Early detection of acute kidney injury with Bayesian networks
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Abstract

Acute kidney injury (AKI) is a major
health issue, affecting large numbers of
patients worldwide. It is associated with
an increase in complications and poor
prognostics if diagnosis is delayed. Med-
ical guidelines are routinely employed to
classify different AKI stages, but guidance
on the early detection of AKI risk is lim-
ited. In this paper, we present a Bayesian
Networks (BN) proof of concept to predict
the likelihood of AKI onset based on lon-
gitudinal patient data, such as serum cre-
atinine values, demographics and comor-
bidities. Data for training and validating
the model was obtained from the Multi-
parameter Intelligent Monitoring in Inten-
sive Care (MIMIC II) database. We de-
scribe the problem domain, data acquisi-
tion and preparation, model developed, re-
sults obtained and pertaining limitations.
We demonstrate that our model can pre-
dict the onset of the disease with an accu-
racy of up to 87% (area under the curve of
0.87) in the cohort under analysis.

1 Introduction

Acute Kidney Injury (AKI) affects a large portion
of the elderly population and has a high risk of
death, as there is no trivial treatment once it breaks
out (Statistisches Bundesamt, 2014). After on-
set, the patient may even need dialysis and/or re-
nal replacement therapy (kidney transplant). Cur-
rently, detection of kidney injury requires contin-
uous monitoring of creatinine and other lab values
(Harty, 2014). In particular, when many patients
must be monitored at once, it is hard for physi-
cians to keep track of subtle changes in blood mea-
surements which might be indicative of AKI. As
a consequence, a significant portion of patients is
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diagnosed for AKI too late, leading to more com-
plications and higher mortality. In fact, a study
in the UK found that 60% of post-admission AKI
cases were avoidable (Stewart et al., 2009). An au-
tomated, early detection of high-risk patients may
lead to a faster response of physicians, reducing
complications associated with AKI.

Our objective was therefore to develop a proof
of concept for early detection of AKI. For this pur-
pose, we created and trained a Bayesian network
model on the basis of real patient data. A Bayesian
network is a probabilistic graphical model, con-
sisting of random variables and their influences on
one another. Data for training and validating the
model was obtained from the anonymized Multi-
parameter Intelligent Monitoring in Intensive Care
II (MIMIC II) database (Lehman et al., 2011). In
this paper, we will provide the background needed
and present the methods involved in developing
the model, including data acquisition and prepa-
ration, results obtained and further discussion.

2 Background

This section deals with the necessary background
for the remainder of this paper. This includes
an elucidation of risk factors related to AKI,
Bayesian networks fundamentals as well as related
work.

2.1 Risk factors for AKI

As a starting point, we needed to identify factors
which predispose patients to AKI from medical
literature sources. These are, among others, cre-
atinine values taken from blood or urine samples.
Furthermore, comorbidities, such as heart failure
or diabetes and personal background, including
age, gender and ethnicity, have to be considered.
Since we are in the domain of kidney diseases, de-
hydration plays an important role too (Lopes and
Jorge, 2013; Kellum et al., 2012). In detail, the
relevant factors are:



e laboratory values (serum creatinine, urine
output, estimated gloremular filtration rate
(eGFR) value)

e comorbidities (heart failure, chronic kidney
disease, tumor disease, diabetes, obesity, hy-
pothyroidism, paralysis, hypertension, pul-
monary circulation, valvular disease, peptic
ulcer, deficiency anemia, renal failure)

e personal background (age, gender, ethnic-
ity, admission type, that is emergency or elec-
tive)

2.2 Acute Kidney Injury classification

Currently, two main guidelines are used in
medicine for the classification of AKI: RIFLE
(Risk, Injury, Failure, Loss) and AKIN (Acute
Kidney Injury Network). Both help physicians
establish severity of kidney injury based on the
serum creatinine and urine output of a patient. Fig-
ures 2 and 1 (Cruz et al., 2009) show an overview
of the two classifications depending on the creati-
nine and urine values.

Cr/ GFR Criteria Urine Output (UO) Criteria

Increased Cr x1.5 UO <0.5 ml/kg/hr
or x 6 hr

Risk GFR decreases >25%
Increased Cr x 2 UO <0.5 mlkkg/hr
Wiy or x 12 hr
- GFR decreases >50%

Increased Cr x 3

U0 <0.3 ml/kg/hr

or
’ GFR decreases >75% x 24 hr
Eailure or i
Cr 24 mg/dl anuria x 12 hr
(with acute rise
of 2 0.5 mg/dl)

Figure 1: RIFLE classification for AKI The RI-
FLE classification uses serum creatinine and urine
output values. It consists of five classes: risk, in-
jury, failure, loss of kidney function and end-stage
kidney disease.

The RIFLE classification (Bellomo et al., 2004,
Ricci et al., 2011) predates AKIN. It consists of
five stages: risk, injury, failure, loss of kidney
function and end-stage kidney disease (ESKD).
In comparison to that, the AKIN classification
(Ricci et al., 2011; Mehta et al., 2007) uses only
three stages: risk, injury, and failure (Lopes and
Jorge, 2013; Kellum et al., 2012). Since AKIN is
based on RIFLE, it is more widely used nowadays.
AKIN performs better for detecting early stage

Cr Criteria Urine Output (UO) Criteria
Increased Cr x1.5 UO <0.5 mi/kg/hr
Stage 1 or x 6 hr
20.3 mg/dl

Stage 2 Increased Cr x 2 UO <0.5 mi/kg/hr
x 12 hr

Increased Cr x 3| UO <0.3 ml/kg/hr

Stage 3 or x 24 hr
Cr 2z 4 mg/dl or
(with acute rise | anuriax 12 hr
of 2 0.5 mg/dl)

Figure 2: AKIN classification for AKI The clas-
sification system works with the help of serum cre-
atinine and urine output values. There are three
possible categories: risk, injury and failure.

patients, while RIFLE guideline is better suited
for patients in advanced stage of renal function
loss, while Since both guidelines are well-proven
in practice, they will serve as an additional output
variables for the model (Lopes and Jorge, 2013;
Kellum et al., 2012).

2.3 Bayesian networks

Howard et al. define a Bayesian network as
“an annotated directed graph that encodes proba-
bilistic relationships among distinctions of interest
in an uncertain-reasoning problem” (Howard and
Matheson, 1983). In general, a Bayesian network
consists of multiple random variables and their
conditional dependencies modeled as probability
functions. This way, based on evidence provided
for one or more given variables, the probability of
the other random variables can be calculated after
the network was trained (Horny, 2014).

An example is given in Figure 3 adapted from
(Barbini et al., 2013), where the probabilistic de-
pendencies of a simple Bayesian model with four
dichotomous variables (true or false) is shown. It
follows from the model that A and B (having a pri-
ori associated probalities) exert influence on C. In
turn, this effect is modeled by a conditional prob-
ability table on the children node. As such, the
probability of event C occurring given that A oc-
curred but not B is given by X ,5. Nodes C and
D are independent of each other (conditional inde-
pendence).

A Bayesian network is developed either by us-
ing expert knowledge and building the network
manually or letting the network be built directly



from the data by a specific algorithm, an approach
known as structure learning. Once the structure
of the network is learned, it can be further manip-
ulated using expert knowledge. Moreover, when
the structure is set, the probability functions rep-
resenting the conditional dependencies can also be
learned from data. This is referred to as parameter
learning.

The most significant drawback of Bayesian net-
works is that the accuracy depends highly on the
chosen structure of the model. If this is done
negligently, the resulting model can fail to show
existing results (false negatives) or show incor-
rect results (false positives). A common way to
avoid this is to iteratively establish dependencies
among variables, usually based on expert knowl-
edge (Heckerman et al., 1995).

A B

True True
True False

False True X35
False False XAB

Figure 3: Example of a Bayesian network This
Bayesian network shows four random dichoto-
mous variables and their probabilistic relation-
ships.

2.4 Previous work

Machine learning has been widely utilized in the
medical domain in several instances. Particu-
larly in Nephrology, Legrand et al. evaluated
the post-operative AKI risk of patients suffering
from infective endocarditis after undergoing car-
diac surgery. They applied super learning, a tech-
nique to choose the optimal regression algorithm,
comparing ten different models by using cross-
validation. Targeted maximum likelihood estima-
tion was used to obtain the following most impor-
tant risk factors: multiple surgery, pre-operative
anemia as defined by a baseline hemoglobin level
<10 g/dl, transfusion requirement during surgery,
the use of a nephrotoxic agent: vancomycin,
aminoglycoside or contrast iodine; and the inter-
action between vancomycin and aminoglycoside.
(Legrand et al., 2013).

Further, Krdl et al. developed an approach to
predict chronic kidney disease (CKD). They did
not build a technical system but “an algorithm for
the diagnostic procedure” (Krdl et al., 2009). For
this purpose, they did an investigative survey with
2471 randomly chosen people involved. As a re-
sult, they found different factors that encourage a
CKD. Among others, these factors are the male
gender, diabetes and hypertension.

Specifically applying Bayesian networks,
Onisko et al. present a model based on dynamic
BNs for predicting the risk of cervical cancer,
using hospital data and expert knowledge. The au-
thors were able to categorize patients in different
risk categories (Onisko et al., 2004). In a similar
approach, Nachimuthu et al. used BNs for early
detection of sepsis(Nachimuthu and Haug, 2012).

Similarly, Ward et al. offer a framework for the
development of Bayesian networks in the partic-
ular example of sepsis. They build their model
based on knowledge gained from literature, hospi-
tal data as well as expert knowledge. Their result-
ing model provides a base for a correct prediction.
Since the data set is rather small, a further evalua-
tion is planned to support their result (Ward et al.,
2014).

In an approach analogous to these works, we de-
veloped a model based on Bayesian networks for
estimating the risk of developing AKI. We were
also able to use hospital data and an expert con-
sultation for the development. To the best of the
authors’ knowledge, this is the first work explic-
itly utilizing a Bayesian network model for AKI
prediction.

3 Model development
3.1 Methodology

For the model development, we utilized two ma-
chine learning tools, Weka and GeNle and com-
pared their accuracy to control for possible tool
bias in the results. Further, we extracted the
needed data from the MIMIC II database, which
was preprocessed for tool input. We created two
data sets for cross-validation, one with 6000 en-
tries and another with 9000 entries (50% more). In
the first iteration, the AKI literature laid out in sec-
tion 2.1 formed the basis for the development of an
initial model (1st iteration model). This model was
then augmented and corrected after an expert con-
sultation session with nephrologists at the Charité
hospital in Berlin (2nd iteration model). We then



compared the two models, as well as the differ-
ent tools and analyzed the results obtained. The
following sections will provide further details into
this procedure.

3.2 Tools utilized

In an effort to avoid bias in the results possi-
bly introduced by differing algorithm implemen-
tations, we chose to develop and test the model in
two widely available Bayesian network modelling
tools, Weka and GeNIE.

Apache Weka is a Java toolkit for different
kinds of data mining algorithms. It allows the clas-
sification, clustering and visualization of data sets
(Kumar and Sahoo, 2012). One of the main ad-
vantages of Weka is the very powerful capabilities
for Bayesian networks (Bouckaert, 2008). For net-
work structure learning, an estimator as well as a
search algorithm can be set as parameters in the
tool. For the purposes of this paper, we chose the
algorithm K2 as it has the best performance among
the search algorithms implemented in Weka (The
University of Waikato, 2008).

GeNle is the user interface of SMILE, a C++
library for the development of graphical decision
models (Druzdzel, 1999). Therefore, in compar-
ison to Weka, it is limited to Bayesian decision
models and has no possibility for other data min-
ing algorithms. Since it is the most generic ap-
proach and suitable for most applications we de-
cided to use the Bayesian search as the algorithm
of choice for GeNIE. In effect, heuristic algo-
rithms such as Tree Augmented Naive Bayes are
only recommended for large scale projects (Deci-
sion Systems Laboratory, 2016).

3.3 Model data
3.3.1 Data acquisition

The accuracy of the developed model depends
highly on the underlying data. For training pur-
poses, a real dataset consisting of patients affected
by AKI and those not affected by it was needed.
This set was obtained from the MIMIC II database
from PhysioNet (Lehman et al., 2011) which con-
tains data from intensive care units (ICU) from
hospitals in the United States. We utilized the con-
tained information about disease indications, de-
mographics, lab results (most importantly creati-
nine value measurements) and comorbidities. AKI
is represented by the ICD (International Classi-
fication of Diseases) code 584.9. The final step

was generating a comma-separated values file by
querying the database tables for preprocessing.

3.3.2 Data preprocessing

Besides demographic information, the MIMIC 11
database provides information about several risk
factors. Furthermore, there are tables for medica-
tion and laboratory events which were used for the
model as well. In order to train and evaluate them,
we decided to choose a cross-validation approach.
This enables training and evaluation within the
same data set.

For this purpose, we extracted two different data
sets. The first one consists of 6000 patients, the
second of 9000. Table 1 shows the distribution of
patients with and without AKI in the two data sets.
They contain information about the demographics
of a patient, their comorbidities, the latest crea-
tinine value changes and an indication whether a
patient was diagnosed with AKI or not.

Entries AKI No AKI
6000 50% (Stage 1,2 & 3) 50%
9000 33% (Stage 1, 2 & 3) 67%

Table 1: Distribution of the two data sets

For use in our experiments, we needed to pre-
process the data. This included a discretization of
continuous values, as well as the computation of
auxiliar values derived from available information.
We computed the estimated Gromerular Filtration
Rate (eGFR) according to the existing guidelines
(NIDDK, 2016), since this rate is an important in-
dication of overall renal function. Next, we calcu-
lated the increase of serum creatinine for each pa-
tient across multiple measurements and used this
value for categorizing the severity of kidney in-
jury according to the AKIN guideline (Mehta et
al., 2007). The data thus preprocessed can be fed
into the tools and offers the necessary information
to enable risk prediction and result validation.

3.4 Model input and output

The prepared data set is the basis for the Bayesian
network. This means that the risk factors pre-
sented in section 2.1 (lab values, comorbidities
and demographics) are the input variables for
training and running the model. The resulting out-
put are the probabilities for the presence of AKI
as well as the classification stages of RIFLE and
AKIN as inferred from the provided input. It en-
ables the user to employ it for decision support



with the same or other data sets. For illustration
purposes, a graphical representation for the second
iteration model is provided in .

3.5 First iteration model

In the first iteration, the model included the in-
put variables as indicated in the AKI literature,
encompassing laboratory values, patient demo-
graphics and comorbidities. These random vari-
ables are the input nodes. Each node has its own
probability as well as possible posterior proba-
bilities stored which define its impact on defin-
ing AKI. These probabilities were automatically
trained from the data set obtained from the MIMIC
II database. The model concentrates on the AKI
as well as the two classification guidelines RIFLE
and AKIN. For the sake of brevity, we will not
provide a graphical representation of the first iter-
ation model. The structure, however, will be clear
from analyzing the second iteration model, which
already incorporated expert feedback.

3.6 Second iteration model

In the next step, we discussed the model in the first
iteration with nephrologists from the Charité hos-
pital in Berlin. The following main insights were
gained:

1. RIFLE guideline is not used in practice any
more since it is an older classification system.
Moreover, AKIN is based on RIFLE and is
thus the only classification system needed;

2. There are further influence factors which
need to be considered. These factors are
weight, urethritis and medication history;

3. The time of comorbidities has an influence on
making the correct diagnosis. Diseases that
are years ago have less impact than more re-
cent diseases;

4. Physicians normally do not trust any sys-
tems but only themselves. A CDSS needs
to provide demonstrable value. Additionally,
nephrologists mostly do not need such a sys-
tem since they recognize the symptoms them-
selves based on their experience. A better
use case is the ICU, where the physicians are
not kidney experts and are overwhelmed with
monitoring data.

Based on the discussion at the Charité, we de-
velop a second model, shown in Figure 4. As per

the feedback, we removed the node for RIFLE.
Furthermore, we added the nodes for the new risk
factors. Finally, we appended more dependencies
between the factors and AKI as well as AKIN.

NEUROL
DISORDER

HYPO-
THYROIDISM

DIABETES

RENAL
FAILURE

CHRONIC
PULMO-
NARY

CHRONIC
KIDNEY
DISEASE

HYPER-
TENSION

ADMISSION
SOURCE
ADMISSION
TYPE

DEFICIEN
ANEMIAS

HEART
FAILURE
DRUG PEPETIC
ABSUSE ULCER

Figure 4: Second iteration model Based on the
main insights from the expert consultation, this
model was developed. The RIFLE guideline was
removed. Furthermore, new risk factors and de-
pendencies were added. Comorbidities are shown
in gray.

PULMONARY
CIRCULA-
TION

4 Results

This section evaluates how accurate the developed
models were. To this extent, the used data set is
presented. Moreover, we compare the accuracy
values for the two developed models. We show
that both improving the model with expert knowl-
edge as well as increasing the data size increases
the accuracy of the model. Our best result was an
accuracy of 87% for predicting the occurrence of
AKI.

4.1 Accuracy of the models

Table 2 shows the obtained results depending on
both the utilized tool and the data set used (6000
or 9000). It stands out that the 2nd iteration model
consistently performs better than the first one.
This demonstrates that expert knowledge is help-



ful in improving model performance in such a spe-
cialized scenario as kidney disease. Moreover, it
shows the flexibility of Bayesian networks, which
allows to integrate such expert knowledge. Fur-
thermore, noticeable discrepancies between the
different tools can be observed. Overall, we
achieved a top accuracy of 87% when using Ge-
Nle.

1st iteration 2nd iteration

Dataset | GeNle | Weka | GeNIe | Weka
6000 67% 58% 83% 76%
9000 73% 72% 87% 83%

Table 2: Accuracy of the developed models as
per the different tools and datasets

A more detailed view of the accuracy can be
seen by analyzing the receiver operating charac-
teristic (ROC) of the best performing experiment.
The ROC curve describes the relation between true
positives (TP) and false positives (FP). The perfect
result would be a TP value of 100% and a FP value
of 0%. Figure 5 shows the curve of the 2nd iter-
ation model (after expert feedback). The curve is
based on the larger data set (9000 entries) and refer
to computed AKI patients.

True posttive rate

-

o DI1 DI2 DIB 0‘4 D‘E 0‘6 DIT DIS DIB 1
False positive rate

Figure 5: ROC curve of the 2nd iteration model

Curve shows the performance of the Bayesian

classifier for the AKI output variable. Area under
the Curve (AUC) = 0.8743

5 Discussion

The results obtained show that for the cohort under
analysis increasing data volumes lead to improved

accuracy. As such, the higher the volume of data
available, the better the results achieved. This was
demonstrated by increasing in 50% the data vol-
ume (from 6000 to 9000). This finding suggests
that more robust prediction models can be devel-
oped for the medical domain by tapping into larger
databases.

The results also show discrepancies concern-
ing the tools used (Weka and GeNle). This can
be accounted for by differences in algorithm im-
plementation and configuration parameters. This
fact underscores the need for comparison not only
among algorithms, but also among different tools
and configurations, since the details of algorithm
implementation can greatly vary. In this paper,
while variations were present, the results were
largely consistent, except for a much poorer result
from Weka when dealing with the smaller dataset.

The comparably small data set due to limited
hardware capacity was the biggest drawback of
our experiments. Furthermore, the limited scope
of this work lead to the decision of concentrate
on one algorithm per tool. Indeed, different algo-
rithms show different advantages which we were
not able to consider for this paper. As such, a
more robust analysis should include a comparison
of different algorithms, tools and configuration pa-
rameters.

Going one step further, instead of solely in-
creasing the data volume, another promising di-
rection to follow would be to increase data vari-
ety, including more relevant data, such as urethri-
tis as a comorbidity and complete disease history.
As the experts consulted suggested, this might im-
prove the accuracy as well. Unfortunately, this
data could not be obtained from the data source
available but it must be included if this this model
is to be used in practice.

In the beginning, we showed related works that
developed a CDSS for various diseases (Onisko et
al., 2004; Nachimuthu and Haug, 2012; Ward et
al., 2014). These works employ dynamic Bayesian
networks, which consider the time component as
the involved random variables change. The ap-
proach presented in this work is concerned with
a static view. This represents a possible weakness
in comparison to other similar works and must be
addressed in the future.

Finally, while decision support systems show
much promise in improving healthcare delivery,
evidence towards their efficacy in clinical settings



is lacking, leading to skepticism among medical
professionals. Particularly in the field of Nephrol-
ogy, a controlled randomized trial (CRT) has been
conducted by Wilson et al. testing an early warn-
ing alert system for AKI. The CRT which yielded
no demonstrable positive outcomes for patients
(Wilson et al., 2015). Their algorithm was based
on the mere detection of creatinine thresholds and
the authors of this study encouraged new trials
with more sophisticated algorithms. Such expe-
riences strengthen the need for making CRT a
standard procedure for a prospective CDSS. Even
though such procedures are costly, if benefits can
be factually demonstrated, medical acceptance can
be increased.

5.1 Further work

Since the results show that larger data sets tend
to deliver more accurate results, the tests should
be repeated with more representative data sets that
might also contain new input variables like urethri-
tis as a comorbidity and the history of diseases.
Furthermore, in a practical application, the ma-
chine learning system has to be easily modifiable.
One approach is to develop a Clinical Decision
Support System specifically for this purpose. An-
other one is to use the existing tools, but perform
more experiments with changing parameters.

For actual use in practice, integration with care
delivery workflows and the hospital information
system itself is needed. The user interface of such
a system has to be clearly structured and free of
unnecessary information, so that physicians can
readily see the most important facts about a pa-
tient. Further, an alert system powered by the
clinical decision support system must be imple-
mented, so that care team can be notified timely in
case of AKI. Still, it remains to be seen how many
physicians would actually use such a system, so
acceptance is a possible barrier. Similarly, the ex-
pected benefits for the patients must also be mea-
sured in terms of outcomes (rate of complication,
mortality, prognosis, subjective well-being, etc.)
Therefore, a pilot study considering both physi-
cian acceptance and patient outcomes should be
conducted.

6 Conclusion

We developed a proof of concept for a machine
learning model that can be used in a CDSS in the
domain of AKI. For this purpose, we trained a

Bayesian network on 9000 data entries from ICUs
in the US, obtained from the MIMIC database.
Using information about demographics, comor-
bidities and creatinine values, a satisfactory ac-
curacy for predicting the risk of an AKI was ob-
tained. The results show that a further develop-
ment and improvement of such a model by inte-
gration of expert knowledge leads to improved ac-
curacy values. However, such initiatives are fre-
quently met with skepticism by the medical com-
munity. Randomized controlled trials are needed
to assess the benefits and potential risks for pa-
tients and doctors, along with full integration with
medical workflows, so that they can be convinced
of the potential advantages of such a system.
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