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leon.g.ruiz@gmail.com, jrmarcialr@uaemex.mx, xoseahernandez@gmail.com.mx

Abstract. Similar to the tree-width (twd), the clique-width (cwd) is an
invariant of graphs. A well known relationship between tree-width and
clique-width is that cwd(G) ≤ 3 · 2twd(G)−1. It is also known that tree-
width of Cactus graphs is 2, therefore the clique-width for those graphs
is smaller or equal than 6. In this paper, it is shown that the clique-width
of Cactus graphs is smaller or equal to 4 and we present a polynomial
time algorithm which computes exactly a 4-expression.

1 Introduction

The clique-width has recently become an important graph invariant in param-
eterized complexity theory because measures the difficulty of decomposing a
graph in a kind of tree-structure, and thus efficiently solve certain graph prob-
lems if the graph has clique-width at most k. A decomposition of a graph G, to
compute its clique-width, can be viewed as a finite term, Courcelle et al. [5] de-
fine a term based on a set of four operations such as: 1) the creation of vertices,
2) disjoint union of graphs, 3) edge creation and 4) re-labelling of vertices. The
number of labels (vertices) used to build the graph is commonly denoted by k.
A well defined combination of these operations, called k-expression, are neces-
sary to build the graphs, which in turn defines clique-width. The clique-width
or the corresponding decomposition of the graph is measured by means of a
k-expression [12]. As the clique-width increases the complexity of the respective
graph problem to solve increases too, in fact for some automata that represent
certain graph problems (according to the scheme in Courcelle’s main theorem),
computation runs out-of-memory, see [16] for some examples of graphs with the
clique-width 3 or 4 .

It is important to search for an alternative graph decomposition that can be
applied to a wider classes than to those of bounded tree-width and still preserve
algorithmic properties. Tree decomposition and its tree-width parameter of a
graph, are among the most commonly used concepts [7]. Therefore, clique-width
can be seen as a generalization of tree-width in a sense that every graph class of
bounded tree-width also have bounded clique-width [4].

In recent years, clique-width has been studied in different classes of graphs
showing the behavior of this invariant under certain operations; the importance
of the clique-width is that if a problem on graphs is bounded by this invariant
it can be solved in linear time.
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Regarding our present work, we are interested in the class of graphs, called
cactus, which consist of non-edge intersecting fundamental cycles [11]. This class
belongs to the class of bounded tree-width. These graphs have already a tree
like structure, thus we can apply a well known result by Corneil and Rotics in
[4], for any graph G, which is cwd(G) ≤ 3 · 2twd(G)−1, Thus we can obtain a
bound for the clique-width of cactus graphs. It is also known that the tree-width
of Cactus graphs is 2, so by using the latter inequality, the bound clique-width
smaller or equal to 6 is obtained. Therefore, our main result in this paper is to
show that the clique-width of Cactus graphs is smaller or equal to 4 improving
the best known bound and also we present a polynomial time algorithm which
computes the 4-expression.

2 Preliminaries

All graphs in this work are simple i.e. finite with no self-loops nor multiple edges
and are undirected. The degree of a vertex v in a graph G, is the number of edges
of G incident with v. We denote by ∆(G) the maximum degree of the vertices
of G.

A spanning tree of a connected graph on n vertices is a subset of n− 1 edges
that form a tree. Given a graph G, let TG be one of its spanning trees. The edges
in TG are called tree edges, whereas the edges in E(G)\E(TG) are called fronds.
Let e ∈ E(G)\E(TG) be a frond edge, the union of the path in TG between the
endpoints of e with the edge e itself forms a simple cycle, such cycle is called
a basic (or fundamental) cycle of G with respect to TG. Each frond e = {x, y}
holds the maximum path contained in the basic cycle that it is part of.

Two cycles that are non-intersected are called independent, i.e. two inde-
pendent cycles (Ci, Cj) satisfy (E(Ci) ∩ E(Cj)) = ∅. The graphs consisting of
independent cycles are known as Cactus Graphs and they appeared in the sci-
entific literature more than half a century ago under the name of Husimi trees
[11]. The cactus graphs can be syntactically recognized as connected graphs in
which no edge lies in more than one simple cycle. Consequently, each part of a
cactus graph is either an edge or a simple cycle. Cactus graphs have many appli-
cations, for example, in the modeling of wireless sensor networks [1] and in the
comparison of genomes [17]. Nowadays, cactus graphs have attracted attention
because some NP-hard resource allocation problems were found to be solved in
polynomial time for this class of graphs.

We now introduce the notion of clique-width (cwd, for short).
Let C be a countable set of labels. A labeled graph is a pair (G, γ) where γ

maps V (G) into C . A labeled graph can be defined as a triple G = (V,E, γ) and
its labeling function is denoted by γ(G). We say that G is C − labeled if C is
finite and γ(G)(V ) ⊆ C. We denote by G (C) the set of undirected C − labeled
graphs. A vertex with label a will be called an a− port.

We introduce the following symbols: a nullary symbol a(v) for every a ∈ C

and v ∈ V ; a unary symbol ρa→b for all a, b ∈ C , with a 6= b; a unary symbol
ηa,b for all a, b ∈ C , with a 6= b; a binary symbol ⊕.
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These symbols are used to denote operations on graphs as follows: a(v) cre-
ates a vertex with label a corresponding to the vertex v, ρa→b renames the vertex
a by b, ηa,b creates an edge between a and b, and ⊕ is a disjoint union of graphs.

For C ⊆ C we denote by T (C) the set of finite well-formed terms written
with the symbols ⊕, a, ρa→b, ηa,b for all a, b ∈ C, where a 6= b. Each term in
T (C) denotes a set of labeled undirected graphs. Since any two graphs denoted
by the same term t are isomorphic, one can also consider that t defines a unique
abstract graph. We let val(t) be the set of graphs denoted by t.

For every labeled graph G we let
cwd(G) = min{|C||G ∈ val(t), t ∈ T (C)}.

3 Computing cwd(G) when G is a Cactus Graph

Let G = (V,E) be a connected graph with n = |V |, m = |E| and such that
∆(G)≥ 2. Let C be the set of fundamental cycles ofG. If two distinct fundamental
cycles Ci and Cj from C have common edges then we say that both cycles are
intersected, that is, Ci△Cj forms a new cycle, where △ denotes the symmetric
difference operation between the set of edges in both cycles. In fact, Ci△Cj =
(E(Ci) ∪ E(Cj)) − (E(Ci) ∩ E(Cj)) constitutes a composed cycle. A unicyclic
graphG is one where C consists of a singleton e.g.G contains a single independent
cycle. A cactus graph G is one where C consists of independent cycles.

In this section we show that the clique-width of cactus graphs is smaller
or equal than 4. We firstly show how to compute the clique-width of unicyclic
graphs and then we extend the algorithm for cactus graphs.

Definition 1. Let {Gi}i∈I be a family of graphs, a joint v /∈ GiforeachGi ∈
{Gi} is a vertex such that Gv = (V ({Gi}i∈I) ∪ {v}, E({Gi}i∈I) ∪ {vvi}) for at
least one vi in each {Gi}i∈I . In other words Gv is built from the family {Gi}i∈I

and a new vertex v.

Lemma 1. If G is a unicyclic graph then cwd(G) ≤ 4

Proof. Let G = Cn

⋃
{Ti}i∈I for some family {Ti}i∈I of trees. Compute the k-

expression for each {Ti}i∈I without the joining vertex to Cn. It is well known
that cwd({Ti}i∈I) ≤ 3 for each Ti, i ∈ I. Relabel the k-expression of each {Ti}i∈I

in order to use exactly two labels. One label for the root and the other label for
the rest of the vertices of the tree. It is also well known that cwd(Cn) ≤ 4.
We show how to combine the labels in order to compute the clique-width of G.
Assume that a and b are used as labels of the root and the rest of the vertices
of each tree respectively. Let c and d be the free allowed labels to be used. We
built the k-expression of Cn beginning with a joint vertex v. Make a label c(v).

* Built the disjoint union of c(v) and each tree {Ti}i∈I for which v is joint that
is c(v)

⊕
{Ti}i∈I . Make an edge between c and the root label of each tree

{Ti}i∈I for which v is joint, that is ηc,a. Relabel the root vertex of each
{Ti}i∈I by b, i.e ρa→b. That means that the available labels are a and d.
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Since c(v) is the label of the initial vertex of Cn it must have a unique label
to close the cycle. We rename c by d, i.e. ρc→d, so we have the free labels
a and c. We use a and c to built the path from d to the next joint vertex,
it can be done by alternating the labels and making an edge between them,
those vertices whose unique edge in the cycle have been built are relabeled
by b. There are two possible labels for the next joint vertex a or c. In any
case we can relabel the joint vertex such that it is always c (if it is c there is
nothing to be done, if it is a we change c by b and a by c).

We repeat the process from * to joint the new trees {Ti}i∈I . When the last joint
vertex c(v) is reached, the k-expression from c(v) to d is built, using the labels
a,b and c.

Algorithm 1 shows the procedure to compute the k-expression of an unicyclic
graph.

Algorithm 1 Procedure that computes k-expression(G) when G is unicyclic.

1: procedure k-expression(G)
2: let (C be the unique cycle of G)
3: for each tree {Ti}i∈I \ C of G {paths are included} do

4: {Ti}i∈I = {Ti}i∈I -expression({Ti}i∈I) {it is well known that cwd({Ti}i∈I) ≤ 3}
5: Relabel the root of {Ti}i∈I by a and relabel the remaining vertices by b

6: end for

7: k = ∅
8: for each joint vertex v of C {the join is given with some trees {Ti}i∈I} do

9: c(v){Make a new node label}
10: k = c(v)

⊕
{Ti}i∈I

⊕
k

11: ηc,a(k) {Make an edge from the node of the cycle to each tree {Ti}i∈I who is
joined with}

12: ρa→b(k) {Relabel a by b in the new graphs to free a label}
13: if v is the first joint vertex then

14: ρc→d(k) {Relabel c by d in the new graph to remember the initial node of the
cycle}

15: end if

16: add to k the k-expression of path(v,w)\w where w is the nearest joint vertex of
v {Use the labels a and c to build the edges and b to rename the interior vertices
of path(v,w) \w, such that the last vertex is label with a and the other vertices
with b they are enough since cwd(Pn) ≤ 3}

17: end for

18: ηc,d(k) {Close the cycle}

We now describe how to compute the clique-width when G is Cactus. A
depth first search spanning tree is a spanning tree built using the depth-first
traversal algorithm, also a depth first search graph is defined. Let G = (V,E)
be a connected graph, and TG a depth first search spanning tree whose set of
fundamental cycles C are independent, then an enumeration of C is computed as
follows:
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1. Choose (arbitrarily) an element C1 ∈ C.
2. For each C ∈ C, C 6= C1 compute min{|path(v, w)| | ∀v ∈ C1, ∀w ∈ C}

where path(v, w) are the edges in the path from v to w in TG.

Sort the elements of C by its minimal path with respect to C1. Elements of
C with the same minimal path can be sorted randomly.

A partition of G into unicyclic graphs is defined as follows:

Definition 2. Let G be a cactus graph, a family of subgraphs {{Gi}i∈I} of G is
built as follows:

1. A depth first search graph is built over G, choosing an x ∈ C1 as the root
node, starting the search, for instance, with the node x with minimum degree,
and selecting among different potential nodes to visit, the node with lowest
degree first and with lowest index in its label as a second criterion. Then,
we obtain a unique depth first search graph G′ (in the set of all possible
depth-first graphs), which we denote here as G′ = dfs(G).

2. For each Ci ∈ C

Gi = Ci

⋃
v∈Ci

{path(v, w) | (w is a leaf or w ∈ Cj ∈ C, i 6= j) and

6 ∃x ∈ Ck, x ∈ path(v, w), k 6= j}

Lemma 2. If G be a cactus graph, then the family of subgraphs {Gi}i∈I over G
by Definitions 2 forms a set partition of E(G).

Proof. Let X,Y ∈ ∪{Gi}i∈I , X 6= Y , then by definition X ∩ Y = ∅. If X or
Y are unitary, assuming X = {e}, e is not member of Y because cycle(e) is
independent in G and has no common edges with any other cycle in G. If X and
Y are not unitary then they have no common edges because in other case, we
can build S with the common edges of X and Y and S holds the condition in
Definition 2, and then X = Y .

Due to each element e ∈ E(G) belong to a unique partition then ∪{Gi}i∈I =
G. �

Lemma 3. Let G be a cactus graph and {Gi}i∈I a family of subgraphs over G
as specified in Definitions 2. For each pair of graphs Gk, Gj in {Gi}i∈I , either
V (Gk) ∩ V (Gj) = ∅ or V (Gk) ∩ V (Gj) = {v} is a singleton.

Proof. By contradiction suppose that V (Gk)∩V (Gj) 6= ∅ and V (Gk)∩V (Gj) 6=
{v} it means that there are at least two vertices, let say v1, v2 in the intersec-
tion, that the edge e = (v1, v2) belongs to the intersection, contradicting the
hypothesis that Gk and Gj have a set of disjoint edges. �

Lemma 4. Each eachGi ∈ {Gi} is an unicyclic graph.

Proof. Definition 2, construction step 2.
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Algorithm 2 Procedure that computes cwd(G) when G is a cactus graph, from
the set of unicycle graphs Gj such that G =

⋃
Gj .

1: procedure cwd(G)
2: for each Gj who has exactly one joint vertex v {select the j where Cj has maximal

path with respect to C1} do

3: kj = k-expression(Gj \ v)
4: end for

5: for each Gj who has more than one joint vertex do

6: for each joint vertex v{we assume without loss of generality that the subgraphs
Gj who have v as a joint vertex have been computed} do

7: k =
⊕

kj-expression(Gj)
8: c(v){Make a new node label}
9: ηc,a(k){we assume that each graph Gj has two labels: a is the label of each

vertex to be joint, b is the label of the other vertices}
10: ρa→b(k){Relabel a by b in the joined graphs to free a label}
11: k = k-expression(path(v,w)) where w is the next joint vertex{label of v = d,

labels of the vertices 6= w can be set to b and label w = c}
12: end for

13: end for

We call the set of vertices in pairwise
⋂
V ({Gi}i∈I), the joining vertices of

the set of unicyclic graphs.
Algorithm 2 computes cwd(G) where G is a cactus graph. The input of the

algorithm is the partition detailed above.
The correctness of Algorithm 2 is supported by the following theorem.

Theorem 1. If G is a cactus graph then Algorithm 2 computes cwd(G) ≤ 4.

Proof. Let G =
⋃
Gj where each Gj is unicyclic. The clique-width of each Gj

is smaller of equal to 4, i.e cwd(Gj) ≤ 4. Line 2 of algorithm 2 begins with the
Gj who have exactly one joint vertex v. So the k-expression of each Gj \ v can
be rewritten with two labels, one is used for the vertices to be joint with v and
the other for the rest of the vertices. The next steps in the construction of the
k-expression is similar to the one of unicyclic graphs substituting trees {Ti}i∈I

for unicyclic graphs {Gi}i∈I who has more than one joint vertex.

4 Time Complexity Analysis

We discuss the time complexity of Algorithm 2 which is the main result reported
in this paper. The complexity of Algorithm 2 in the worst case is |C| which is
the number of independent cycles of the graph. The worst case time complexity
of Algorithm 1 is |V ({Gi}i∈I)| = n when there is a unique unicyclic.

5 Example

We present an example of the application of Algorithm 2. Let us consider the
graph G:
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1 2 3 4 5 6 7

8 9 10

According to the partition procedure, the graph is partitioned in the three
subgraphs shown below:

1 2 3 , 3 4 5 , 5 6 7

G1 8 9 G2 10 G3

The k-expression of G3 \ {5} is: ρc→a(ηa,c(ηb,a(b(7) ⊕ a(6)) ⊕ c(10))), then
the k-expression of G3

⋃
G2 \ {3} is given by:

ρc→a(ρd→a(ηd,c(ρc→d(ρa→b(ηc,a(kG3\{5})⊕ c(5)))⊕ c(4)))).

Finally, the k-expression of G is:

k = ρa→b(ηc,a(ρc→a(ηd,c(ρc→d(ρa→b(ηa,c(kG3∪G2\3 ⊕ c(3)))) ⊕ c(8)))⊕ c(9)))

k-expresion(G) = ηc,a(ρd→b(ρa→b(ηd,c(ηc,a(ρc→a(k)⊕ c(2)))))⊕ a(1))

As can be seen 4 labels are only used. The next figure shows the labels
assigned to each vertex.

a(1) c(2) b(3) b(4) b(5) b(6) b(7)

b(8) b(9) b(10)

6 Conclusions

Computing the clique-width of a graph G is a classic NP-complete problem for
general graphs. We establish that if the depth-first graph of a given graph G
has no intersected cycles, e.g. it is Cactus then the computation of cwd(G) is a
tractable problem. Even more cwd(G) ≤ 4.
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