conclusion, but just what that conclusion is. 

The CM Service is also implemented as a JADE agent. It is a special agent in the 
system that has access to the domain ontology that defines the context attributes that it 
will manage. It provides context knowledge to all agents that arrive in the system. The 
ontology was created using Protégé 2000 ([16]) and the agent accesses the ontology 
using Jena ([9]), a Java library designed for ontology management.  

Agents interactions in the system are quite simple: mySAM agents can query the 
CM Service using a simple REQUEST/INFORM protocol, the meeting negotiations 
between mySAM agents are done in a simple PROPOSE/ACCEPT/REJECT manner. 

When testing mySAM we were able to draw several conclusions. Using a selection 
step to choose the RAS for a situation helps in having smaller and more significant 
rules. Using all attributes to describe a situation is not only difficult to deal with, but 
also unnecessary. We tested our hypothesis on a set of 100 examples. For 15 context 
attributes used, we obtained an overall classification error of 29.11% and more than 40 
rules. When we split the example set on several finalities (“meeting_with_family”, 
“meeting_with_friends”, “work_meeting”), and for each situation we take into account 
a limited number of context attributes (7 for a meeting with family, 11 for others), the 
error becomes 7.59% and the number of obtained rules drops to an average of 15.  

Sharing with other agents just the solution (accept/reject) for a situation is enough, 
because the agent that received the answer will then add this situation to its examples 
list, from where it will then learn the appropriate rule. Even if it will take longer to 
learn that rule than just having it immediately provided by others, the privacy problem 
is this way solved, because we share just the answer to a specific situation, and not the 
reasoning that produces such an answer. 

5. Related Work  

In this section we’ll present a brief state of the art in context definition, context-
aware MAS and context-aware architectures, in order to position our work relative to 
what has been done in this domain. We don’t position our work relative to the 
individual and multi-agent learning domain, because our goal was not to propose a 
learning algorithm, but to use some already proposed methods, but for the specific 
goal of dealing with context matters [23]. 

Our definition of context is quite similar to definitions proposed by Persson [15], 
Brezillon [1] or Edmonds [5], in the sense that it is based on: (i) the elements that 
compose the context and (ii) its use, i.e. the finality (the goal we want to achieve) 
when using this context. The definition we proposed takes into account those two 
dimensions of context (its use and its elements); it also explains what each dimension 
is and how to properly define it when designing a context-based MAS.   



In MAS, the notion of context is used to describe the factors that influence a certain 
decision. In applications similar to our agenda management application, there are 
several works that adapt to context: Calendar Apprentice [13], Personal Calendar 
Agent [12], Distributed Meeting Scheduler [19], Electric elves [18], etc. Most of these 
works don’t mention the idea of “context” but they all use the “circumstances” or 
“environmental factors” that affect the decision to be made. In making Calendar Agent 
([11]), Lashkari et al. use the notion of context, but they assume that the relevant 
context is known in advance, so that every context element that they have access to is 
considered relevant for the decision to be made. These approaches are not application-
independent when handling context, because they do not provide neither a general 
representation of context knowledge nor methods to choose relevant context elements 
for a specific decision. This is the main difference and contribution of our work in the 
sense that we propose a MAS architecture based on an ontological representation of 
context and that can permit an individual and multi-agent learning of how to choose 
and use context. It is not the application that generated the architecture, but MySAM is 
just a case study to validate our approach. 

Mostly, when context is used to make behaviours context-adaptable, it is used in an 
ad-hoc manner, without trying to propose an approach suitable for other kind of 
applications. However, there is some research in proposing a general architecture on 
context-aware applications, like CoBrA, proposed by Chen et al.[2] or Socam, by Gu 
et al [21]. We based our architecture on CoBrA and Socam, but we added the learning 
modules for chosing relevant context and using it. The context broker and context 
interpreter are similar to our context manager, with the difference that our concern 
was not how to acquire information from heterogeneous sources, but mostly how to 
represent it and how to reason on context knowledge based on this representation. 

6. Conclusions  

In this article, we have presented a definition of the notion of context, notion that is 
used in almost all systems without precisely and explicitly taking it into account. We 
have proposed an ontology-based representation for context elements and a context-
based architecture for a learning multi-agent system that uses this representation.  We 
then validated our approach by implementing a meeting scheduling MAS that uses this 
architecture and manages and learns context based on the definitions and 
representation we proposed. 

As future work, we envisage enriching this framework for context-based MAS to 
be used for any kind of applications that consider context when adapting their 
behavior. The context manager has to be able of dealing with all context-related tasks 
(including the computation of context attributes values) and to share all his context-
related knowledge. In order to make this possible, our future work will focus on 
representing and managing: (i) how to compute the values for derived context 
attributes, (ii) dependencies that can exist between context attributes, (iii) the 
importance of different attributes in different situation (make a more refined 
difference between relevant and non relevant attributes, because there could be some 
attributes that are more important than others). 



In what concerns learning agents, the framework will provide agents with one (or 
several) individual learning algorithm and all that is needed to communicate and share 
contextual knowledge (how to choose, compute and use context to make decisions). 
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