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Abstract

Machine learning approaches based on su-
pervised classification have emerged as ef-
fective methods for Biomedical relation
extraction such as the Chemical-Induced-
Disease (CID) task. These approaches
owe their success to a rich set of features
crafted from the lexical and syntactic reg-
ularities in the text. Kernel methods are an
effective alternative to manual feature en-
gineering and have been successfully used
in similar tasks such as text classification.

In this paper, we study the effectiveness
of tree kernels for Chemical-Disease rela-
tion extraction. Our experiments demon-
strate that subset tree kernels increase the
F-score to 61.7% as compared to 57.9%
achieved with simple feature engineering.
We also describe the strengths and short-
comings of tree kernel approaches for the
CID relation extraction task.

1 Introduction

Scientific publications in the fields of biomedical
and life sciences are vast and growing fast (Haas
et al., 2014). Prior research has shown that
Chemicals and Diseases and their relationships are
among the most searched topics by PubMed users
(Dogan et al., 2009), due to their importance in ap-
plications such as toxicology, drug discovery and
safety surveillance. Efforts to manually curate and
extract these important concepts such as Chem-
icals and Diseases and their relationships have
led to the creation of structured databases such
as the Comparative Toxicogenomics Database
(CTD) (Davis et al., 2012). However, manual
curation is unlikely to scale (Baumgartner et al.,
2007) and has stimulated research interest in auto-
mated relation extraction.

The recent shared task for Chemical-Induced-
Disease relation extraction (CID) organized by
BioCreative-V (Wei et al., 2015), has made avail-
able a large body of annotated PubMed abstracts
for the valuable Chemical-Disease relations. The
shared task revealed that CID relation extraction is
a difficult task with best reported systems achiev-
ing an F-score of about 57%. Study of the par-
ticipating teams’ approaches reveals that most ap-
proaches (14 out of 18) were based on Support
Vector Machines (SVMs) (Burges, 1998), model-
ing relation extraction as a supervised classifica-
tion problem. Most of these systems obtain their
performance through a rich feature set that is man-
ually crafted by studying the syntactic and lexical
regularities in the text. Substantial performance
boost is also drawn from custom heuristics such as
postprocessing rules (Zhou et al., 2016). Design-
ing such an effective relation extraction system in-
volves extensive feature engineering and domain
expertise.

Kernel methods in NLP (Collins and Duffy,
2001) have been designed precisely to address this
problem of manual feature engineering. These
methods enable an efficient and comprehensive
exploration of a very high dimensional feature
space and to automatically adapt to the dominant
patterns expressed in the training set.

In our work, we show that kernel methods can
be used for boosting relation extraction perfor-
mance without having to manually engineer addi-
tional features. We demonstrate through experi-
ments that combining tree kernels over constituent
parses with simple lexical and syntactic features
can substantially enhance the performance of the
CID task. We also discuss the strengths and weak-
nesses of these methods which can assist in the
design of better methods in the future.



2 Related Work

Our system is developed in the context of the CID
subtask described in BioCreative-V (Wei et al.,
2015). Many teams, including the top scoring
team (Wei et al., 2015), model the CID task as a
supervised binary classification problem. In ad-
dition to the annotated PubMed abstracts, alter-
nate sources of information such as the Chemical
Toxicology Database (CTD) (Davis et al., 2012)
were used. Similar biomedical relation extraction
tasks that have been studied are drug-drug inter-
action (Bjorne et al., 2011) and protein-protein in-
teraction (Lan et al., 2009). A subsequence kernel
was presented by (Bunescu and Mooney, 2005)
for protein-protein interaction extraction. Richer
kernels that use constituent parses or dependency
structures are studied in (Chowdhury et al., 2011;
Airola et al., 2008) for the protein-protein interac-
tion extraction. Recent approaches have focused
on broadening the scope of word matching from
a simple lexical match to more complex semantic
matching (Saleh et al., 2014). The suitability of
these methods for the CID task remains to be ex-
plored.

3 Approach

Our goal is to minimize task specific and domain
specific feature engineering. We therefore explore
the power of domain independent techniques such
as kernel methods for effective relation extraction.
Kernel methods automatically explore a large fea-
ture space and can reduce the need for rich hand
crafted features. In our system, we do not employ
any preprocessing or custom filtering techniques.
We use simple text based features and a knowl-
edge base (CTD) look up as our primary feature
set. Further knowledge extraction from text is ac-
complished through tree kernels.

We cast the CID relation extraction as a binary
classification problem. The input to the classifier
is a pair of chemical and disease mentions. From
the set of predicted relation mentions, we extract
their normalized entity ids (MeSH Ids) and add it
to the final list of Chemical-Disease relations. We
built and tested two types of classifiers, namely
linear classifier and tree kernel classifier. The lin-
ear classifier uses a flat list of simple features. The
tree kernel classifier uses kernel methods over con-
stituent parse trees of input sentences. The de-
tailed steps are described below:

3.1 Linear classifier
1. Every chemical mention (C) that appears in

the article is paired with every other disease
mention (D) to generate an entity pair (C-D)
for classification. An entity pair in which
both the entity mentions are within a sen-
tence are referred to as intrasentence pairs,
and those that cross a sentence boundary are
referred to as intersentence pairs. The full test
data is the union of intrasentence and inter-
sentence entity pairs.

2. Intersentence and intrasentence pairs are
grouped separately for training and testing
with two separate classifiers. No further fil-
tering or post-processing of (C-D) pairs is
performed.

3. At training time, we label a (C-D) pair as pos-
itive if there exists a valid CID relation be-
tween these entities, using the relation anno-
tations. At test time, the label is inferred from
the classifier output.

4. Features for intrasentence pairs include
verbs, bag of words, POS tags, dependency
parse and the token distance between entity
mentions in the sentence.

5. Features for intersentence pairs include the
POS tags and bag of words of the two sen-
tences containing entity mentions, distance
(number of sentences) between them, statisti-
cal features of the entity mentions in the doc-
ument (frequency of mentions), entity fre-
quencies and zonal information (document
zone containing the mentions).

6. We use the Chemical Toxicology
Database (Davis et al., 2012) to gener-
ate a binary feature Ictd(C,D) that evaluates
to 1 if the (C-D) pair is known to be related
in the CTD database and 0 otherwise.

We used a Support Vector Machine (SVM) with
linear kernel from Scikit (Pedregosa et al., 2011)
to classify candidate entity pairs. The predicted
(C-D) pairs from the sentence level and document
level classifiers are combined to form the final list
of document level CID relations. We refer to this
system as “Linear Classifier”.

3.2 Tree Kernel Classifier
Kernel methods have gained wide spread ac-
ceptance, because they allow direct computation
of similarity (dot product) between two exam-
ples in an implicitly mapped high dimensional
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Figure 1: Illustration for the sentence “Cyclic
dysosmia induced by PZA (Pyrazinamide)”: a)
Full constituent parse tree. b) Few of its fragments
(implicitly) considered by the subset tree kernel.
Entity focus is incorporated by prefixing special
tags such as “pre”, “mid”, “post”, “Chemical” and
“Disease”.
.

space (Collins and Duffy, 2001; Zelenko et al.,
2002). A tree kernel implicitly maps a given tree
into a very high dimensional feature space of tree
fragments, as illustrated with an example in Fig-
ure 1. The kernel score between two trees is the
count of common tree fragments between them.
We used tree kernels over constituent parse trees
of sentences, to efficiently compute the syntactic
similarity between two sentences. Different vari-
ants of the tree kernels are proposed based on what
constitutes a tree fragment, such as subtrees or
subsets of nodes. Efficient algorithms with linear
time complexity in the average case are presented
in (Moschitti, 2006b). The formal definition of
the tree kernel is discussed below.

Given two trees T1 and T2 and the set of all pos-
sible tree fragments F = {f1, f2, . . .}, an indica-
tor function Ii(n) is defined which evaluates to 1
if the fragment fi is rooted at node n and 0 other-

wise. The unnormalized kernel score is given by

k′(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2)

where NT1 and NT2 are the sets of nodes
of T1 and T2 respectively and ∆(n1, n2) =∑|F |

i=1 Ii(n1)Ii(n2). The normalized kernel score
is given by

K(T1, T2) =
k′(T1, T2)√

k′(T1, T1) · k′(T2, T2)

We experimented with subtree and subset tree
kernels over constituent parse trees and found sub-
set tree kernels to be superior for our task. In
the rest of the paper, we mean subset tree ker-
nel when we refer to tree kernels. We used Stan-
ford CoreNLP (Manning et al., 2014) to gener-
ate the constituent parse trees. For tree kernels
we use the SVM-LIGHT-TK toolkit1 (Moschitti,
2006a) that offers kernel implementation within
SVM2 (Joachims, 1999). For each intrasentence
(C-D) pair we get a single parse tree and for each
intersentence pair we get a forest of two con-
stituent parse trees, from each sentence containing
one of the two entity mentions.

The contribution from flat features as defined in
the section 3.1 can be combined with tree kernels
by linearly combining the dot products of the flat
feature vectors and the tree kernel. That is, the
kernel for the new classifier (linear + tree kernel)
is computed as the sum of the linear kernel over
flat features and the tree kernel over the constituent
parse trees. We report results for these classifiers,
namely Linear, Tree Kernel and Linear + Tree Ker-
nel classifier in Section 4.

3.2.1 Tree kernels with entity focus
Tree kernels attempt to classify a sentence in its
entirety and in its default form are unaware of the
entity mentions in the sentence. This approach is
suitable if our goal is to simply detect if a sentence
expresses a relation or not. However, to render
greater focus on the entity mentions, we can pre-
process the sentence to highlight the location of a
word with reference to entity mentions. We pre-
fixed all words in the sentence with “pre”, “mid”,
and “post” tags, based on whether they are located
prior to, in between, or post entity mentions, be-
fore generating the constituent parse trees.

1http://disi.unitn.it/moschitti/Tree-Kernel.htm
2http://svmlight.joachims.org/



4 Evaluation

4.1 Dataset and Evaluation metrics

We work with the dataset provided by
BioCreative-V (Wei et al., 2015). It comprises
3 subsets, referred to as training, development
and test set. Each subset consists of 500 PubMed
articles (Title and Abstract only), that are fully
annotated with Chemical and Disease mentions
and the CID relations. Our goal is to extract
Chemical-Disease relations at the document
(PubMed abstract) level and the metrics are
standard Precision (P), Recall (R) and F1 measure
( 2PR
P+R ).

4.2 Results

We measure the effectiveness of our relation ex-
traction system over the provided test data set, as
set out in the CID task. We use the standard en-
tity annotations provided with the data set. Given
the limited annotated data, we decided to use both
the training and development data set for clas-
sifier training with default settings and no cus-
tom parameter tuning. Results for intersentence,
intrasentence and the full set of (C-D) pairs are
presented for linear classifier, tree kernel classi-
fier and their combination, in Table 1. We also
present the results for the Linear classifier without
the CTD feature. Finally, the table also contains
the results reported in a prior work by (Zhou et al.,
2016) for the CID task. A comparative study with
this prior work is presented in Section 5.

To summarize, our final system (linear + tree
kernel) achieves an F-score of 61.7% over the CID
test data. Note that the combination of linear and
tree kernels outperforms the linear and tree kernel
classifiers individually. The Table also reveals the
substantial contribution of the CTD look up fea-
ture towards the linear classifier’s performance.

5 Discussion

Comparison with prior art. Previously pub-
lished results in the CID BioCreative-V task used
custom entity recognition tools. Therefore, their
CID performance is not directly comparable with-
out replicating their entity annotation process.
A more accurate comparison can be made with
(Zhou et al., 2016) who follow a similar evalua-
tion process. Their system uses gold standard en-
tity annotations and is trained on the CID train-
ing and development datasets and evaluated on

Test Data Classifier P R F1
Intrasentence Lin - CTD 54.1 71.5 61.6
Intrasentence Lin 58.2 75.6 65.8
Intrasentence TK 55.7 53.6 54.6
Intrasentence Lin + TK 63.3 75.4 68.8
Intersentence Lin - CTD 26.9 35.1 30.4
Intersentence Lin 33.7 39.8 36.5
Intersentence TK 53.8 2.3 4.5
Intersentence Lin + TK 65.9 20.0 30.8
Full test Lin - CTD 46.5 61.3 52.9
Full test Lin 57.8 65.6 57.9
Full test TK 55.7 39.2 46.0
Full test Lin + TK 63.6 59.8 61.7

Full test
(Zhou et
al., 2016)

55.6 68.4 61.3

Table 1: Results on CID test data for Linear classi-
fier (Lin), Tree Kernel (TK) and their combination
(Lin+TK). The performance of the linear classifier
without CTD feature (Lin - CTD) is also shown.

the CID test data. They report an F-score of
61.3%. Significantly, their system relies on task
specific post-processing rules, without which their
F1 score drops to 56.0%. Our system performs
better (61.7%), reflecting a substantive advantage
in precision, without using heuristics or task spe-
cific rules.

Effectiveness of Tree Kernels. We note that tree
kernels can significantly improve the performance
of CID relation extraction as illustrated in the re-
sults. Also, this additional performance is ob-
tained using PubMed abstracts and not external
information sources. These results suggest that a
greater amount of information exists in annotated
text that is easier to extract with tree kernels as
compared to manual feature mining for richer pat-
terns. Further, tree kernels have an effect of in-
creasing the precision of the classifiers, specially
for intersentence cases. This is likely due to the
fact that tree kernels enable stringent comparison
of sentence structures (constituent parse trees) as
compared to the lenient approach of bag of words
matching with linear kernels.

Further enhancements. Incorporating entity
focus to tree kernels (section 3.2.1) produced a
slight improvement (to 61.7% from 61.0%). This
approach is likely to be beneficial for sentences
that express multiple relations (> 1) between mul-
tiple entity pairs. In the CID dataset, we found



that sentences expressing multiple relations con-
stitute around 14%, 15% and 14% of training, de-
velopment and test datasets respectively. Alternate
approaches that discriminate parts of the sentence
based on the relation expressed are likely to fur-
ther improve the performance.

In the context of intersentence (C-D) pairs, we
are currently using only the two sentences si, sj
that contain the entity mentions. However, the ac-
tual relationship might be collectively expressed
by any subset of the sentences in the document.
We attempted to model the whole of the document
as a forest of parse trees of all its sentences, but
did not observe any improvement in performance.
For the CID task where more than 30% of the (C-
D) pairs cross sentence boundaries, effective inter-
sentence relation extraction remains a challenge.

6 Summary and Conclusion

In this work, we show that tree kernels were very
effective in CID relation extraction and boosted F1
score to 61.7% as compared to 57.9% achieved
with a linear classifier using simple handcrafted
features alone. In future work, we seek to improve
intersentence relation extraction from documents.
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