
An OWL Ontology for the Common Statistical
Production Architecture

Antoine Dreyer, Franck Cotton, and Guillaume Duffès

INSEE??, Paris, France
antoine.dreyer@insee.fr, franck.cotton@insee.fr, guillaume.duffes@insee.fr

Abstract. The Common Statistical Production Architecture (CSPA) is
a reference architecture for the statistical industry. In particular, CSPA
aims at documenting statistical services in a standard way, in order to
ease their exchange and reuse between statistical institutes. This paper
describes a suggested formalization of some parts of the CSPA specifica-
tion using OWL. This work led to propose some adjustments that could
improve the consistency and clarity of the specification.

Keywords: CSPA, OWL, ontology, statistical service, official statistics

1 Introduction

1.1 The Common Statistical Production Architecture (CSPA)

Since 2010, the United Nations Economic Commission for Europe (UNECE)
leads an global effort to develop common standards and models and to foster
cooperation in the official statistics community. The flagship of this effort is
the Common Statistical Production Architecture (CSPA) [1], a reference archi-
tecture for the statistical industry aiming at promoting collaboration between
national and international organizations.

CSPA comprises in particular: conceptual data and process models1, a log-
ical information model (LIM), standard templates for documenting statistical
services, standard roles for conceiving, developing and implementing those ser-
vices, architectural principles at the application and technology levels, etc.

This different components do not exhibit the same level of formalization. The
information models are expressed as UML, and work has already been conducted
to represent the generic process model using OWL [2]; on the other hand, the
templates for documenting the statistical services are just text documents, and
it is obvious from the existing examples of CSPA services that they were and
still are interpreted in various ways. Existing service documentation show also
that there are different views on the expected granularity of CSPA services.

To address these problems, a more formal representation of some parts of the
CSPA specification is needed. This is what we are aiming at in this paper.

?? Institut National de la Statistique et des Études Économiques, http://insee.fr
1 Resp. GSIM (http://www1.unece.org/stat/platform/display/gsim/Generic+
Statistical+Information+Model) and GSBPM (http://www1.unece.org/stat/
platform/display/metis/The+Generic+Statistical+Business+Process+Model).

mailto:antoine.dreyer@insee.fr
mailto:franck.cotton@insee.fr
mailto:guillaume.duffes@insee.fr
http://insee.fr
http://www1.unece.org/stat/platform/display/gsim/Generic+Statistical+Information+Model
http://www1.unece.org/stat/platform/display/gsim/Generic+Statistical+Information+Model
http://www1.unece.org/stat/platform/display/metis/The+Generic+Statistical+Business+Process+Model
http://www1.unece.org/stat/platform/display/metis/The+Generic+Statistical+Business+Process+Model

2

1.2 What do we want to do?

We want to formalize the CSPA specification using OWL [3]. OWL is based on
RDF and “is designed to represent rich and complex knowledge about things,
groups of things, and relations between things”. Several reasons led us to select
OWL rather than other modeling formalisms:

– As a formal approach of knowledge, OWL brings structure and consistency to
prior knowledge. This helps avoiding misunderstandings, brings uniformity
and facilitates the exchange of information, which is at the core of CSPA.

– RDF is machine-actionable, so it can be used directly to capture, exchange
or disseminate common information and to build information systems.

– The main models defined in CSPA (GSBPM and GSIM) are now expressed
in OWL: using the same formalism is clearly a factor of interoperability.

OWL has well-known shortcomings when it comes to data validation2, but vali-
dation is not an important objective at this stage. We are starting from a material
which is not structured at all, so the first goals are to ease sharing of semantics,
and to progress towards a uniform representation of CSPA.

We should note that applying formalism on existing material can raise dif-
ficulties. Sometimes, adaptations to the CSPA concepts or vocabularies would
ease the process. Even if our main goal is not change to CSPA specification
but to foster its use within the statistical community, we had to suggest some
changes and leave open some questions. This will be reported back to the CSPA
management team.

1.3 What is CSPA for?

The goal of CSPA is not unique. On the one hand it is a representation of pro-
cesses, on the other hand it is a way to share IT components between statistical
institutes. This duality obliges us to be cautious: if the ontology is too concep-
tual, few people will use it; if it is not conceptual enough, it will not allow efficient
exchange of information. In order to evaluate the right level of representation,
we first studied the CSPA descriptions already provided by several institutions
[4]. We observed that the original CSPA specification was not always tailored
to every need, and consequently chose to take a user-driven perspective in order
to provide a way to specify as close as possible to the existing examples. This
led us to add some aspects to the original CSPA specification, in particular the
distinction between functions and packages, which is explained below.

2 Structure of CSPA

2.1 Introduction

We decribe in this section the different notions defined by the CSPA specification,
in order to prepare the development of the ontology, which will be described in
the next section.
2 See for example https://www.w3.org/2012/12/rdf-val/

https://www.w3.org/2012/12/rdf-val/

3

2.2 Three levels of description

CSPA distinguishes between three levels of service description, and associates
predefined organisation roles to them:

Service definition (SD) is the conceptual level which is human-oriented and
has less details. It is the user’s view, independent of physical implementation.
It is made by a Service Designer, using conceptual models like the GSIM [5]
as information model, and like GSBPM [6] for processes.

Service specification (SS) is the logical level. It ensures that the service de-
scription meets the requirements of CSPA. It is made by the Service De-
signer, using logical models like the CSPA LIM or the information models
associated with DDI3 or SDMX4.

Service implementation description (SID) is the physical level which is
computer oriented and has most details. It is made by a Service Builder
or Service Assembler, using (among others) DDI or SDMX instances.

2.3 Distinction between functions and packages

We can see from existing examples that current implementers of CSPA want
to specify two slightly different things, namely packages and functions. One
service may actually be a bundle of functions, potentially accessible via different
protocols. Thus we need to describe not only the bundle of functions as one entity
but also each and every function in the bundle. Depending on the context, the
bundle can also be seen as an independant software or only a package. To help
our analysis, we studied different package description systems, in particular:
JavaDoc5, Debian Control File6 (also used by R) and Python7. As a result, we
introduced a distinction between functions and packages, even if the current
CSPA specification does not make this distinction clearly. We split the 3 levels
of CSPA into 2 parts: one for functions and one for packages, as is explained
further below.

2.4 Mixing functions and packages with the levels of description

We first look at the original CSPA structure with 3 levels (cf Fig. 1), where one
service definition points to one service specification which points to one or more
service implementation descriptions.

Then we introduce the distinction between function and package. In Fig. 2,
the 3 levels of description are encapsulated inside package or function containers;
one package container points to several function containers.

3 Cf. http://ddialliance.org
4 Cf. http://sdmx.org
5 Cf. http://www.oracle.com/technetwork/articles/java/index-137868.html
6 Cf. https://www.debian.org/doc/debian-policy/ch-controlfields.html
7 Cf. https://pypi.python.org/pypi?%3Aaction=list_classifiers

http://ddialliance.org
http://sdmx.org
http://www.oracle.com/technetwork/articles/java/index-137868.html
https://www.debian.org/doc/debian-policy/ch-controlfields.html
https://pypi.python.org/pypi?%3Aaction=list_classifiers

4

SD

SS

SID SIDSID

Service Definition

Service Specification

Service Implementation
Description

Conceptual level

Logical level

Implementation level

Fig. 1. Minimal Linkage between levels of description

This is a very theoretic representation, because in a typical situation, not
every level exist for each function or package. Those missing levels (service spec-
ification for the CSPA package, for instance) lead to a difficulty: the initial
schema imposes sequential links (service definition linked to service specifica-
tion linked to service implementation description). That is why we must adopt
a slightly different structure (which is exemplified in Fig. 3), where each level
inside a container is linked to the container itself and not to another level.

Package

SD

SS

SID SID

Function

SD

SS

SID SID

Function

SD

SS

SID SID

Fig. 2. Theoretic linkage between packages,
functions and levels of description

Package

SD

SID SID

Function

SS

SID

Function

SD

SS

SID SID

Fig. 3. Example of linkage between pack-
ages, functions and levels of description

5

2.5 Properties and topics

The CSPA specification defines different properties for the services, many unique
to one level of description. To ease understanding, we group those properties into
8 different topics:

Business function (only at conceptual level, mostly for packages) to describe
what the service is for.

Documentation to document the service (how to use it for instance).
Provenance to describe where the service and its description come from.
Interface (mainly for packages) to describe how to invoke the service, for in-

stance using Bash or a REST API
Dependencies (mainly for packages) to detail what is needed to invoke the

service, for instance a specific operating system or database; this can be
linked to an Interface at implementation level.

Input (only for functions) to describe the inputs of a function.
Output (only for functions) to describe the outputs of a function.
Identification (Name and Version), to identify a service unambiguously.

We list below the initial properties contained in the CSPA specification,
organized according to the topics that we introduced previously. At the beginning
of the line is the name of the properties topic described earlier; the names of the
initial properties follow. The full initial templates of CSPA with definitions are
available on the UNECE website [7].

Service definition initial properties

Identification Name
Business function Business Function, GSBPM, Outcomes, Restrictions
Dependency Service dependencies
Input GSIM Input
Output GSIM Output

Service specification initial properties

Identification Name
Interface Protocol for Invoking the Service
Input Input Message
Output Output Message
Documentation Applicable Methodologies

Service implementation description

Identification Name, Version
Interface Invocation protocols, Service Interface
Input Data-by-Reference protocols
Documentation Additional information, Installation documentation
Provenance Builder Organization
Dependency Technical dependencies

Most of those topics are often present in each of the 3 levels (definition, specifi-
cation, implementation).

6

2.6 Roles

As already mentioned, CSPA defines [8] organizational roles that are associated
with the life-cycle of statistical services. Those eight roles are:

– Assembler,
– Builder,
– Configurer,
– Designer,
– Environment Provider,
– Investor,
– Service Provider,
– User.

3 Ontology description

3.1 Introduction

At this stage, we have distinguished in CSPA three main semantic axes related
to the statistical services: level of description, service granularity and property
topics. Consequently, we will organize the global structure of the ontology with
3 levels of description (service definition, service specification and service imple-
mentation description), 2 granularity categories (functions and packages), and 8
topics (Business function, Documentation, Provenance, Interface, Dependency,
Input, Ouput, Identification).

We have also identified additional concepts present in the specification, like
organizational roles.

In this section, we decribe how these different notions are formalized in the
CSPA ontology that we propose. Due to space constraints, we limit ourselves to
a narrative description: the actual code of the ontology, as well as an illustrative
example on one of the existing CSPA services, can be found on GitHub8.

3.2 Classes and properties for levels and categories

In order to describe granularity categories, we create two classes: Package and
Function, and they are defined as subclasses of a common PackageOrFunction
class. Similarly, ServiceDefinition, ServiceSpecification and ServiceImplementa-
tionDescription classes are used to represent the levels of service documentation,
and they are made subclasses of a common DescriptionLevel class. Since some
properties are only found for one level and one category, we need to create 6
(2x3) classes mixing categories and levels. We also need 6 corresponding proper-
ties to link each category to its 3 description levels. Finally, we need a property
to link a function (or a package) to a package: a package can contain functions
or other packages.

8 Cf. https://github.com/FranckCo/Stamina/blob/master/doc/cspa

https://github.com/FranckCo/Stamina/blob/master/doc/cspa

7

3.3 Properties and topics implementation with OWL

In an OWL ontology, properties define how information is stored (DataType
properties) or how objects (instances of classes) are linked together (Object
properties). Consequently, all CSPA properties are implemented using OWL
DataType properties or Object properties.

How we can represent topics is not as straightforward. All topics are groups
of properties bringing knowledge on the same theme, but some are more than
that: they also represent objects. For instance, the Input topic represent what a
function receives to operate, but a function also has input parameters which are
objects on their own. It is thus logical to merge the two notions: a function will
be linked to one or more objects, instances of an Input class.

On the whole, four topics (Interface, Dependencies, Input, Output) can be
seen as objects: an Interface is one of potentially several ways to invoke the
service, a Dependency is one thing out of many needed to use the service, an
Input is an object consumed by a function, an Output is an object produced by
a function). OWL classes are needed for representing each of those 4 topics.

For the other topics (Business function, Documentation, Provenance, Identi-
fication), there is no real need of OWL classes; properties could be linked directly
to the function or the package class. But since there are many properties, we
think that it is clearer to create classes also for these topics and link proper-
ties of a topic to their topic class, that acts as an intermediary for organizing
the information. This structure intends to inform the user where to look at for
a specific information, and thus to facilitate the understanding and use of the
ontology. We think the added clarity is worth the small extra complexity in the
structure.

We make an exception for Identification: since identification should be fast
and straightforward, properties in the identification topic should be accessible
directly, and it is better to attach them directly than through a topic class.

3.4 Classes for topics and levels

According to the conclusions of the previous section, we created in the ontology
a PropertyTopic class to contain property topics, and we created 7 subclasses
of the PropertyTopic class, for each of the topics except Identification. The
identification properties are described below.

We must take into account the interaction between property topics and levels.
The BusinessFunction topic can be applied only to one level: ServiceDefinition.
Provenance and Documentation can be applied to all levels, and no distinction
is made between levels in regard of the content of those topics.

Dependency, Interface, Input and Output topics, on the other hand, can
be applied to all levels, but properties relative to each level are different: the
content of these topics is not the same in the different levels, so we have to
create 12 classes combining topics and levels (4 topics and 3 levels). Each class
is a subclass of the topic it refers to, and its name is the concatenation of the level
name (abbreviated as Definition, Specification and Implementation respectively)

8

and of the topic name. For example, the DefinitionInput class is a subclass of
the Input class.

As of today, the subclasses for each level for Dependency and Interface are
exactly the same, but the CSPA specification shows that it may not stay true
in the future. Table 1 illustrates the connections between topics and levels of
description in CSPA.

With these different definitions, we can now link one level, or all the levels, or
the levels concerning only functions, etc., to properties topic. Also, to facilitate
the future use of the ontology, we add a description property to every property
topic, which allows to freely add descriptive text to the topic.

Table 1. Properties linking levels and topics: levels are by row, topics are by column,
a blue cell indicate the existence of one or more property.

Pro
ve

na
nc

e

D
oc

um
en

ta
tio

n

B
us

in
es

sF
un

ct
io
n

D
ep

en
de

nc
y

In
te

rf
ac

e

In
pu

t

O
ut

pu
t

DescriptionLevel
ServiceDefinition

FunctionDefinition
ServiceSpecification

FunctionSpecification
ServiceImplementationDescription

FunctionImplementation

In table 1, the lines are the OWL classes corresponding to level of description
and glanularity categories. The blue cells only indicate the highest-level class to
which a given topic is attached. For example, Provenance and Documentation
are attached to DescriptionLevel, which is a common ancestor of all the others,
and so these topics are defined for all level and all categories. FunctionDefinition
inherits the topics from DescriptionLevel and ServiceDefinition, and adds Input
and Output. PackageDefinition is not represented because it has only inherited
topics.

3.5 Topic identification and generalization

For the 4 topics referring naturally to objects that we listed before (Interface,
Dependency, Input and Output), one instance can be described in more than
one level. An obvious need, and thus ontology use case, is to be able to capture
the relation between the corresponding objects at different levels. For instance,
it should be easy to link with each other the different levels of description of
an Input (e.g. a GSIM object at the definition level and a LIM object at the
specification level).

9

Different possibilities were considered to implement this feature, and we set-
tled on the use of a common identifier. In order to give flexibility at implemen-
tation time, we modeled the identifier as an OWL class, with subclasses for each
topic (InputIdentifier, etc.). Only a label property is defined for the identifiers,
but other properties can be added in the future for more specific identification.

Regarding the ranges of the topic classes, table 1 shows that we could have
specified them very precisely. Nevertheless, we felt that it was clearer to provide
topics as close as possible for each level, so that we decided to extend the range of
some topics. Only business function topic is not extended to every level, since we
considered that the business function was only conceptual and did not have an
implementation. The goal of extending topics is not to alter CSPA specification,
but to make it clearer (every topic present at each level), and easier to use.

3.6 Identification properties

As we mentioned above, the Identification topic has no associated topic class: in
order to make theme as accessible as possible, the identification properties, label
and version, are directly linked to the objects they qualifiy. They are defined as
datatype properties with range xsd:string and can be applied on Description-
Level and PackageOrFunction (and thus all their subclasses). A label can also
be applied on Identifier, Dependencies, Interface, Input, Output classes. As a
consequence, for Dependencies, Interface, Input, Output classes, a label can be
given directly or via an Identifier.

3.7 Additional components and features of the ontology

We decribe in this section more classes and properties dedicated to modeling
the CSPA roles, as well as the specific properties corresponding to the topics
introduced in 2.5.

Roles and provenance We introduced the CSPA roles in sub-section 2.6. To
represent these roles and their action in the life-cycle of a statistical service, we
use the PROV9, ORG10 and FOAF11 ontologies. The whole ontologies could be
used to document provenance information, but only a few properties and classes
correspond to the CSPA initial specification.

In the rest of the paper, the usual prefixes prov:, org: and foaf: will be used
for the corresponding ontologies. The cspa: prefix will be used for the CSPA
ontology.

In order to incorporate PROV, we define a cspa:Provenance class (the name
will be precised in a future version) as a subclass of the prov:Entity class.
The property prov:wasGeneratedBy allows to document an organization as a

9 Cf. https://www.w3.org/TR/prov-o/
10 Cf. https://www.w3.org/TR/vocab-org/
11 Cf. http://xmlns.com/foaf/spec/

https://www.w3.org/TR/prov-o/
https://www.w3.org/TR/vocab-org/
http://xmlns.com/foaf/spec/

10

CSPA role. We also create a cspa:Organization sub-class of prov:Organization
and org:Organization (this class being itself a sub-class of foaf:Agent).

We also create a cspa:organizationName property, which is an alias of foaf:name.
Finally, we introduce 8 properties linking cspa:Provenance to each role, all

sub-properties of prov:wasGeneratedBy.
For instance, one may describe a CSPA service documentation made by a

National statistical institute (NSI) in the following way (expressed in the Turtle
language[9]):

:something a cspa:DescriptionLevel;

cspa:comesFrom [a cspa:Provenance;

cspa:builderOrganization [a cspa:Organization;

cspa:organizationName "NSI"]] .

Documentation The ontology defines 5 properties for this topic:

– cspa:installationGuide, which links to a foaf:Document
– foaf:homepage, which links to a foaf:Document
– cspa:methods, with string values
– cspa:description, with string values
– cspa:additionalInformation, with string values

BusinessFunction We define 3 specific properties for this topic. cspa:outcomes
and cspa:restrictions are datatype properties with string values. The cspa:gsbpmSubProcess
property links to the SubProcess class in GSBPM ontology [2].

It should be noted that the business function topic in CSPA is not exactly
the same as in GSIM [10], but we underline the proximity of the two concepts by
making the cspa:BusinessFunction class a subclass of a GSIM business function
class that will be defined in a future work on a GSIM ontology.

Dependency and Interface Since the CSPA specification is not very precise
on the information that should be stored in these topics, and because we do
not want to have too many properties, we chose in a first approach to have a
very simple structure, where a dependency or an interface is described with only
two properties: a label and a description, both string datatype properties. In
consequence, there is no property specific to Dependency and Interface, except
for identifiers (see above).

We also introduce a direct link between Dependency and Interface. At defini-
tion and specification levels, dependencies should be broad enough not to depend
on a specific interface. At implementation level however, a direct link between
dependency and interface is needed. For instance, if the service has several in-
terfaces including a web interface, then a dependency concerning compatible
browser only makes sense for the web interface.

As a consequence, we extend the cspa:implementationDependsOn property
that was previously created to represent the a service implementation and a
dependency, so that its domain also covers the cspa:ImplementationInterface
class.

11

Input and Output It would be possible to use for the Input and Output topics
the same label/description construct that we used for Interface and Dependency,
but being able to connect services together is a key point of CSPA, so that is
not a recommended method.

We saw that service definition level, Input and Output instances should be
GSIM objects. Thus, we introduce a generic gsim:gsimObject class and create
two object properties, cspa:gsimInput and cspa:gsimOutput with this range,
defined on the cspa:DefinitionInput and cspa:DefinitionOutput topic classes.

A similar construct is used for the specification level with CSPA LIM objects.
On a service implementation level, the way specification should be done is

open: for example, is possible to use GSIM Process Input or a GSIM Process
Output objects. At this level, it is possible to link an input or an output di-
rectly to an Interface; some parameters may indeed only have sense for a specific
interface.

Cardinality restrictions More experience with CSPA is needed in order to de-
fine cardinality restrictions in the ontology, and we chose not to use owl:Restriction
to allow for any future implementation of them. However using a property more
than once would never produce non-sensical specification.

4 Conclusion ad future work

We presented in this paper the construction of an OWL ontology aiming to
model the core of the Common Statistical Production Architecture specification,
namely the different levels of service documentation and the organizational roles
involved in the conception, building and implementation of statistical services.
This work consisted in a detailed semantic analysis of CSPA, allowing to identify
the main concepts in order to translate them as OWL classes and properties. We
had to make some compromises and some additions to CSPA in order to build
a complete and consistent ontology, but we are confident that this will enhance
the coherence between CSPA and its main pillars: GSBPM and GSIM.

The work presented here is just a first step; it will be prolonged in different
directions.

First, since more CSPA services are presently being developed by different
organizations, we will shortly be able to test our model on more examples. Cur-
rently, there are only a handful of service descriptions, so a serious evaluation
of the model is not possible, although we found it performed well on existing
cases (see example referenced above). With more service descriptions, we will be
able to evaluate our work more completely, which is likely to help us refine the
ontology.

Second, the results of our work will be presented to the CSPA sponsors,
specifically the CSPA Implementation Group which is the high-level committee
in charge of maintaining CSPA. We believe that this input will be taken into
consideration for a future version of CSPA.

12

Third, the current work is part of a broader interest in semantic business
process management (SBPM). The article by Hepp and others [11] points to the
leverage provided by a semantic approach of business process management. The
article by Bevilacqua and others [12] show an example of service composition
using service description made with OWL. Some additional work is needed in
order to incorporate in the CSPA ontology the outcomes of these works.

Finally, we intend to operationalize the ontology by constructing an IT sys-
tem based on it. A hackathon session sponsored by the UNECE is already sched-
uled with colleagues from different countries, and one objective is to develop a
graphical CSPA service editor that will produce representations conformant to
the ontology presented here.

References

1. Common Statistical Production Architecture, http://www1.unece.org/stat/

platform/display/CSPA/Common+Statistical+Production+Architecture

2. Cotton, Franck and Gillman, Daniel, Modeling the Statistical Process with
Linked Metadata. In: Proceedings of the 3rd International Workshop on Semantic
Statistics, http://ceur-ws.org/Vol-1551/article-06.pdf.

3. W3C Web Ontology Language, https://www.w3.org/OWL/
4. Implementing CSPA Projects, http://www1.unece.org/stat/platform/display/

CSPA/Implementing+CSPA+Projects

5. Generic Statistical Information Model, http://www1.unece.org/stat/platform/

display/metis/Generic+Statistical+Information+Model

6. The Generic Statistical Business Process Model, http://www1.unece.org/stat/

platform/display/metis/The+Generic+Statistical+Business+Process+Model

7. CSPA, Annex 1: Templates, http://www1.unece.org/stat/platform/display/

CSPA/Annex+1_+Templates

8. Roles involved in the production of IT enabled CSPA Services, http:

//www1.unece.org/stat/platform/display/CSPA/Roles+involved+in+the+

production+of+IT+enabled+CSPA+Services

9. Turtle (Terse RDF Triple Language), https://www.w3.org/TR/turtle/
10. Clickable GSIM: Business Function, http://www1.unece.org/stat/platform/

display/GSIMclick/Business+Function

11. Martin Hepp Frank Leymann, John Domingue, Alexander Wahler, and
Dieter Fensell, Semantic Business Process Management: A Vision Towards Us-
ing Semantic Web Services for Business Process Management, www.heppnetz.de/
files/mhepp-et-al-SemanticBusinessProcessManagement.pdf.

12. L. Bevilacqua and A. Furno and V. S. di Carlo and E. Zimeo, A tool for au-
tomatic generation of WS-BPEL compositions from OWL-S described services. In:
2011 5th International Conference on Software, Knowledge Information, Industrial
Management and Applications (SKIMA), http://angelofurno.net/documents/

WS-BPEL_Composition_SKIMA11-v1.4.pdf.

http://www1.unece.org/stat/platform/display/CSPA/Common+Statistical+Production+Architecture
http://www1.unece.org/stat/platform/display/CSPA/Common+Statistical+Production+Architecture
http://ceur-ws.org/Vol-1551/article-06.pdf
https://www.w3.org/OWL/
http://www1.unece.org/stat/platform/display/CSPA/Implementing+CSPA+Projects
http://www1.unece.org/stat/platform/display/CSPA/Implementing+CSPA+Projects
http://www1.unece.org/stat/platform/display/metis/Generic+Statistical+Information+Model
http://www1.unece.org/stat/platform/display/metis/Generic+Statistical+Information+Model
http://www1.unece.org/stat/platform/display/metis/The+Generic+Statistical+Business+Process+Model
http://www1.unece.org/stat/platform/display/metis/The+Generic+Statistical+Business+Process+Model
 http://www1.unece.org/stat/platform/display/CSPA/Annex+1_+Templates
 http://www1.unece.org/stat/platform/display/CSPA/Annex+1_+Templates
http://www1.unece.org/stat/platform/display/CSPA/Roles+involved+in+the+production+of+IT+enabled+CSPA+Services
http://www1.unece.org/stat/platform/display/CSPA/Roles+involved+in+the+production+of+IT+enabled+CSPA+Services
http://www1.unece.org/stat/platform/display/CSPA/Roles+involved+in+the+production+of+IT+enabled+CSPA+Services
https://www.w3.org/TR/turtle/
http://www1.unece.org/stat/platform/display/GSIMclick/Business+Function
http://www1.unece.org/stat/platform/display/GSIMclick/Business+Function
www.heppnetz.de/files/mhepp-et-al-SemanticBusinessProcessManagement.pdf
www.heppnetz.de/files/mhepp-et-al-SemanticBusinessProcessManagement.pdf
http://angelofurno.net/documents/WS-BPEL_Composition_SKIMA11-v1.4.pdf
http://angelofurno.net/documents/WS-BPEL_Composition_SKIMA11-v1.4.pdf

	An OWL Ontology for the Common Statistical Production Architecture
	Introduction
	The Common Statistical Production Architecture (CSPA)
	What do we want to do?
	What is CSPA for?

	Structure of CSPA
	Introduction
	Three levels of description
	Distinction between functions and packages
	Mixing functions and packages with the levels of description
	Properties and topics
	Roles

	Ontology description
	Introduction
	Classes and properties for levels and categories
	Properties and topics implementation with OWL
	Classes for topics and levels
	Topic identification and generalization
	Identification properties
	Additional components and features of the ontology

	Conclusion ad future work

