Design Patterns for Model Transformations:
Current research and future directions

K. Lano', S. Yassipour-Tehrani'

'Dept of Informatics, King’s College London, Strand, London, UK

Abstract. There is increasing interest in the use of design patterns for
model transformations, and a number of such patterns have been pro-
posed. In this paper we survey previous work on transformation design
patterns, discuss one pattern in detail, and identify priorities for future
research.

1 Introduction

Design patterns have proved to be an effective concept to improve the quality of
software systems, with classic patterns such as Iterator, Facade and MVC now
part of the standard vocabulary of software developers and provided as essential
elements of programming languages and of software development environments.
Model transformation (MT) development should also be able to benefit from
the standardised solutions and expertise embedded in design patterns: currently
such development is often carried out in an ad-hoc manner because of the novel
nature of the languages and processing involved.

Transformation development requires new or adapted specification and de-
sign patterns because of the specialised features of MT programming and lan-
guages:

— Transformations involve complex structured data (models) and navigation
through and manipulation of such data.

— Transformations involve unconventional processing such as graph rewriting
and partially-specified execution orders.

— Hybrid MT languages involve a mix of declarative and imperative language
elements.

— Languages supporting bidirectional transformations (bx) involve complex
processing to synchronise or transform models in either source to target or
target to source directions.

2 Research into MT design patterns

The first works on MT design patterns identified language-specific patterns for
the ATL [9] and QVT-R [19] languages:

ATL: In [2,7] ATL-specific patterns were identified: Transformation Param-
eters; Multiple Matching; Object Indexing; Many-to-one; Many-to-many;
Custom Tracing.

QVT-R: In [13] QVT-R patterns such as Enable conditions in only one Di-
rection, and Simulation of Key were introduced. In [10] the use of marker
relations in a Model Copying pattern for QVT-R was detailed.

In some cases, such patterns simply gave techniques for circumventing limitations
of the specific MT languages.

Subsequently, work was carried out to identify language-independent MT
design patterns, based on generalisations of the language-specific patterns or
adaptions of classical design patterns for MT: in [1,5-7,11,12,14,15,17] such
patterns were described. These included Auxiliary Metamodel, a generalisation
of the ATL pattern Transformation Parameters, and Map Objects Before Links,
a general strategy for model copying and migration transformations.

In [17] the patterns were grouped into five categories:

Rule modularisation patterns: Phased Construction; Structure Preservation;
Entity Splitting/ Structure Elaboration; Entity Merging/Structure Abstrac-
tion; Map Objects Before Links; Parallel Composition/Sequential Composi-
tion; Auxiliary Metamodel; Construction and Cleanup; Recursive Descent;
Replace Explicit Calls by Implicit Calls; Introduce Rule Inheritance.

Optimisation patterns: Unique Instantiation; Object Indexing; Omit Nega-
tive Application Conditions; Replace Fixed-point by Bounded Iteration; De-
compose Complex Navigations; Restrict Input Ranges; Remove Duplicated
Expression Evaluations; Implicit Copy.

Model-to-text patterns: Model Visitor; Text Templates; Replace Abstract
by Concrete Syntax.

Expressiveness patterns: Simulating Multiple Matching; Simulating Univer-
sal Quantification; Simulating Explicit Rule Scheduling.

Architectural patterns: Phased Model Construction; Target Model Splitting;
Model Merging; Auxiliary Models; Filter Before Processing.

Patterns for specific categories of transformation have also been identified:

Bidirectional transformation (bx) patterns: Auxiliary Correspondence Model;
Cleanup before Construct; Unique Instantiation; Phased Construction for bx;
Entity Merging/Splitting for bx; Map Objects Before Links for bx [18].

Data migration patterns: Migrate along Domain Partitions; Measure Migra-
tion Quality; Data Cleansing [20].

Auxiliary Correspondence Model is an inbuilt and essential language feature
of TGG and QVT-R. Unique Instantiation is an inbuilt language feature of
QVT-R and UML-RSDS, and Object Indexing and Omit Negative Application
Conditions are also inbuilt into UML-RSDS.

Figure 1 (based on [17]) shows the generalisation and usage relationships
between some of the above patterns.

Phased | _ . O .o Indexing

can use 9 Object
Construction

% T
1
I I I I | can use
1
Structure Entity Map Objects Entity 1
Preservation Splitting Before Links Merging |
Lo .) L..can % Unique
¢ uses use Instantiation
¥ implements
s can Auxiliary uses
Rl use -~ Metamode! \L — T ~] Model
Copy P Visitor
-
L~
Remove
Duplicated \can use
Expression N
Evaluations
- Simulate
Lo Audiary Explicit Rule
Cleanup [3 ncnzgzlsPOHdEﬂCE Scheduling
before /]
Construct

Fig. 1. Relationships between transformation design patterns

3 Pattern example: Cleanup before Construct

This pattern has been identified in several bx examples. The pattern defines a
two-phase approach in both forward and reverse transformations associated with
a bx with relation R: the forward transformation R~ first removes all elements
from the target model n which fail to satisfy R for any element of the source m,
and then constructs elements of n to satisfy R with respect to m. The reverse
transformation R operates on m in the same manner.

Benefits: The pattern is an effective way to ensure the correctness of separate-
models bx: all target elements which invalidate R are removed.

Disadvantages: There may be efficiency problems because for each target model
element, a search through the source model for possibly corresponding source
element(s) may be needed. Elements may be deleted in the Cleanup phase only to
be reconstructed in the Construct phase: use of Auxilliary Correspondence Model
[18] is an alternative strategy to avoid this problem, by enforcing that feature
values should change in response to a feature value change in a corresponding
element, rather than deletion and recreation of elements.

Related Patterns: This pattern is a variant of the Construction and Cleanup
pattern of [17].

Ezamples: An example is the Composers bx [4]. Implicit deletion in QVT op-
erates in a similar manner, but can only modify models (domains) marked as
enforced [19]. In UML-RSDS, explicit cleanup rules Cn* can be deduced from
the construction rules Cn, for mapping transformations [16].

Assume that the transformation rules Cn are of the form:

Si—forAll(s | SCond(s) = Tj—exists(t| TCond(t) & P, ;(s,t)))

for source entity types S; and target entity types 7). Then if identity attributes
are used to define the source-target correspondence (so that target model element
t : T} corresponds to source model element s : S; when the respective identity
attributes are equal: s.sId = t.tId), then Cn* can be expressed as the constraints

(1):
Tj—forAll(t | TCond(t) & t.tId & S;—collect(sld) = t—isDeleted())
which deletes ¢ if there is no corresponding s with the same identity, and (ii):

T;j—forAll(t | TCond(t) & t.tId : S;—collect(sld) & s = S;[t.tld] &
not(SCond(s)) = t—isDeleted())

which deletes ¢ if such an s exists but it is not in the domain of the transformation
(relation R). (ii) is omitted if SCond is the true predicate.

In the case that TCond(t) and SCond(s) hold for corresponding s, ¢, but
P; ;(s,t) does not hold, ¢ should not be deleted, but P; ,(s,¢) should be estab-
lished by updating ¢ (iii):

Si—forAll(s | s.sld : T;j—collect(tld) & t = T;[sId] &
SCond(s) & TCond(t) = P;;(s,t))

For a transformation 7, the cleanup transformation 7> has the above Cn* con-
straints (i), (ii), (iii) as its postconditions, in the same order as the Cn occur in
the Post of 7. The forward direction 7 of the bx is then 7%; 7.

A change-propagation version 72 of 7 can also be defined, to operate on
source model increments dm (finite collections of deletion, creation and modifi-
cation updates). 74 is 7%; 7 where the rules of 7% are only applied for deletion
(i) and modification (ii), (iii) updates in dm, and the rules of 7 are only applied
for modification and creation updates in dm.

4 Future research directions and challenges

Because of the novelty of the MT field, there is as yet insufficient evidence for
the effectiveness of most of the identified patterns. Work is needed to survey
applications of MT patterns in practice and to evaluate their utility. Work is
also needed to identify appropriate classifications for MT patterns, to identify
connections between patterns, and useful compositions of patterns. Techniques

and guidelines for the selection of MT patterns need to be developed and incor-
porated into MT engineering environments. Patterns for new types of transfor-
mation, such as transformations at runtime or streaming transformations, are
also needed. Finally, research into transformation anti-patterns and techniques
for the identification of ‘bad smells’ in transformation specifications is needed.

References

1. A. Agrawal, A. Vizhanyo, Z. Kalmar, F. Shi, A. Narayanan, G. Karsai, Reusable
Idioms and Patterns in Graph Transformation Languages, Electronic notes in The-
oretical Computer Science, pp. 181-192; 2005.

2. ATL Design Patterns, https://wiki.eclipse.org/ATL/Design_Patterns, 2015.

3. 1. Bayley, H. Zhu, On the composition of design patterns, QSIC 2008, IEEE Com-
puter Society, 2008, pp. 27-36.

4. J. Cheney, J. McKinna, P. Stevens, J. Gibbons, Towards a repository of bz exam-
ples, EDBT/ICDT 2014, 2014, pp. 87-91.

5. J. S. Cuadrado, F. Jouault, J. G. Molina, J. Bezivin, Optimization patterns for
OCL-based model transformations, MODELS 2008, vol. 5421 LNCS, Springer-
Verlag, pp. 273-284, 2008.

6. K. Duddy, A. Gerber, M. Lawley, K. Raymond, J. Steel, Model transformation:
a declarative, reusable pattern approach, 7th International Enterprise Distributed
Object Computing Conference (EDOC ’03), 2003, pp. 174-185.

7. J. Bezivin, F. Jouault, J. Palies, Towards Model Transformation Design Patterns,
1st European Workshop on Model Transformations, 2005.

8. V. Bollati, J. Vara, A. Jimenez, E. Marcos, Applying MDE to the (semi-)automatic
development of model transformations, Information and Software Technology, 2013.

9. Eclipsepedia, ATL User Guide, http://wiki.eclipse.org/ATL/ User_Guide_-
_The_ATL_Language, 2014.

10. T. Goldschmidt, G. Wachsmuth, Refinement transformation support for QV'T re-
lational transformations, FZI, Karlsruhe, Germany, 2011.

11. M. E. Tacob, M. W. A. Steen, L. Heerink, Reusable model transformation patterns,
Enterprise Distributed Object Computing Conference Workshops, 2008, pp. 1-10,
doi:10.1109/EDOCW.2008.51.

12. J. Johannes, S. Zschaler, M. Fernandez, A. Castillo, D. Kolovos, R. Paige, Ab-
stracting complex languages through transformation and composition, MODELS
2009, LNCS 5795, pp. 546-550, 2009.

13. J. Kiegeland, H. Eichler, Medini-QVT, http://projects.ikv.de/qvt, 2014.

14. K. Lano, S. Kolahdouz-Rahimi, Model transformation design patterns, ICSEA
2011, IARIA, 2011, pp. 263-268.

15. K. Lano, S. Kolahdouz-Rahimi, Optimising Model-transformations using Design
Patterns, MODELSWARD 2013.

16. K. Lano, The UML-RSDS Manual, www.dcs.kcl.ac.uk/staff /kcl/uml2web/umlrsds.pdf,
2014.

17. K. Lano, S. Kolahdouz-Rahimi, Model Transformation Design Patterns, IEEE
Transactions in Software Engineering, 2014.

18. K. Lano, S. Kolahdouz-Rahimi, Model transformation design patterns for bidirec-
tionality, FSEN 2015.

19. OMG, MOF 2.0 Query/View/Transformation Specification v1.1, 2011.

20. M. Wagner, T. Wellhausen, Patterns for data migration projects,
www.tngtech.com, 2011.

