
The Quest for Better Languages: Usage Patterns to the
Rescue

Jordi Cabot

ICREA - UOC, Barcelona, Spain
jordi.cabot@icrea.cat

Abstract. Software development processes are collaborative in nature. Neglect-
ing the key role of end-users leads to software that does not satisfy their needs.
This collaboration becomes specially important when creating Domain-Specific
Modeling Languages (DSMLs), which are (modeling) languages specifically de-
signed to carry out the tasks of a particular domain. While end-users are the ex-
perts of the domain for which a DSML is developed, their contribution to the
actual DSML design is, in most cases, still rather limited. This results in DSMLs
that are difficult to use or that, in general, do not respond to the user needs. We
argue that observing how a language is actually used in practice and deriving real
usage patterns from that is the best approach to improve the language design to
make it closer to what users would really like to have.

1 Introduction

Domain-Specific Modeling Languages (DSMLs) are a special kind of languages tai-
lored to solve a particular problem in a domain. As they target a concrete domain, the
development of DSMLs requires a tight collaboration between language developers and
end-users, who are arguably the domain experts. While language developers provide the
technical knowledge, end-users should help in setting the language concepts and shap-
ing the notation most suitable for the domain.

Indeed, to be useful, the concepts and notation of a language should be as close
as possible to the domain concepts and representation used by the end-users in their
daily practice [1]. Therefore, involving end-users enriches the process and increases the
chances that they will be pleased by the end result [2–4]. Unfortunately, this is an ideal
scenario. In reality, it is rather common that developers work in isolation and end-users
validate prototypes of the language as it evolves [5, 6].

In the last years, several approaches have proposed to make the language develop-
ment process more participatory by facilitating the involvement of some end-users, ei-
ther by means of example-driven approaches [7, 6] or via direct interaction/collaboration
[8, 9]. This is a necessary but not sufficient condition to bridge the gap between users’
needs and language experts when it comes to language design.

2 Pattern-based language definition process

Involvement of end-users early on helps to drive the design of the language but it stills
has two major limitations: 1 - The set of users involved is typically small and therefore



Fig. 1. Language development process. AS = Abstract Syntax. CS = Concrete Syntax.

not representative of all kinds of user profiles that will be using the language, 2 - Their
feedback is based on their beliefs and opinions, which may change when they try to put
the language to work later on.

Therefore, we propose to extend a language development process with a third phase,
devoted to the analysis of the actual usage of the language (i.e. its usage patterns) once
it is deployed. This process is shown in Figure 1

Phase 1 consists in developers preparing alone a preliminary version of the lan-
guage. In phase 2, this version is improved thanks to the collaboration with a selected
set of end-users. Once deployed, phase 3 targets the collection and analysis of language
data from which a set of bottom-up patterns are inferred.

Bottom-up (or usage) patterns are generalizations of real solutions for a problem.
In our context, they tell us how users adapt (or twist) the language to be able to express
what they need. Therefore, by extracting and analyzing these patterns we can learn
what are the real-life situations our language is not a well fit for and how we could
evolve it to make sure it covers that scenario in a more natural way. This is a continuous
improvement process since new problems may be uncovered at anytime (maybe even
as a result of the introduction of previous solutions) or users’ needs just change in the
future. Figure 2 depicts this pattern-based language definition process.

The pattern identification/uncovering task can be addressed by means of corpus-
based language analysis techniques [10] where repositories of language instances (i.e.
repositories of models created by users employing that language) are evaluated via tech-
niques like instance analysis, to determine frequency of individual elements, relation-
ship analysis, to identify common co-occurrences of metamodel elements, and clone
analysis, which seeks to identify duplicate usage of a collection of elements in the lan-
guage.

This characterization of a language gives hints on possible improvements:

– Uncommon elements can be removed from the language to simplify it in a safe way
– Clusters of elements hardly ever co-occurring in the same model suggest the exis-

tence of sublanguages



Fig. 2. Iterative language improvement.

– Complex language structures appearing often in the corpus could be replaced with
new primitives expressing with a single new element the semantics of the whole
structure

These modifications can then be implemented to generate a new version of the lan-
guage to start the next iteration. Keeping a trace of all these language changes (and
discussions since the team of language engineers may go back and forth on some of
those changes before making up their mind) is important to be able to justify the lan-
guage evolution at any point in the future. The Collaboro infrastructure can be used for
this [8].

3 Conclusion

We have proposed a pattern-based language definition process for DSMLs that takes
into account the real experiences with the language in order to improve its design. Based
on the analysis of a language corpus, usage patterns can be identified and taken as the
basis to suggest possible improvements.

So far, these are just hints for the language designer but it would be interesting to
see how accurate they are when applied on a representative set of existing DSLs. Quite
possibly, we could at least (semi)automate the process by automatically refactoring the
language based on these usage patterns. This is left for further work.

Acknowledgments. Thanks to the PAME’15 Workshop oganizers (E. Syriani, R. Paige,
S. Zschaler and H. Ergin) for letting me share and discuss these ideas at the workshop
and to J. L. Cánovas Izquierdo and R. Tairas for all the fruitful discussions on language
design over the past years.



References

1. Grundy, J.C., Hosking, J., Li, K.N., Ali, N.M., Huh, J., Li, R.L.: Generating Domain-Specific
Visual Language Tools from Abstract Visual Specifications. IEEE Trans. Softw. Eng. 39(4)
(2013) 487–515

2. Kelly, S., Pohjonen, R.: Worst practices for domain-specific modeling. IEEE Softw. 26(4)
(2009) 22 –29

3. Barišić, A., Amaral, V., Goulão, M., Barroca, B.: Evaluating the Usability of Domain-
Specific Languages. In: Formal and Practical Aspects of Domain-Specific Languages: Re-
cent Developments. (2012) 386–407

4. Völter, M.: MD*/DSL Best Practices (2011)
5. Mernik, M., Heering, J., Sloane, A.M.: When and How to Develop Domain-specific Lan-

guages. ACM Comput. Surv. 37(4) (2005) 316–344
6. Cho, H., Gray, J., Syriani, E.: Creating Visual Domain-Specific Modeling Languages from

End-User Demonstration. In: MiSE workshop. (2012) 29–35
7. López-Fernández, J.J., Cuadrado, J.S., Guerra, E., de Lara, J.: Example-driven meta-model

development. Software and System Modeling 14(4) (2015) 1323–1347
8. Cánovas Izquierdo, J.L., Cabot, J.: Enabling the Collaborative Definition of DSMLs. In:

CAiSE conf. (2013) 272–287
9. Umuhoza, E., Brambilla, M., Ripamonti, D., Cabot, J.: An empirical study on simplification

of business process modeling languages. In: SLE conf. (2015) 13–24
10. Tairas, R., Cabot, J.: Corpus-based analysis of domain-specific languages. Software and

System Modeling 14(2) (2015) 889–904


