
Crowdsourcing Theorem Proving via Natural Games?

Naveen Sundar Govindarajulu1 and Selmer Bringsjord2

1 Yahoo
Sunnyvale, CA

2 RAIR Lab
Dept. of Computer Science
Dept. of Cognitive Science

Rensselaer Polytechnic Institute

1 Introduction

Despite the science of modern formal reasoning being more than a century old, mecha-
nized formal reasoning is nowhere near what expert human reasoners (formal and infor-
mal) can achieve. Meanwhile, there is a steadily increasing need for automated theorem
proving in various fields of science and engineering. Proof discovery and verification in
science and mathematics [2,3,4,5], formal verification for hardware and software [6,7]
and logic-based AI [8,9,10] are all based on formal theorem proving.

We present initial results from a project on augmenting automated theorem provers
with crowdsourced theorem proving through games. The project was started based on
the following two seemingly unrelated observations:

Observation 1 (Observation 1) Non-trivial formal theorem proving requires in-
sight into the structure of the problem being solved. (This insight is provided by
the problem domain’s experts.)

What do we mean by insight? While it is hard to quantify this, a rough characteriza-
tion follows. For instance, say we are modelling a domain (e.g. standard arithmetic over
N or biological processes) with a set of axioms A and we are interested in a conjecture
Γ. Assume A can derive Γ, that is Γ is a theorem of A . Also, assume that the smallest
proof of Γ from A is of length L via a standard proof calculus ρ, that is A `ρ

L Γ.
One form of insight might be through possession of a library of lemmas by experts.

Definition 1 (Insight via Lemmas). An expert in the domain might possess in-
sight in the form of a set of lemmas L (such that ∀φ ∈ L : A ` φ), that enables the
expert to derive Γ from A ∪L using a proof of length L′ with L′� L.

Of course, experts could also possess insight not just through lemmas but also
through common patterns of reasoning that can be reused across problems.

? Note: While this submission draws partly from the first author’s dissertation [1], it contains
results and discussions not present in the dissertation. The new data can be download here:
https://s3.amazonaws.com/www.catabotrescue.com/data/AnonoynmizedLevelCompletion.json.

https://s3.amazonaws.com/www.catabotrescue.com/data/AnonoynmizedLevelCompletion.json

Definition 2 (Insight via an Extended Proof Calculus). An expert in the domain
might possess insight in the form of an extended proof calculus ρ′ that is sound
(that is forall Φ and ψ, if Φ `ρ′ φ then Φ �ρ′ φ).

This proof calculus enables the expert to derive Γ from A through ρ′ using a
proof of length L′ with L′� L, that is A `ρ′

L′ Γ.

Insight through lemmas is usually domain and problem dependent, and insight
through extened proof calculi usually transfers between domains and problems.

Unless such insight is provided to a theorem prover in some form, such problems
can be very hard to solve fully automatically. In practice, help is provided by human
experts via lemmas [5], proof tactics [11], proof methods [12] etc. This requires that
the human experts understand not only the problem domain, but also the formalization
of the domain, and other formal tools that might be needed for the task. But for a lot
of domains, e.g. hardware verification, there are not enough experts trained in both
theorem proving and the problem domain to help with proving non trivial problems.

Observation 2 (Observation 2) Lay gamesa (such as chess or sudoku) which re-
quire the player to think logically or deeply are in fact formal reasoning schemes
in disguise.

a A lay game is simply any game which does not require extensive formal training on the
order of what is required for someone to prove formal theorems in logic.

For example, even if we rename all the pieces in chess (or any similar game), it is
not wrong to assume that players with some acclimatization will revert to their skills
levels in unmodified chess in a short duration compared with the time they took to learn
chess from scratch.

The two observations lead us to the question of whether hard formal problems can
be cast into a form, for example a natural game like chess, which would remove the
need for domain knowledge by completely abstracting away from the original domain.
Ideally, such a game should be able to exploit a human player’s insight into the structure
of the game. This insight should then be automatically transferrable into solving the
problem.

We present initial promising results from the Uncomputable Games project (first
proposed in [13]) aimed at designing and implementing such natural games. While
we have designed games for first-order logic, we present initial promising results for
propositional logic. The full set of games for first-order natural deduction and first-order
resolution theorem proving can be found in [1]. We focus on these proof calculi for
the following reasons: resolution is the proof calculus of choice for industrial strength
theorem provers, and natural deduction is the proof calculus of choice for formal proofs
by humans [12]. The overall vision for this project is summarized in Figure 1.

2 Related Work

While [1] contains a more detailed discussion of related work, we quickly go through
a couple of two important related systems. While General Game Playing [14] uses the

5

Uncomputable Games
Platform

ATP Systems

Proof Discovery in
Mathematics and

Science

Software and
Hardware
Verification

...

Classical logic-based
AI

...

Problems that are not decidable

The General Crowd

G ` f?

ATP p
ro

ble
m in

sta
nc

es

Game plays Game instances

s

s

Figure 1.1: The Uncomputable Games Project Architecture. The abstract architecture
for crowdsourced theorem proving. Gamers are not visible to the users and gamers do not know
about the problems they are solving.

1.2 Deriving Game Criteria
Given that we want to have games for crowdsourcing theorem proving, we present some

general criteria to aid in the design of games that might help us in this goal. If we are lax

with our requirements, we end up with trivial games. One such game could just present a

logic problem G ` f? directly as “game.” Another such game could present to the player a

non-deterministic Turing machine that would accept the string hG,fi only if G ` f. At any

stage of the computation, a non-deterministic Turing machine has one or more choices.1

A game could then challenge the player to select choices which result in an accepting

1A non-deterministic Turing machine m is said to accept an input string s if there is a sequence of
choices that results in an accepting state sa.

Fig. 1: The Uncomputable Games Project Architecture. The abstract architecture for
crowdsourced theorem proving. Gamers are not visible to the theorem proving users and
gamers do not know about the problems they are solving.

machinery of first-order logic (FOL) to specify the games, the games themselves are
neither designed to capture FOL nor to be used in crowd-sourced theorem proving.
Since each state in such games has only a finite number of moves, such games are at
the propositional level and cannot capture theoremhood in FOL. Tiling problems [15]
are undecidable and capture theoremhood in FOL. This is an attractive property for
us, as such systems are powerful enough to capture FOL, while also being in the form
of a lay game. Unfortunately we cannot use tiling systems for the following reason.
Tiling problems generally ask whether an infinite plane can be tiled or not with a given
set of tiles. We cannot use such systems as there is no clear notion of certification for
an answer. Affirmative answers have as proof either infinitely tiled planes or a proof in
some non-tile system (usually informal proofs in mathematical English or formal proofs
in FOL), and negative answers don’t have a proof using only tiles (even an infinite
number of them) and require a proof in some other system.

3 Deriving Game Criteria

Given that we want to have games for crowdsourcing theorem proving, we present some
general criteria to aid in the design of games that might help us in this goal. If we are
lax with our requirements, we end up with trivial games that are not useful for us. One
such game could just present a logic problem “Γ ` φ?” directly as a game. Another such

game could present to the player a non-deterministic Turing machine that would accept
the string 〈Γ,φ〉 only if Γ ` φ. At any stage of the computation, a non-deterministic
Turing machine has one or more choices.3 A game could then challenge the player to
select choices which result in an accepting state given some input! It is obvious that
approaches such as these would not help us.

The overarching requirement that players with no knowledge of formal logic be able
to prove theorems by playing games helps us derive some general criteria such games
should satisfy. We need a few simple definitions to make our criteria more clear.

3.1 A Simple Formalization

We need a simple vocabulary to help us talk clearly about the aspects of games we are
interested in. Some straightforward definitions are given below:

Game Objects Game objects are all the objects that a player can interact with and manip-
ulate in the game. The universe of all game objects is denoted by G. Note that each
game object on its own contains enough information to assemble the game at any point
in time when combined with all other game objects. The game state at any point in
time is a function of the game objects.

Game State The game state at any point of time is just a set of game objects. But not all
sets of game objects might correspond to a meaningful configuration of the game. A
game state is any valid set of game objects.

Game A game G is a quadruple 〈G,γ⊆G×2G, I,F〉 composed of the universe of all game
objects G, an operation γ specifying valid operations with the game objects, the initial
game states I ⊆ 2G and the final states F ⊆ 2G.

Game Instance The initial game states are also called game instances.
Game Size The game size |g| of a game instance g is simply the number of game objects

in that game instance.
Game Play A terminating game play for a game instance g1 is sequence of game states

g1,g2, . . . ,gn such that gi+1 = gi−{ugi}∪ν(ugi) where ugi is some game object in gi
and ν(ugi) is a set of game objects such that γ(ugi ,ν(ugi)) holds. Game play proceeds
by replacing game objects with one or more other game objects.

Captures FOL A game captures FOL or theorem-proving in a proof calculus ρ in FOL
iff every problem Γ ` γ is isomorphic with exactly one game instance gΓ`γ and every
proof for the problem is isomorphic with every terminating game play for the instance.
gΓ`γ is called the game instance for Γ ` γ.

3.2 Game Criteria for Naturalness and Usefulness

Any game designed that seeks to help us should satisfy the following criteria:

1. Independently Incentivized: The games themselves should be captivating and engag-
ing enough that users play the games of their own accord without the incentive of good
theorems being proved. This sets us apart from games such as FoldIt where players

3 A non-deterministic Turing machine m is said to accept an input string s if there is a sequence
of choices that results in an accepting state sa.

deal with the problem domain directly. An incentive structure is usually superimposed
on the domain.

2. No Knowledge Needed: In order to play the games, the players need not have any
knowledge of first-order logic and the capturing of first-order theorem proving in the
game. To play, users need to know only the rules of the game.

3. Non Linguistic: Games that are linguistic in nature generally have a smaller user base.
This is a vague criterion which will be sharpened through the course of this project.
The general idea is that a player should not have to understand, for example, how
Turing machines work in order to play the game. One way to sharpen this criterion
is to stipulate that γ has physical correlates or interpretations in naı̈ve physics (e.g.
dropping objects, spatially locking objects etc.).

4. Readable Proof: If a game play instance shows us that a theorem φ can be proved
from premises Γ, the game play instance should also provide us with a readable proof
ρ. This rules out tiling problems [15] as there is not clear notion of a proof.

5. Tractable Representation: Given a problem Γ ` φ? with logical signature Σ being
used in the problem, we can set a bound on the game size. If g is the game instance
which represents the problem, then we need to have: |g| ≤ |Γ|+1+ |Σ|. Another con-
dition can be derived if we consider the length of the smallest proof. If the minimum
proof length defined as the number of inference rule applications is denoted by |Γ ` φ|,
we require that the instance g for the problem have a terminating game play of length
‖g‖ such that ‖g‖ ≤ k ∗ |Γ ` φ| where k is a non-negative constant.

4 Catabot Rescue Games

The Catabot Rescue Games were designed with the above five criteria in mind. The
games capture first-order logic with binary resolution and natural deduction. The games
are set in a world populated by entities called catabots, which resemble robotic cater-
pillars or bugs that consume objects in the game for fuel and can reproduce with other
catabots. Most of the operations in the game have natural physical correlates, such as
dropping objects, dissolving objects, breaking up catabots, etc. No elements of the un-
derlying logic problem are directly shown in the game. A record of the game play can
be directly translated into a proof in either binary resolution or natural deduction. The
basic design metaphors used in these games could also be utilized to invent and design
other games which satisfy the criteria. We present only the propositional subset of one
of the games. The full set of games can be found in [1]. Before we present the game,
we go through a brief introduction to the resolution rule used in theorem proving.

5 Resolution-based Theorem Proving

There are several sound and complete proof calculi for propositional logic with different
advantages and strengths. Resolution invented by Robinson [16] is widely implemented
in automated provers and logic-programming systems due to its simplicity. While com-
pared with proof calculi adhering close to natural deduction, resolution proofs suffer
from being a bit harder for humans to read. Although resolution proofs are hard to read,
they have a much simpler formal structure, which makes resolution more amenable
to automation. Before we present the game for resolution, we briefly review a formal
specification of resolution.

Given two conjunctive normal form clauses p1∨ . . .∨ pi∨ . . .∨ pn and q1∨ . . .∨q j∨
. . .∨ qm, such that pi ≡ r and q j ≡ ¬r, where r is a propositional variable, the binary
resolution rule produces:

p1∨ . . .∨ pi−1∨ pi+1∨ . . .∨ pn∨q1∨ . . .∨q j−1∨q j+1∨ . . .∨qm

A proof of Γ` φ is obtained via resolution when there is a series of binary resolution
steps resulting in the empty clause denoting false using only the clausal form (disjunc-
tive normal form) of sentences in Γ∪ {¬φ} and any sentence that was generated by
applications of the rule. We now present the Catabot Rescue Game designed to capture
propositional resolution.

6 Catabot Rescue Game 0

TheCatabot Rescue Game 0, CRG0, captures propositional resolution. The catabots in
the game are isomorphic with clauses in a propositional language and the game process
is isomorphic with the steps in a resolution proof. The game satisfies the criteria defined
above and adheres to the formalization presented. We start with a description of the
game world. The backstory for the game is given below (A similar story is presented to
the user along with a figure similar to Figure 4.):

There are a bunch of catabots imprisoned in a room by a horrible blob. The room
has a small door to the outside. None of the catabots are small enough to use
the door. Only a body-less catabot with just the head can go through the door!
Catabots can reproduce and download their minds to any child’s body (or any
other catabot). Reproduction has certain rules. Help them escape by mating them
in a fashion so as to produce a body-less catabot.

Each catabot has a head and a body composed of zero or more blocks. The blocks
have a certain number of limbs or legs of either positive or negative polarity such as
those shown in Figure 2.

3 2

Alternate Representation

Visual Representation

Fig. 2: CRG0 Blocks. Blocks with different polarities.

The catabots represent clauses and the blocks on the body represent different atoms.
Let us assume the supply of propositional variables {P1, . . . ,Pk}. Then, e.g., Pn would
have n limbs with a positive polarity and ¬Pn would have n limbs with a negative po-
larity. Figure 2 shows literals P3 and ¬P2.

With this process it is easier to visualize the process of binary resolution operating
on two clauses. Two simple examples are shown in Figure 3.

23

have n limbs with a positive polarity and ¬Pn would have n limbs with a negative polarity.

Figure 4.1 shows literals P3 and ¬P2.

With this process it is easier to visualize the process of binary resolution operating

on two clauses. Two simple examples are shown in Figure 4.2.

child

parent 1

parent 2parent 2

parent 1 child

P3 _P2,¬P3

P2

¬P2 _P4,P3 _P2

P3 _P4

Figure 4.2: CRG Mating Example. Two mating examples. The children are shown on the left
side of the parents. The children have all the blocks from the parents, save for the pair of blocks
which were mated in the parents.

Machinery to represent first-order atoms consists of a fuel setup on top of the

blocks. The catabots consume bricks for fuel. Bricks are dropped into interconnected

tanks of water on top of the blocks. Tanks may be placed on top of the bricks. A tank

represents a variable and multiple instantiations of the same variable are represented by

a network of connected tanks. Simple examples are show in Figure 4.3. More complex

examples are shown in the next section. Three simple catabots are shown below in Fig-

ure 4.4.

The color of the bricks and their shape matters, but not their relative sizes. For

ease of presentation here, we sometimes use letters in the bricks to help distinguish the

colors better. Bricks can combine with other bricks to form more complex bricks in the

manner of LegoTM blocks (Christiansen 2013). One such combination is show below in

Figure 4.5. Figure 4.6 shows an ontology of the different objects in the CRG world.

Fig. 3: CRG0 Mating Example. Two mating examples. The children are shown on the left
side of the parents. The children have all the blocks from the parents, save for the pair of
blocks which were mated in the parents.

6.1 Mating Rules

Catabot mating rules are very simple and correspond to propositional binary resolution.
The rules for catabot reproduction are given below:

Mated Pairs Cancel The user can choose any two catabots for mating. Two catabots can mate
if and only if they have the same number of limbs with differing polarities. Such a pair is
called a mated pair.

Child Catabot The child is a catabot with all the blocks the same, except for the mated blocks
in the parents.

Same Blocks Merge If two blocks on different parents are visually the same, they merge into
one in the child.

7 Initial Results

An initial industrial-strength implementation of a subset of the operations in CRG0 has
been implemented in a game for iPads and the Web.4 Figure 4 shows a screenshot of
the game.

This initial version has 50 levels out of which 44 were generated automatically (in
addition to first six levels which are considered tutorial levels). The generation process

4 The web version is available at http://compete.catabotrescue.com and the iPad version is avail-
able at https://itunes.apple.com/us/app/catabot-rescue-lite/id645249674?ls=1&mt=8. Please
note that the iPad version is not compatible with more recent versions of the iPad. We sug-
gest that reviewers use the web version.

http://compete.catabotrescue.com
https://itunes.apple.com/us/app/catabot-rescue-lite/id645249674?ls=1&mt=8

Fig. 4: Catabot Rescue Game . A screenshot of Catabot Rescue Game 0 Beginner

of the problems is as follows. We randomly generate a certain number of clauses each
having a minimum number min and a maximum number max of literals. Given that
we want n clauses, we sample n times the discrete uniform distribution [min,max] to
generate the size of each clause. Then for each clause we uniformly select from the set
of all possible literals. We consider only the literals:

{p1, p2, p3, p4,¬p1,¬p2,¬p3,¬p4,}
Most of the clauses generated in this fashion do not result in a contradiction. The
Prover9 automated theorem prover [17] was used to filter out sets of clauses which did
not lead to a refutation. Prover9’s ability to search for multiple proofs was used. Then
problems for which the smallest proof was below a certain length were filtered out.
Prover9 also reports the depth of the resolution proof tree. Problems with proofs less
than four levels deep were removed. This process produces quite complex problems.
Though the problems are quite complex and hard, users without any formal training in
logic found the levels engaging and were able to solve them. The scoring mechanism
for the overall game is in terms of dollar rewards for the user. Upon completion of a
level n with k operations, the total reward for the user becomes $(n+100∗1/k).

8 Data from Game Plays

We conducted two experiments with the game. In the first experiment, we released the
game to the public and got game play results from mostly players untrained in logic.
While we don’t have exact numbers on the fraction of the players that were trained in
logic, this experiment is supposed to mirror conditions that we might face eventually if
the games are to be used on a large scale. In the second experiment, we held a contest
in an introductory logic class. The students participating in the class were trained in
propositional logic but had no knowledge of resolution.

8.1 Experiment 1: Untrained Humans
Over the course of a few days (less than ten days) since the release of the iPad version
of the game, the game was download around 60 times. This resulted in 400 terminating
game plays collected from around 15 players. The total number of players is not ac-
curate as users generally hand over played levels to other players and sometimes reset
levels to try again and get a better score. We are not interested in metrics which dictate
that we have an accurate count of the number of users. Ultimately, when we want to
solve very a hard theorem through games, we only need one single player/team to solve
the corresponding game instance. Among all the players, only four players were able to
solve all the levels. Among these four, we were able to verify that at least two did not
have any training in formal logic. Of these two players, one was able to produce smaller
proofs than Prover9 for all the 44 levels, save for one. The other players who completed
all the levels also produced proofs smaller than Prover9 for some of the levels.

8.2 Experiment 2: Partially Trained Humans
Over the course of a week we had 1766 terminating game plays from around 80 users.
Of all these users, 22 completed all the levels.

8.3 Results

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Minimum Proof Lengths

Table 1 Minimum proof length by Prover9+SNARK Table 1 Minimum proof length by untrained humans
Table 1 Minimum proof length by partially trained humans

Fig. 5: Prover9 versus a humans. Shortest proofs for the 44 levels by humans and Prover9

Figure 5 shows the minimum proof lengths produced by untrained humans, par-
tially trained humans and Prover9 and SNARK combined. Quite surprisingly, minimally
trained humans were able to get proofs smaller than the theorem provers.

It should be noted that the two players from the first experiment who did not have
any training in formal logic were able to solve problems as hard as the one given below.
This problem is represented in Level 50 of the game. We need to derive the empty clause
from this given set of clauses:

{
P1∨P3∨¬P2∨P4,P4∨¬P2∨¬P1,¬P4∨¬P3∨¬P2∨P1,¬P2∨P4∨¬P3,

P2∨¬P1,P3∨P2,¬P4∨P1,P1∨P2,P1∨¬P4∨P3∨¬P2

}

Illustration of a Human-Dominated Level We now walk through a simple level in
which it is easy to see how humans performed better than the ATP. The level we illus-
trate is Level 7 in the game. The logic problem represented is given below:{

¬P1∨¬P3,P4∨P3,P2∨¬P4,¬P3∨¬P2,

P2∨P4,P3∨¬P4,P3∨¬P1∨¬P2,¬P3∨P1

}

Figures 6, 7, 8, and 9 show one possible proof of only four steps. Prover9 was
unable to find any proofs with less than six binary resolution steps. Though Prover9’s
configuration for the maximum number of proofs to search for was set at 50, Prover9
generated only two proofs. The two proofs are shown in Figure 10.

Parent 1
Child

Parent 2

Fig. 6: Step 1 of the Shortest Human Proof for Level 7. Catabots corresponding to the
premises P3∨¬P4 and P4∨P3 combine to give the catabot for P3.

We also ran the SNARK [18] ATP on this problem. While SNARK does have the
provision to search for multiple proofs or produce only binary resolution proofs, it is
easy to see that proof by SNARK shown in Figure 11 does not translate into a resolution
proof smaller than 5 steps.

Parent 1

Child

Parent 2

Fig. 7: Step 2 of the Shortest Human Proof for Level 7. Use the catabot corresponding
to P3 from the previous step with the catabot for premise ¬P3∨¬P2 to get ¬P2.

Parent 1

Child

Parent 2

Fig. 8: Step 3 of the Shortest Human Proof for Level 7. Combine catabots for premises
P2∨¬P4 and P2∨P4 to get the catabot for P2. Note: the two blocks for P2 are automatically
merged into one block in the child catabot.

Parent 1

Child

Parent 2

Fig. 9: Step 4 of the Shortest Human Proof for Level 7 . Finally, mate catabots for P2 and
¬P2 obtained in the last two steps. This gives us a body-less catabot representing false.
This catabot then escapes!

"============================== prooftrans ============================
Prover9 (64) version 2009-11A, November 2009.
Process 87248 was started by Naveen on m5-05.dynamic.rpi.edu,
Wed Jun 5 18:01:57 2013
The command was \"/Applications/LADR-2009-11A/bin/prover9 -f /Volumes/prover9ramdisk/prob.in\".
============================== end of head ===========================

============================== end of input ==========================

============================== PROOF =================================

% -------- Comments from original proof --------
% Proof 1 at 0.00 (+ 0.00) seconds.
% Length of proof is 11.
% Level of proof is 4.
% Maximum clause weight is 2.000.
% Given clauses 9.

2 -P1 | -P3. [assumption].
3 P4 | P3. [assumption].
5 -P3 | -P2. [assumption].
6 P2 | P4. [assumption].
7 P3 | -P4. [assumption].
9 -P4 | P1. [assumption].
10 -P2 | P4. [resolve(5,a,3,b)].
11A P4 | P4. [resolve(10,a,6,a)].
11 P4. [copy(11A),merge(b)].
12 P1. [resolve(11,a,9,a)].
13 P3. [resolve(11,a,7,b)].
15A -P3. [resolve(12,a,2,a)].
15 $F. [resolve(13,a,15A,a)].

============================== end of proof ==========================

============================== PROOF =================================

% -------- Comments from original proof --------
% Proof 2 at 0.00 (+ 0.00) seconds.
% Length of proof is 10.
% Level of proof is 4.
% Maximum clause weight is 2.000.
% Given clauses 9.

3 P4 | P3. [assumption].
4 P2 | -P4. [assumption].
5 -P3 | -P2. [assumption].
6 P2 | P4. [assumption].
7 P3 | -P4. [assumption].
10 -P2 | P4. [resolve(5,a,3,b)].
11A P4 | P4. [resolve(10,a,6,a)].
11 P4. [copy(11A),merge(b)].
13 P3. [resolve(11,a,7,b)].
14 P2. [resolve(11,a,4,b)].
16A -P2. [resolve(13,a,5,a)].
16 $F. [resolve(14,a,16A,a)].

============================== end of proof ==========================

(a) Proof 1

"============================== prooftrans ============================
Prover9 (64) version 2009-11A, November 2009.
Process 87248 was started by Naveen on m5-05.dynamic.rpi.edu,
Wed Jun 5 18:01:57 2013
The command was \"/Applications/LADR-2009-11A/bin/prover9 -f /Volumes/prover9ramdisk/prob.in\".
============================== end of head ===========================

============================== end of input ==========================

============================== PROOF =================================

% -------- Comments from original proof --------
% Proof 1 at 0.00 (+ 0.00) seconds.
% Length of proof is 11.
% Level of proof is 4.
% Maximum clause weight is 2.000.
% Given clauses 9.

2 -P1 | -P3. [assumption].
3 P4 | P3. [assumption].
5 -P3 | -P2. [assumption].
6 P2 | P4. [assumption].
7 P3 | -P4. [assumption].
9 -P4 | P1. [assumption].
10 -P2 | P4. [resolve(5,a,3,b)].
11A P4 | P4. [resolve(10,a,6,a)].
11 P4. [copy(11A),merge(b)].
12 P1. [resolve(11,a,9,a)].
13 P3. [resolve(11,a,7,b)].
15A -P3. [resolve(12,a,2,a)].
15 $F. [resolve(13,a,15A,a)].

============================== end of proof ==========================

============================== PROOF =================================

% -------- Comments from original proof --------
% Proof 2 at 0.00 (+ 0.00) seconds.
% Length of proof is 10.
% Level of proof is 4.
% Maximum clause weight is 2.000.
% Given clauses 9.

3 P4 | P3. [assumption].
4 P2 | -P4. [assumption].
5 -P3 | -P2. [assumption].
6 P2 | P4. [assumption].
7 P3 | -P4. [assumption].
10 -P2 | P4. [resolve(5,a,3,b)].
11A P4 | P4. [resolve(10,a,6,a)].
11 P4. [copy(11A),merge(b)].
13 P3. [resolve(11,a,7,b)].
14 P2. [resolve(11,a,4,b)].
16A -P2. [resolve(13,a,5,a)].
16 $F. [resolve(14,a,16A,a)].

============================== end of proof ==========================(b) Proof 2

Fig. 10: Prover9’s two proofs for Level 7: Prover9’s two proofs for Level 7 are longer
than the shortest proof found by humans.

Fig. 11: SNARK on Level 7. The proof from the SNARK ATP is still longer than the shortest
proof found by humans.

9 Observations

While nowhere close to a full validation of our goal, these initial results provide us
with some promise that such games could enable crowds of untrained humans to help
machines when it comes to solving hard problems. It is quite notable that humans with-
out much formal training in logic can produce proofs shorter than those produced by
machine in a calculus specialized for machine reasoning. This is remarkable, because,
in addition to propositional theorem proving being hard, many associated problems in
propositional logic are hard. For example, determining whether there is a proof of a
certain length for a tautology, determining the length of the shortest proof for a given
tautology, and finding the shortest proof given the length of the shortest proof are all
believed to be quite hard [19,20]. These results, while humble, indicate that theorem
provers might be able to benefit from untrained humans. Future experiments would in-
volve a more extensive set of problems (e.g. bins of problems of the same minimum
proof length) to get more statistically useful conclusions comparing human perfor-
mance with that of machines.

10 Data and Source Code

1. The data from Experiment 2 can be download from here: https://s3.amazonaws.
com/www.catabotrescue.com/data/AnonoynmizedLevelCompletion.json.

2. The cross platform source code for the game is available here: https://github.com/
naveensundarg/catabotrescue-unity

3. The game can be played here: http://compete.catabotrescue.com

https://s3.amazonaws. com/www.catabotrescue.com/data/AnonoynmizedLevelCompletion.json.
https://s3.amazonaws. com/www.catabotrescue.com/data/AnonoynmizedLevelCompletion.json.
https://github.com/naveensundarg/catabotrescue-unity
https://github.com/naveensundarg/catabotrescue-unity
http://compete.catabotrescue.com

References

1. Govindarajulu, N.S.: Uncomputable Games: Games for Crowdsourcing Formal Reasoning.
PhD thesis, Rensselaer Polytechnic Institute (RPI) (2013) Available at:
https://s3.amazonaws.com/naveensundarg/Dissertation.pdf.

2. Naumowicz, A., Kornilowicz, A.: A Brief Overview of Mizar. In Berghofer, S., Nipkow,
T., Urban, C., Wenzel, M., eds.: Theorem Proving in Higher Order Logics. Volume 5674 of
Lecture Notes in Computer Science (LNCS). Springer, Berlin (2009) 67–72

3. Wos, L.: The Legacy of a Great Researcher. In Bonacina, M.P., Stickel, M.E., eds.: Auto-
mated Reasoning and Mathematics: Essays in Memory of William McCune. Springer, Berlin
(2013) 1–14

4. Govindarajulu, N.S., Licato, J., Bringsjord, S.: Small Steps toward Hypercomputation via
Infinitary Machine Proof Verification and Proof Generation. In Mauri, G., Dennunzio, A.,
Manzoni, L., Porreca, A., eds.: Unconventional Computation and Natural Computation. Vol-
ume 7956 of Lecture Notes in Computer Science (LNCS). Springer, Berlin (2013) 102–112

5. Govindarajulu, N.S., Bringsjord, S., Taylor, J.: Proof Verification and Proof Discovery for
Relativity. Synthese 192 (2015) 2077–2094

6. Dean, D.: Crowd Sourced Formal Verification (CSFV) (2013) Retrieved on July 26,
2013. http://www.darpa.mil/Our Work/I2O/Programs/Crowd Sourced Formal Verification
(CSFV).aspx.

7. Almeida, J.B., Frade, M.J., Pinto, J.S., de Sousa, S.M.: Rigorous Software Development: An
Introduction to Program Verification (Undergraduate Topics in Computer Science). Springer,
Berlin (2011)

8. Charniak, E., McDermott, D.: Introduction to Artificial Intelligence. Addison-Wesley, Read-
ing (1985)

9. Genesereth, M., Nilsson, N.J.: Logical Foundations of Artificial Intelligence. Morgan Kauf-
mann, Los Altos (1987)

10. Bringsjord, S.: The Logicist Manifesto: At Long Last Let Logic-Based AI Become a Field
Unto Itself. Journal of Applied Logic 6(4) (2008) 502–525

11. Delahaye, D.: A tactic language for the system coq. In: Logic for Programming and Auto-
mated Reasoning, Springer (2000) 85–95

12. Arkoudas, K.: Denotational Proof Languages. PhD thesis, MIT (2000)
13. Govindarajulu, N.S.: Uncomputable Games: Toward Crowd-sourced Solving of Truly Dif-

ficult Problems. In: Turing Centenary Conference 2012:How the World Computes (Ab-
stracts of Informal Presentations). CiE (2012) Page 63 http://www.mathcomp.leeds.ac.uk/
turing2012/WScie12/Images/abstracts-booklet.pdf.

14. Genesereth, M., Love, N., Pell, B.: General Game Playing: Overview of the AAAI Compe-
tition. AI Magazine 26(2) (2005) 62–72

15. Berger, R.: The Undecidability of the Domino Problem. Memoirs of the American Mathe-
matical Society 66 (1966) 1–73

16. Robinson, J.A.: A Machine-Oriented Logic based on the Resolution Principle. Journal of
the ACM 12(1) (1965) 23–41

17. McCune, W.: Prover9 and Mace4 (2013) Retrieved on April 25, 2016.
http://www.cs.unm.edu/∼mccune/prover9/.

18. Stickel, M.E.: SNARK - SRI’s New Automated Reasoning Kit (2008) Retrieved on April
25, 2016. http://www.ai.sri.com/∼stickel/snark.html.

19. Alekhnovich, M., Buss, S., Moran, S., Pitassi, T.: Minimum Propositional Proof Length is
NP-Hard to Linearly Approximate. Journal of Symbolic Logic 66(1) (2001) 171–191

20. Buss, S.R.: Some Remarks on Lengths of Propositional Proofs. Archive for Mathematical
Logic 34(6) (1995) 377–394

https://s3.amazonaws.com/naveensundarg/Dissertation.pdf
http://www.darpa.mil/Our_Work/I2O/Programs/Crowd_Sourced_Formal_Verification_(CSFV).aspx
http://www.darpa.mil/Our_Work/I2O/Programs/Crowd_Sourced_Formal_Verification_(CSFV).aspx
http://www.mathcomp.leeds.ac.uk/turing2012/WScie12/Images/abstracts-booklet.pdf
http://www.mathcomp.leeds.ac.uk/turing2012/WScie12/Images/abstracts-booklet.pdf
http://www.cs.unm.edu/~mccune/prover9/
http://www.ai.sri.com/~stickel/snark.html

	Crowdsourcing Theorem Proving via Natural Games

