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Abstract. As model transformations are often considered the “heart
and soul” of Model-Driven Engineering (MDE), the scalability of model
transformations is vital for the scalability of MDE approaches as a whole.
The existing research on scalable transformations has largely focused on
performance behavior if the involved input models grow in size. In this
work, we address a second key dimension for the practical scalability
of model transformations: The effect as the transformation specification
itself grows larger. We outline a number of challenges related to large
model transformations, specifically affecting the quality concerns main-
tainability and performance. We introduce three model transformation
benchmarks and discuss how they are affected by these challenges. The
transformation rule sets in these benchmarks have acted as an evaluation
basis in our previous work. Our objective is to establish a community
benchmark set to compare model transformation approaches with respect
to the aforementioned quality concerns.

1 Introduction

Over the recent years, Model-Driven Engineering (MDE) has started to grow into
a mature software engineering discipline. To facilitate the development of com-
plex software systems, MDE envisions the use of abstraction and automation
principles: Models are used to provide an abstract specification of a software
system, thereby enabling to tame complexity during software design. This spec-
ification is automatically refined to a running software systems using model
transformations, thus enabling to reduce implementation effort. A large vari-
ety of modeling and model transformation languages has emerged to address the
heterogeneity in the involved software domains and transformation scenarios.

As MDE is increasingly applied in industrial large-scale scenarios, a number
of limitations of the existing MDE techniques and tools has been revealed. One of
the key problem areas concerns the scalability of model transformation tools. In
this area, existing research has mostly focused on scalability as the input models
of transformations grow in size. Kolovos et al. summarize the goal of the existing
works as “advancing the state of the art in model querying and transformation



tools so that they can cope with large models (in the order millions of model
elements)” [1]. To tackle this goal, a number of performance optimizations as
well as new execution modes, such as incremental [2] or concurrent [3] model
transformations, have been provided to the community.

Inspired by our experience of developing model transformations within sev-
eral research projects, in this paper we argue that a second key dimension of
scalability has been neglected so far: The scalability of the transformation speci-
fication. In particular, we point out that the performance of a model transforma-
tion is likely to deteriorate with the size and complexity of its specification. To
make matters worse, the models in a particular transformation scenario and the
transformation specification may be affected by scalability issues at the same
time, in combination leading to a more drastic scalability challenge. Further-
more, the size of a specification might also challenge its maintainability, even
to the point that it becomes unusable when viewed and edited with the default
tools.

We focus on the technical scope of rule-based model transformations. In this
domain, available techniques and tools are affected by the size of individual rules
as well as the size of the overall rule set. Multiple factors contribute to the emer-
gence of large rules and rule sets: (i) The size of these artifacts can reflect the
complexity of the intended transformations. Model transformations are a partic-
ular kind of software, the development of which is generally complicated by the
complexity of the imposed requirements. (ii) The size of individual rules might
grow due to technical reasons. For instance, the UML meta-model is infamous
for its size and complexity that leads to complicated rules even when expressing
transformations that are rather simple on a conceptual level [4]. (iii) A common
situation involves the management of families of rules, i.e. sets of rules that
exhibit a high degree of commonalities.While the built-in concepts provided by
the available transformation languages can help to deal with this issue to some
extent, we found these concepts insufficient in several cases as described in this
paper.

The contribution of this work is twofold. First, to illustrate our position, we
explore the scalability issues encountered during our past experiences and re-
late them to existing experiences from the literature. Second, we provide a set
of benchmark scenarios affected by these issues. We have used some of these
scenarios as an evaluation basis in our recent work [5, 6]. Our aim is to make
them available for other researchers. By providing the rule sets with a systematic
description, as part of a publicly available repository, our goal is to facilitate the
comparison of model transformation approaches with respect to their scalability.

The rest of this paper is structured as follows. In Sect. 2, we outline the
above mentioned scalability challenges in more detail. Sect. 3 introduces two
benchmark kinds to assess the improvement of related quality aspects. In Sect. 4,
we present and discuss our benchmark set. In Sect. 5 we discuss related work,
and Sect. 6 concludes the paper.



2 Scalability Challenges

Maintainability is one of the main quality goals during the development of a
model transformation [7–9]. It refers to the capability to modify the transfor-
mation after its initial deployment when it has to be adapted, e.g., to address
changing requirements or to remove defects.

A necessary prerequisite for maintainability is understandability: If the spec-
ification is difficult to understand, the time required to perform a change as well
as the risk creating defects while doing so increases. Intuitively, the understand-
ability of a transformation system is related to two separate dimensions of size:
the number of rules and the size of individual rules. In a large set of rules, the
difficulty lies in pinpointing the target location for an intended change. In turn, a
large size of individual rules may stretch the limitations of visual representations
– large diagrams may not scale. This intuition has been confirmed experimen-
tally for the scope of class diagrams, where a detrimental effect of larger diagram
sizes on understandability was determined by Störrle [10].

Another obstacle to maintainability concerns the scalability of the model
transformation editor. The existing transformation editors were often designed
and tested for transformation systems of small to medium scale. In a rule set with
hundreds of rules and hundreds of elements per rule, the response time during
loading, navigating, and changing rules might be substantial, thus prohibiting
the transformation to be edited in an efficient manner. This obstacle can be
addressed in two ways: Either by improving the scalability of the editor or by
providing a more compact representation of the overall rule set.

Performance is another key concern of model transformation systems [7–9].
In particular, in the case of graph-based model transformation languages, the
execution of a transformation entails the NP-complete sub-graph isomorphism
problem, leading to substantial execution times as input models and rules grow.

In practice, the performance of a model transformation depends on its exe-
cution mode. Despite considerable progress on particular execution modes such
as incremental [2] and parallel transformations [3], the standard mode remains
batch transformation. In batch mode, all rules in the rule set are applied as long
as one of them is applicable. This mode is often found in translation, simulation,
and refactoring scenarios. In a batch transformation, each rule increases the com-
putational effort of the transformation system; the larger the rule set becomes,
the harder it is to keep it tractable. For instance, Blouin et al. [11] report on a
case where a transformation engine was unable to execute a transformation sys-
tem with 250 rules. Such issues often lead to ad-hoc solutions to reduce the size
of the rule set as dedicated language-level support is widely unavailable [12].

3 Benchmark Kinds

Based on the identified scalability areas, we identify two different benchmark
kinds for model transformation approaches (see Fig. 1). The distinction of these
benchmark kinds allows to study maintainability and performance disjoint from
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Fig. 1. Benchmark kinds: Overview

each other. While large specifications may be generally affected by both issues,
a single approach to address both issues might not necessarily be most effective:
Another approach is to refactor the rules for improved maintainability and to
apply a background performance optimization before executing the rule set [5].

Benchmark kind 1: Benchmarking for Maintainability (M).

– Goal. Deriving a rule set with improved maintainability properties.
– Scope. We consider the maintainability property compactness.
– Rationale. Smaller rule sets and rules may be easier to read, entail less

individual edits to perform a single change, and show better performance
behavior when viewed and edited in standard editors.

– Metrics. Accumulative number of rule elements required to specify the en-
tire transformation.

Benchmark kind 2: Benchmarking for Performance (P).

– Goal. Deriving a rule set with improved performance properties.
– Scope. We consider the performance property execution time.
– Rationale. Lower execution times of the included model transformation

may lead to general improvements in the existing MDE approaches.
– Metrics. Accumulative execution time on a set of given input models.

Correctness check. In both benchmark kinds, a highly desirable feature would
be a correctness check: The considered rule set should show the same behavior
before and after the restructuring. A pragmatic approach to ensure correctness
is to apply both transformations to a set of test models, expecting equal re-
sults. This approach provides no sufficient, but at least a necessary correctness
criterion. The development of this check is ongoing work.

4 Benchmarks

Our benchmark set, summarized in Table 1, comprises three benchmarks, called
Edit Rules, Recognition Rules, and Translation Rules, respectively. These bench-
marks will be described in more detail in the remainder of this section.



Benchmark Kind Scenario #Rules #N #E #A #Models

Edit Rules M FM 53 708 831 243 n.a.
M UML 1404 6865 2721 1433 n.a.

Recognition Rules P FM 53 1773 2853 717 125
P UML 1404 26162 30777 14816 19

Translation Rules M+P OCL2NGC 54 2259 2389 1142 10

Table 1. Overview of the benchmark set. For each benchmark, the columns give the
benchmark name, benchmark kind, scenario, number of rules, nodes, edges, attributes,
and provided input models.

4.1 Edit Rules

Context and objectives Edit commands as offered by visual editors and mod-
ern model refactoring tools are typical forms of edit operations on models. Many
tools of an MDE tool suite must be customized to the way how models can be
edited, model versioning [13, 14], refactoring tools [15] as well as model muta-
tion [16] being examples of this. Therefore, explicit specifications of the available
edit operations are required. Rule-based in-place model transformations are well-
suited for that purpose [17–19]. However, developing and maintaining a set of
edit rules is challenging. Firstly, edit rules can become large in case of complex
model restructuring operations. Secondly, the set of edit which required to spec-
ify every possible model modification becomes huge in case of comprehensive
languages such as the UML. Thus, the specification of edit operations is an ade-
quate benchmark addressing the maintainability of model transformation rules.
We selected the following two scenarios in which suitable edit operations have
been specified:

FM. The first scenario refers to the editing of feature models [20], a widely used
variability modeling approach in software product line (SPL) engineering. The
selected edit operations have been defined in [21]. The main objective of this work
is to define edit operations which can be classified w.r.t. their semantic impact
on the set of valid feature combinations. A refactoring leaves this set unchanged,
a generalization (specialization) enlarges (shrinks) the set of valid feature com-
binations. Such edit operations are often complex restructurings defining several
non-trivial application conditions.

UML. The second scenario addresses the editing of UML models. Due to the
complexity of the UML meta-model, edit operations on UML models turn out
to be rather complex when being specified based on the abstract syntax [4].
Restricting the navigability of an association to one end is an example of this [18].
In this benchmark, the selected UML edit operations refer to those parts of the
UML which are used in [22], a case study on using a UML-based approach for
modeling the Barbados Crash Management System (bCMS).

Meta-Models In the FM scenario, the selected edit rules are specified over
the meta-model defined in [21]. Concerning the UML, the selected edit rules



are defined over the UML standard meta-model defined by the OMG [23]. The
subset being relevant in this benchmark is given by the UML models of the
bCMS case study which uses class diagrams, sequence diagrams and statecharts.
In sum, the relevant subset includes 83 meta-classes, together with their various
relations, out of the 243 meta-classes of the standard UML meta-model.

Rules The feature model edit rule set comprises the 53 complex restructuring
operations on feature models defined in [21]. The largest rule in this rule set
comprises 74 nodes, 146 edges, and 14 attributes.

The UML edit rule set comprises 1404 edit rules, all of them specifying edit
operations which can be considered elementary from a user’s point of view in the
sense that they cannot be split into smaller edit operations being applicable to
a model in a meaningful way. Consequently, the individual rules in this rule set
are considerably smaller than the feature model rules, the largest one comprising
9 nodes, 11 edges, and 14 attributes.

4.2 Edit Operation Recognition Rules

Context and objectives To optimally support continuous model evolution, so-
phisticated tool support for model version management is needed, the calculation
of a difference between two versions of a model being one of the most essential
tool functions. Instead of reporting model differences to modelers element-wise,
their grouping into semantically associated change sets helps in understanding
model differences [18]. Edit operations as used in our first benchmark are the
concept of choice to group such change sets. [18] presents an approach which au-
tomatically translates specifications of edit operations into so called recognition
rules being used by an algorithm which recognizes edit operations in a low-
level difference of two model versions. Essentially, this algorithm searches for all
matches of each recognition rule in a given difference. This is a computational
expensive pattern matching problem. Thus, the optimization of a recognition
rule set is a primary concern and an adequate performance benchmark.

Meta-Models and Models Concerning the modeling languages comprised by
this benchmark, we selected the same languages along with the corresponding
meta-models as in our first benchmark.

In general, suitable low-level model differences on which to apply the edit op-
eration recognition rules are obtained as follows: Given (i) a pair of input models
which can be considered to be revisions of each other, and (ii) a model matcher
which determines the corresponding elements in both versions, the differencing
engine presented in [18] creates a low-level difference which can be synthesized
as a “difference model”. It basically defines five types of changes which can be
observed in a low-level difference, namely the insertion/deletion of objects/ref-
erences as well as attribute value changes. For this benchmark, we selected the
following pairs of models and matchers.



FM. For feature models, we use the synthetically created differencing scenarios
presented in [21]. In sum, we have 125 pairs of feature models of different char-
acteristics and varying sizes, ranging from 100 up to 500 features per model. To
calculate the 125 low-level differences, a dedicated matcher for pairs of feature
models [21] is used to determine corresponding elements.

UML. In the UML scenario, we selected the models provided by the bCMS case
study. In fact, bCMS defines not only a single model but is designed as SPL. We
used 20 models representing valid instances of this SPL, one core model and 19
additional variants. By differencing each variant with the core, we produced 19
low-level differences. To determine corresponding elements, we used a dedicated
matcher that exploits persistent unique identifiers attached to elements.

Rules As described in [18], recognition rules can be automatically generated
from their corresponding edit rules. Thus, it was a natural choice to generate the
rules of this benchmark from the edit rules of our first benchmark. Consequently,
we have 53 recognition rules for the FM and 1404 for the UML scenario. As seen
in Table 1, recognition rules are generally larger than their edit rule counterparts.
The largest recognition rule comprises 77 nodes, 154 edges, and 20 attributes in
the FM case and 73 nodes, 81 edges, and 40 attributes in the UML case.

4.3 Constraint Translation Rules

Context and objectives OCL is the standard technology to restrict the set of
models that can be created from a given meta-model. A meta-model and its OCL
constraints together provide a declarative definition of a modeling language. Yet
in some situations, a constructive definition of the language may be required, e.g.,
to systematically enumerate all possible models for verification purposes. Such
a constructive approach is provided by graph grammars [24]. To integrate these
metamodel- and grammar-based approaches to language definition, [25] describes
a migration technique that transforms the OCL constraints contained in a meta-
model to application conditions in grammar rules, using nested graph constraints
(NGCs) as an intermediate form.

Models and Meta-Models As input models for our benchmark, we used an
assortment of ten OCL constraints designed for a large coverage of applicable
rules. The size of the input models, comprising meta-models with embedded
constraints as well as the OCL standard library, containing operators and literals
referenced by the constraints, ranges from 1832 to 1854 model elements

OCL2NGC is an exogenous model transformation. Its implementation in-
volves three meta-models: The OCL pivot meta-model1 acts as source meta-
model. The NGC meta-model, provided as part of the benchmark, acts as target
meta-model. The trace meta-model2 acts as a language-agnostic auxiliary meta-
model to manage the correspondence between source and target model elements.

1 https://wiki.eclipse.org/MDT/OCL/Pivot Model
2 https://wiki.eclipse.org/Henshin Trace Model



Rules Our implementation of the transformation described in [25] comprises a
model transformation system with 54 rules. In addition, a control flow to guide
the rule execution is specified, using the Henshin concept of transformation units.
The main performance bottleneck, which we call bottleneck rule subset (BRS),
is a subset of 36 rules that are applied in batch mode, i.e., as long as one of them
can be matched.

Benchmark Repository

We provide the benchmark set together with an evaluation framework at GitHub:
https://github.com/dstrueber/bigtrafo

Using the benchmark set. For each scenario, we provide a skeleton demon-
strating the application of our evaluation framework to the contained rule set.
For example, a class called OclBenchmark3 contains the skeleton for the con-
straint translation scenario. Users can modify this skeleton to customize it to
their own or another model transformation approach.

Contributing to the benchmark set. We encourage the submission of
additional benchmarks and scenarios by other researchers, ideally in a form that
follows the basic directory and file structure of the available benchmarks. Such
submissions are conveniently supported by GitHub’s pull request feature.

5 Related Work

A number of benchmark sets has been introduced in the literature. Benelal-
lam et al. [26] propose a benchmark set focusing on scalability of queries and
transformations to large input models. A seminal benchmark paper for graph
transformation languages has been contributed by Varró et al. [27]. Bergmann
et al. [28] propose a benchmark set for incremental transformations. None of
these benchmarks addresses the scalability of transformations specifications.

Izsó et al. [29] propose a MDE benchmark framework targeting a large variety
of use cases, such as model validation, transformation, and code generation. The
main idea is to define benchmarks in a systematic way by assembling them from
reusable benchmark primitives, such as metrics evaluation. The authors also
provide some emerging results, some of them pointing in the direction of the
stance maintained in our paper. An integration of our benchmark set with this
framework is a feasible direction for future work.

6 Conclusion

In this work, we address the scalability of model transformation specifications,
focusing on the quality goals performance and maintainability. We provide a
publicly available set of benchmark scenarios from our recent work, encouraging

3 https://github.com/dstrueber/bigtrafo/blob/master/de.bigtrafo.benchmark/src/
de/bigtrafo/benchmark/ocl/OclBenchmark.java



other researchers to compare their transformation tools and contribute addi-
tional benchmarks. In the future, we aim to explore the relationship between
large models and transformation specifications further to investigate the fol-
lowing research question: when do performance optimizations complement each
other and when does one optimization dominate the other?
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