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Abstract. Modern serialization formats for digital video data are de-
signed in a way that they allow for the combination of high compression
rates, high quality as well as performant en- and decoding. As the capa-
bility for real-time decoding often is a requirement, concrete decoders are
usually implemented in a way that they best fit a specific architecture
and, thus, are not portable. In scenarios, where it is essential that the ca-
pability to decode existent video data can be retained, even if the under-
lying architecture is changed, portability is more important than perfor-
mance. For such scenarios, we propose decoder specifications that serve
as templates for concrete decoder implementations on different architec-
tures. As a high level of abstraction guarantees system-independence, we
use (meta)models and model transformations for that purpose. Conse-
quently, every decoder specification is (partially) executable, which sim-
plifies the development process. In this paper, we describe our concepts
for model-driven video decoding and give an overview of a prototypical
implementation.
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1 Introduction

In our current work, we are focusing on the problem of preserving digital video
content. One challenge is to ensure that today’s data can be restored on future
architectures. There are several approaches that address this problem for general
content [1]. One widely used approach is to use standard file formats that are
likely to be readable on future architectures (such as PDF/A for documents and
JPEG 2000 for images). But, to our knowledge, there is no such standard format
for digital video content that is suitable for long-term preservation. The existing
formats that are widely used (e.g., H.264 [4]) are designed for another purpose:
they combine high compression and high quality, and they allow for the devel-
opment of efficient en- and decoders. As these formats involve the use of lossy
compression techniques, it is impossible to transform an already encoded digital



video into another format without risking an additional loss of information. As
this implies that we should not introduce a new standard format, we now focus
on the question of how decoding capabilities can be retained. As common de-
coder implementations are normally system-specific and thus not portable, we
propose the definition of human-readable and machine-processable decoder spec-
ifications that serve as a template for the development of suitable decoders on
different systems. Our goal are specifications that are partially executable and
that allow a potential developer to create code (possibly supported by tools)
that serves as a basis for the implementation of a functional (but possibly inef-
ficient) decoder prototype for any existing video compression standard. As the
capability to decode a digital video can be retained this way, existing videos can
be preserved without any (additional) loss of information.

In our previous work [10], we introduced the general idea of our approach.
In this paper, we are focusing on details of a protypical implementation that
serves as a proof of concept. We will show how we combined (meta)models,
model transformations, R scripts [9] as well as a control program in order to
specify essential parts of the decoding process for H.264 encoded videos, and
we explain how these parts constitute the basis for the implementation of an
H.264 decoder. As digital video data tend to require lots of memory, we will also
introduce our approach as a potential application domain for testing MDE tools
and techniques in combination with large models.

The remaining paper is structured as follows: in section 2, we give a brief
overview of video coding basics that are needed for the following sections. In
section 3, we give an overview of our approach and describe some aspects in
more detail. In section 4, we give an overview of related work before we conclude
our work and give an outlook in section 5.

2 Serialization Formats for Digital Video Data

Usually, every (digital) video consists of frames, which, when presented consec-
utively for a fixed period of time, create the feeling of movement. Each frame
mainly contains the image data and some time information (called the composi-
tion time) enabling a video player to play the video correctly. Due to the needed
memory, storing a complete video using well-known image file serialization for-
mats (such as png, jpg or bmp) is no option. Instead, in modern video compres-
sion formats, such as the H.264 standard [4], different compression techniques
are combined in order to allow for suitable file sizes. Lossy compression algo-
rithms play an essential role. Simply said, these algorithms do not distinguish
between “similar” values; when stored, they are just handled equally. Conse-
quently, these algorithms are irreversible, i.e., video encoding generally implies
a loss of information. The H.264 standard, which is widely used and which will
serve as a running example in this paper, is briefly introduced in the following.



2.1 H.264 basics

The H.264 standard is used for video streaming scenarios, in combination with
Blue-Ray disks and, of course, also for locally stored video files. As it can be
regarded as a de facto standard, we focus on H.264 encoded videos for our con-
siderations. As other standards are specified similarly if not identically (e.g.,
MPEG-4 AVC), we assume, however, that it is straightforward to use our ap-
proach for these standards.

An H.264 video track is structured in samples, which are (usually) grouped
into chunks. Each sample can be seen as a (still encoded) representation of a
single frame in the video, i.e., it contains every information that is needed to
reconstruct a two-dimensional field of pixels. Pixel data are usually stored using
the YCbCr color model, which distinguishes between one luma (Y) and two
chroma channels (Cb and Cr), whereby each channel is encoded independently.

Compression basics: Principally, each sample is encoded using lossy image com-
pression. However, in addition to that, delta compression is used in order to
remove redundancies caused by pixel similarities between successive frames and
(spatially) nearby regions within one frame. We briefly explain how it works:
in case of a single frame, it is common that pixels are similar or even equal
if compared with neighboring pixels. Furthermore, two successive frames often
only differ in details (in order to allow for smooth frame changes). The delta
compression’s main principle is to just store “quantified” difference values be-
tween two similar pixels. The quantification, which is a simple integer division,
just increases the desired effect: the resulting values tend to be smaller and oc-
cur more often. (By the way, the fact that the integer division is not completely
reversible is one of the reasons why the complete compression is lossy.)

In an H.264 encoded video, every sample is divided into a grid of 16 x 16
blocks (called macroblocks), which are traversed row by row and column by
column during the decoding process. Each macroblock may depend on one or
more other macroblocks whose data already have been decoded before. When a
macroblock is decoded, the data of its dependencies are used to first predict [4]
an intermediate data representation. Afterwards, the explicitly stored difference
values are added in order to restore the macroblock’s actual data. Macroblocks
that only depend on data of neighboring macroblocks (within the same frame)
are called intra-predicted, whereas most of the macroblocks of an H.264 encoded
video are usually inter-predicted, i.e., they refer to arbitrary regions of other
frames using motion vectors (in combination with frame ids).

Inter-predicted macroblocks automatically cause inter-dependencies between
different frames. In order to constrain possible inter-dependencies (which is es-
sential when a video is not decoded from the beginning), the sequence of all
frames are partitioned into groups of pictures (called GOPs), whereby two frames
can only depend on each other if they belong to the same GOP. Consequently,
every GOP contains one or more (intra-predicted) frames that do not depend on
any other frame and thus only consists of intra-predicted macroblocks. All the



other (inter-predicted) frames contain inter-predicted macroblocks and depend
on one or more other frames.

Even if the delta compression plays an essential role for the complete en-
coding, it is more a preparation for the actual compression: the results of the
delta compression are compressed using variable length encoding (e.g., huffman
encoding), which ensures that more frequent values are transformed into smaller
codes than values that are less frequent.

Decoding order and composition order: An H.264 encoded video permits sequen-
tial decoding, i.e., forward jumps are generally not necessary during the decoding
process. A frame can only be restored if all the frames it depends on have already
been decoded. Hence, if a frame A depends on a frame B, B must be stored be-
fore A within the serialization. Nevertheless, the H.264 standard allows frames
to depend on other frames that have a greater composition time, i.e., which have
to be displayed later during the playback. That is why we have to distinguish
between the decoding order and the composition order: frames are serialized in
decoding order but have to be presented in composition order. Thus, after their
restoring in decoding order, all the frames have to be put into composition order.

3 Model-driven Video Decoding

In this section, we will give an overview of our approach of model-driven video
decoding. We will further give some details of the model-based parts.

3.1 Overview of the Approach

Regardless of the actual scenario and the further processing, the main task of
any decoder is to transform an encoded binary representation (e.g., an H.264
serialization) into a sequence of frames. Therefore, we have decided to use a
suitable abstraction of that principle as a basis for our approach.

As illustrated in Fig. 1, the model-driven decoding process is divided into 5
phases: The modeling phase converts the original video into a model representa-
tion that corresponds to the H.264 metamodel, which formalizes H.264 content
(see Fig. 2). The preparation phase’s purpose is to partition the complete work
into independent “parts”, which we call task chains in the following. Each task
chain contains all the information that is needed to decode one GOP. In the
execution phase, every task chain is actually decoded, i.e., the dependencies are
resolved, and the pixel data are restored. In the finalization phase, the result of
the execution phase is sorted in accordance to the composition order and trans-
formed into a model that corresponds to the frame sequence metamodel, which
formalizes general video content (see Fig. 3). The unmodeling phase’s purpose
is simple: it transforms such a model into the final result, i.e., into a sequence of
concrete frames.

In order to describe the decoding process in an architecture-independent
way, our decoder specifications unify different abstraction mechanisms. As the
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modeling and the unmodeling phase essentially perform pre- and post-processing
steps, which depend on the underlying architecture and on the concrete scenario,
they are not in the scope of such a specification.

In the next section, we give some details of how the three remaining phases
have actually been implemented.

3.2 Details of the Approach

For the formalization of all the intermediate data representations, which serve
as in- and output for the different phases, we use EMF-based [11] metamod-
els. Consequently, the complete decoding process may be regarded as a series of
model transformations. Indeed, we use model transformations as the means to



formalize the preparation and the finalization phase. Within the execution phase,
however, the inter- and intra-predicted values must be determined in order to
restore the pixel values. As this process involves different mathematical calcula-
tions, we have decided to describe this phase using a mathematical abstraction.
As we want our decoder specifications to be human-comprehensible as well as
machine-processable, we have decided to use languages that are text-based. In
summary, we use ATL [5] model transformations, KM3 [6] defined metamodels
as well as R scripts [9]. We will give some details in the following:

KM3-based metamodels: Being convenient to define EMF metamodels using sim-
ple text, the KM3 language has been used to define all the necessary metamodels.

For the preparation phase, for example, we have defined 5 metamodels, which
are used for the formalization of 7 (internal) models. The following excerpt shows
the definition of the class Frame of the frame sequence metamodel (see Fig. 3).

class Frame {
attribute frameId : Int32;
attribute compositionTime : Int64;
reference picture container : Picture;

}

ATL model transformations: The transformations of the preparation and the
finalization phase are written in ATL, using mostly its declarative language
features. We have decided to use ATL because it provides declarative but also
imperative features, is based on EMF, is well integrated into the Eclipse IDE
and can also easily be executed programmatically. Generally, every language
that fulfills these requirements is an appropriate alternative for ATL (such as
the Epsilon Transformation Language (ETL) [8]).

For the preparation phase, for instance, we have defined 5 ATL transfor-
mations, containing 16 rule definitions (with a total of about 190 LOCs). One
example is a transformation that creates a model that explicitly stores the GOPs.
The following excerpt shows the responsible ATL rule:

rule VideoTrack2Video {
from
vt : H264!VideoTrack
to
v : GOP!Video (
gops <- vt.gopSmpls->collect(smpls | thisModule.createGOP(smpls))
)
}

The ATL helper gopSmpls does the actual partitioning and determines a se-
quence of sample sequences representing the GOPs.

R scripts: For the abstraction of the mathematical operations we use R scripts.
The R language was originally designed for statistical calculations. We have
chosen to use it for our approach as it allows us to express and execute all



the mathematical operations that we need for the decoding (including matrix
operations). Principally, every language that provides basic as well as matrix
operations, e.g., Octave!, would be a suitable alternative.

For the determination of the luma and chroma values, for instance, we have
defined 25 R scripts (with a total of about 600 LOCs). The following excerpt,
for example, shows how the luma values of a macroblock are determined. The
variable prediction contains the intra-predicted values, whereas the parameter
residual contains the (pre-processed) delta values. (The function C1ip1Y simply
ensures that the result is in the correct range).

for (x in 1:16) {
for (y in 1:16) {
values[x, y] <- ClipiY(residuallx, y] + prediction[x, yl)
}
}

DSL-based control program: For coordination, we use control programs written in
a DSL that we have defined with the framework Xtext [2]. Xtext is a framework
that allows for the definition of DSLs (and the generation of corresponding tools)
based on a grammar specification. Such a control program constitutes the frame
of the specification as it defines how (meta)models, transformations and R scripts
are connected. The following example shows how metamodels and models are
declared within the the control program:

metamodel MM_H264 origin h264.km3.ecore
model H264 conforms to MM_H264 origin in.h264

The next excerpt shows how a transformation H264ToGOP is introduced, which
is stored in H264ToGOP.asm and transforms the model H264 into a model GOP.

transformation H264ToGOP origin H264ToGOP.asm {
input model H264
output model GOP

X

3.3 Implementation Status

As explained before, essential steps of the decoding work have already been
specified using different abstraction mechanisms. Each step we have abstracted
so far was originally implemented in form of a Java tool set; consequently, we
have a reference implementation permitting us to generate suitable test data for
every abstracted decoding step. We have developed a Java library that allows
us to access and extract all information of an H.264 encoded video. This library
is used for the implementation of the modeling phase. Furthermore, we have
developed a Java application that is able to decode every intra-decoded frame

! Project URL: www.gnu.org/software/octave



of an H.264 encoded video file (stored in the mp4 file format). We have also
developed a Java tool that can process control program files.

Up to now, the specification of the preparation phase is complete. In combi-
nation with the control program definition, an H.264 model can automatically
be transformed into a decoder task model (containing the task chains).

We have also already defined all the necessary R scripts that are needed
to decode intra-predicted macroblocks, and we have tested them with our Java
application, which uses the open source library renjin? for interpreting the R
code. In a next step, we want to integrate the execution phase into the decoder
specification. The missing link is a conversion of the model-based representation
into an R-compatible input format. Here, we want to check if this conversion
can be implemented using languages that allow for the specification of model-to-
text transformations (such as the Epsilon Generation Language (EGL), which
is related to ETL [8]).

The finalization phase has also already been specified, but will certainly need
an update when the execution phase is integrated.

3.4 Scalability

We have chosen abstraction mechanisms that are executable in order to simplify
the development process of functional (but not necessarily efficient) decoders for
arbitrary architectures. Supposing that the most effective optimization measures
are system-specific and therefore decrease the level of abstraction, we generally
have neglected any performance considerations within the design of the specifi-
cations.

For practical reasons, we have made one exception: all the models within the
preparation phase do not contain any macroblock data as they are not needed
before the execution phase. Consequently, any H.264 model (that conforms to
the metamodel illustrated in Fig. 2) does not contain instances of the class
Macroblock (and its subclasses). As these instances contain (i.e., within refer-
enced objects) the information to restore the actual pixel data, the size of H.264
models can drastically be reduced.

For an evaluation, we generated the H.264 models for three different videos
and determined their sizes before and after removing the macroblock data. As
models can be regarded as graphs, we simply counted the number of nodes and
edges to specify the models’ size. Furthermore, we measured the time it took to
execute the preparation phase and determined the percentage of this time spent
on the model transformations (MTs). Finally, we measured the time it took
to decode all the intra-predicted frames (I-frames) when using the renjin-based
Java application. The results are listed in Table 1.3

Currently, the frames are decoded sequentially. But as a GOP can com-
pletely be decoded independently of other ones, decoding them simultaneously
is assumed to crucially decrease the execution time of the decoding process.

2 Project URL: www.renjin.org
3 Used abbreviations: k for kilo (x10%), M for mega (x10°%)



Table 1. Evaluation results for test videos (System: Debian 8, CPU: i7-4790 3.6 GHz,
RAM: 32 GB)

video 1 video 2 video 3
Frames (I-frames) 2540 (52) 8189 (273) 163327 (2373)
Resolution (w x h) 512 x 288 1920 x 1080 1280 x 720
Model graph’s nodes/edges
- original 21.6M/24.6M 1760M/1900M 14500M/15700M
- reduced 5.08k/13.0k 9.04k/24.6k 327k/646k
Preparation phase (MTs) ~2s (75%) ~5s(8%) ~ 7 min (96%)
R-based decoding of I-frames ~ 24 min ~ 1 day ~ 4 days

4 Related Work

Our approach utilizes MDE techniques in the domain of long-term preservation
in order to address the issue of preserving digital video content in a way that it
can be restored on future architectures. As far as we know, there are no similar
approaches. In the following, we present two approaches based on image encoding
standards.

Motion JPEG 2000 [3] is a part of the JPEG 2000 standard that simply uses
the corresponding compression for each frame. As JPEG 2000 is already used for
the preservation of digital images [7], a combination would principally allow for
the preservation of digital video content. In another approach [12], digital videos
are preserved using an XMUL-representation. Two variants are distinguished: first,
video data are completely transformed into primitive XML. Second, the video
frames are converted into image files that are suitable for long-term preservation
(such as JPEG 2000) and referenced within the XML representation. Both vari-
ants involve the decompression of lossy compressed parts, which naturally leads
to larger file sizes.

An important difference between our approach and the approaches named
before is that we generally allow for delta compression, i.e., frames can have de-
pendencies between each other. Avoiding delta compression simplifies the decod-
ing, but results in larger file sizes. Contrary to our approach, the two approaches
also imply recoding, which results in potential loss of information.

5 Conclusion and Outlook

In this paper, we have continued our presentation of a model-based approach for
architecture-independent video decoding [10] with a focus on the model-based
parts and its realization. At this point, our approach does not provide full support
for the decoding of inter-predicted frames, and the conversion between models
and R-compatible representations is still hard-coded in Java. Nevertheless, so
far we have succeeded to find appropriate abstractions for all essential parts of
the decoding process.



Our approach involves the processing of large models. Even if the efficiency
aspect plays a subordinate role, optimizations, which do not impede the applica-
bility, might improve the development process. Besides, the utilized models may
also be used as potential test data for common MDE tools.

After finishing the specification of the H.264 decoding process, we plan to
focus on the design of a serialization format that simplifies the implementation
of the modeling phase, can be used to preserve H.264 encoded data without
additional loss of authenticity and allows for “suitable” file sizes.

In a further step, we want to evaluate our approach by asking developers who
are unfamiliar with the H.264 standard to implement a decoder based on our
specification. In this context, we also want to find out whether and in which way
our decoder specifications can also be used to simplify the development process
by serving as a base for automatic code generation.
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