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Intent

One data fragment has several alternative structural representations tailored
toward speci�c data manipulation approaches.

Also Known As

� Concrete Syntax and Abstract Syntax

� simplifying concrete syntax to abstract syntax [20,58]

� parsing [44], more than parsing [24,30], parsing in a broad sense [61]

� object grammars [52]

� Interparadigmatic Data Binding

� COBOL � OO � Relational databases � XML [35]

� OO � Relational [13]

� CRUD � OO [49]

� XML Data Binding

� XML to Java [37]

� XML to Haskell [6]

� XML to C# [38]

� GUI Data Binding

� generic GUIs [1]

� WebSocket-based data binding [23]

� Intermediate Representation

� support imperative and declarative idioms [34]

� multiple languages within one paradigm: FP [27], OO [11]

� implementation-geared [5, 42]

� validation-geared [9] and analysis-geared [22,31]

� Views

� integrated personalised views in databases [48]

� model views [3, 4, 10]

� view-based software engineering [7, 46]

� architectural views [15,51,59]
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Motivation

When modelling or programming, people tend to think in terms of conceptual
constructs: �inheritance� (of classes), �conformance� (of models to metamodels),
�conditional statement� (programming), �input� (data �ow, side e�ects) and oth-
ers. In practice these conceptual entities are represented as concrete elements:
in textual form, in graphical diagrams, in memory blocks, etc. Since the actual
solution has to be expressed in such elements, this notation exposed to the lan-
guage end user, has great impact on the e�ectiveness of both the solution and
the process of modelling or programming.

Results from ontological analysis tell us that a mapping between a modelling
notation and an underlying domain model (in SE usually the Bunge-Wand-
Weber ontology [57]) should be bijective [39,39,40] to avoid the following issues:

� Construct de�cit: when something that exists in the ontology (i.e., in
the mind of domain experts), has no counterpart in the modelling nota-
tion. Notations with construct de�cit are called incomplete and have their
place in environments that are deliberately limited for reasons of security or
(sub)domain-speci�city.

� Construct redundancy: when one conceptual entity can be modelled with
more than one notational construct that are identical or subtly di�erent
from one another. Notations with construct overloaded are called unclear

and are advocated by ontological analysts to be defective. Construct re-
dundancy in programming languages often leads to discussions of taste and
conventions being imposed on top of the language. For example, a func-
tional language called Haskell [26] supports comprehensions and higher order
functions equally well, so map (\x->x*x) xs is equally acceptable, equally
performant and equally maintainable as [x*x | x <- xs], and the choice is
up to the particular programmer. Other functional languages like Rascal [29]
have better support for comprehensions than for explicit mappings, so the
choice there has farther going consequences, known only to programmers
that reached certain a�nity with the language at hand.

� Construct overload: when one notational entity represents several con-
ceptual entities. Notations with this smell are a di�erent kind of unclear :
they are merely slightly counter-intuitive to domain experts but give wrong
impressions to those who learn the domain through this notation. A famous
example nowadays is the Git version control framework that bundles unre-
lated functionality: for instance, git reset is a command that, depending
on parameters, can simply �unstage� code changes (which means they will
not be included in the next commit) or undo several unpushed commits or
even irrecoverably wipe any pending changes away.

� Construct excess is said to happen when a modelling notation have ele-
ments that do not have any correspondence in the domain model. Notations
frequently have construct excesses as practical shortcuts and quick hacks that
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solve the problem at hand but are totally alien to the uninvolved domain
experts. Excessive constructs are never �designed� into a notation but �nd
their way into it by the time of implementation, especially under deadline
pressure.

Success stories from updatable views in databases [8], synchronised model
views [4], data integration [43], serialisation [16] and structure editors [25] demon-
strate how it can be useful to have several systematic representations of the same
underlying constructs [14]. We argue that this pattern is universal to the entire
software language engineering and thus can be used across technical spaces any-
where where a language has several user groups or application varieties.

Applicability

Use the Two-Faced Data pattern when

� You design a software language and must provide functionality in the entire
spectrum from parsing the textual input to advanced semantic consistency
validation like type checking.

� If you make your grammar too close to the desired conceptual represen-
tation, you risk making it ambiguous, ine�cient for parsing and/or not
user friendly for the language users. Projectional language workbenches
deliberately choose this path due to their naturally powerful IDE sup-
port [25,55,56], other approaches are �lled with perils, unless they adopt
the same techniques [53].

� If you make it too close to the desired way of writing and reading
sentences in the language, you risk overburdening your traversals and
rewritings with unnecessary details concerning a particular textual rep-
resentation. Solutions without multiple �faces� usually include conven-
tions that allow to use one representation to mean multiple things at
once [28, 54] (e.g., using layout for pretty-printing but ignoring it for
parsing/matching).

� You want your software language to have both textual and visual concrete
syntax which are conceptually the same but technically get a di�erent rep-
resentation each. Due to the �natural� �ow of the textual representation
(usually left to right, character by character) and a much freer structure of
the visual syntax, elements that correspond to the same entities may not only
be represented di�erently individually, but also appear in di�erent order.

� The need for several notations of one domain-speci�c language is widely
known and acknowledged in practice [18, 36], but its foundations are
lagging somewhat behind.

� In general textual information is perceived by humans to be more trust-
worthy [50] and is faster digestible [45], but with appropriate training
visual notations can be more e�ective and maintainable [41,47].
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� Graphical models of text that take physical distance between words into
account [2] and consider the visual aspect of operations performed on
text [12] are an emerging �eld of research without a readily available
cookbook of practically mature recipes.

� Structured data that you are working with, needs to be serialised � for
storage, communication or backup.

� Using the existing textual syntax would mean losing the structure and
may imply future overhead and/or ambiguity in deserialising such data.

� In practice people tend to develop a yet another format which conceptu-
ally represents the same structure of the same data, but is more suitable
for marshalling and unmarshalling. Such a format can be a standalone
project but usually is a sublanguage of XML or JSON.

Structure

Participants and Collaborations

The same language (yellow box on the megamodel) can be de�ned by di�erent,
possibly incomplete, metamodels, and thus the models that conform to them,
correspond to the same language instances, but belong to di�erent technological
stacks and thus can be e�ectively used with di�erent algorithms. Functions Fk

are used in a broad sense and can represent true functions like sorting or traver-
sals, as well as other data manipulation activities such as editing or validation.

Implementation

Consider the following implementation issues:

� If the �faces� of the data allow interaction, you need some set of bidirec-
tional update mappings; these imply overhead which might outweigh the
advantages of using the faces.
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� One of the �faces� can be dominant within a domain for historical reasons and
so advanced that over the time it developed all necessary algorithms usually
associated with other faces � e.g., concrete syntax in metaprogramming [54].

� Some mapping need to bridge a semantic gap between �faces� that cannot
be fully bridged � e.g., ADT vs OO [13], even though many practically
su�cing strategies exist [35].

� In scenarios with more than two �faces� it gets too complex to develop direct
mappings for each pair; in that case it is better to consider a star-shaped
infrastructure with one canonic representation which is capable of synchro-
nising with any of the other ones.

� When metamodels are well-de�ned and their di�erences are explicitly ex-
pressed, we can do coupled transformations [32] � that is, infer model-level
mappings from metamodel-level ones. This has been done for various techni-
cal spaces: modelware [21], grammarware [60], databases [19], xmlware [33].

Sample Code

Consider the following Rascal [29] code:

data A = foo(bool)

| bar(set[A] xs)

;

It de�nes a piece of very simple abstract data type with two constructors. The
metaprogramming facilities provided by Rascal allow us to comfortably traverse
instances structured in such a way and perform computations:

visit(T)

{

foo(True) : cx += 1

}

(even more concise, len([1 | /foo(True) := T])), and in place rewritings:

visit(T)

{

bar(_) => foo(False)

}

However, writing them to a �le can only be done in one �xed notation, and
reading back will not be smooth. For such actions, we need concrete syntax �
for example, this one:

syntax A = foo: "FOO"?

| bar: "<" {A ":"}+ ">";
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Parsing any textual input with this concrete syntax de�nition is trivial in
Rascal with the use of parse(#A, ...) function. The resulting trees, however,
are somewhat clunky, contain too much information (who cares that we used
colons as a separator? should we really update the traversal code if the separator
changes in the future?) and can only be traversed in their default term form.
However, there is a built-in matching function called implode that can couple
the two:

T = implode(A, parse(#A, input))

The implode function follows grammar production alternative labels and
match them to the constructors of the data type. Then, it maps the presence
of FOO text to a true value and the lack of it to a false value of the Boolean
argument of the foo constructor. Parse-guiding anti-ambiguity angle brackets
in the concrete syntax carry no structural meaning, so they are disregarded,
and the collection of inner entries is mapped to a set because that is what the
abstract data type expects (it could have been mapped to a list instead).

Related Patterns

Adapter; Bridge; Visitor; Interpreter [17].
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