NORMA: a Software for Intelligent
Conceptual Modeling

Francesco Sportelli

KRDB, Department of Computer Science, Free University of Bozen-Bolzano, Italy
francesco.sportelli@inf.unibz.it

Abstract. Object-Role Modeling (ORM) is a framework for modeling and querying
information at the conceptual level. It comes to support the design of large-scale
industrial applications allowing the users to model easily the domain. The reasoning
on a conceptual schema enables to automatically detect relevant formal properties,
such as inconsistencies or redundancies that cause a degradation of the quality of
the design and an increase of development times and costs. In this demonstration
we introduce NORMA, a tool which implements the ORM language and its plugin
ORMIe, which performs the reasoning on ORM conceptual schema in order to
help the modeler during the modeling phase to avoid mistakes that could lead the
software to unexpected behaviors.

Keywords. Conceptual modeling, OWL, Reasoning, Description Logics, ORM

1. Introduction

Conceptual modeling is a critical step during the development of a database system. It is
the detailed description of the universe of discourse in a language that is understandable
by users of the business domain. Object-Role Modeling (ORM) is a conceptual language
for modeling, which includes a graphical (ORM’s graphical notation) and textual lan-
guage (FORML) for specifying models, a textual language for formulating queries, as
well as procedures for constructing ORM models, and mapping to other kinds of models
like UML and ER. ORM is fact-oriented, i.e., it models the information in a way that it
can be verbalized using sentences that are easily understandable by domain experts and
even for those who are not familiar with IT in general. The expressiveness of the ORM
constructs may lead to implicit consequences that can go undetected by the designer in
complex schemas; this may also lead to various forms of inconsistencies or redundancies
in the diagram itself that give rise to the degradation of the quality of the design and/or
increased development times and costs. This issue leads to the need of automated reason-
ing to check the mentioned inconsistencies and redundancies. NORMA is the tool that
implements the ORM language and ORMlIe is a plugin for NORMA which enables the
automated reasoning on ORM conceptual schemas. Of particular interest are the Deriva-
tion Rules, they are special ORM constructs which are able to express knowledge that is
beyond the ORM capabilities. The current version of ORMIe is able to perform reasoning
on a subset of such Derivation Rules.



2. ORM and NORMA

ORM stands for Object-Role Modeling. It is a language that allows users to model and
query information at the conceptual level and the world is described in terms of objects
(things) playing roles (parts in relationships) [11], [2]]. This language has been formal-
ized in Terry Halpin’s PhD Thesis [3] in the context of conceptual modeling. During last
years, the logicians’ community has focused the attention on the formalization of ORM
into a logical language, precisely Description Logics [4], [S], [6], [7]. Recently, ORM
has evolved in ORM2 which has been formalized in [§]. The formalization of ORM al-
lows to perform automated reasoning in order to detect relevant formal properties and
new inferred knowledge in a given ORM diagram.
Two software that implement the reasoning are ICOM [9] and DogmaModeler [10].
ICOM is an advanced conceptual modeling tool that allows the user to design multiple
ER or UML class diagrams with inter and intra-model constraints, expressed in a rich
view language similar to OCL and relational algebra based on Description Logics. Dog-
maModeler is an ontology modeling tool that implements ORM supporting ontology
modularization and composition and verbalization into pseudo natural languages.

NORMA is the tool that implements the ORM language, it has been developed by
Terry Halpin and Matthew Curland, [L1]], [12]. NORMA stands for Natural Object-Role
Modeling Architect, it is a free software available from the Sourceforge repository and
it is implemented in Microsoft Visual Studio Environment and it is written in C#. Un-
like ICOM and DogmaModeler, NORMA is built into this environment so it inherits
all the functionalities of the popular framework and it takes advantage of full API sup-
port that makes the software easily to maintain; moreover, it has a plugin-like structure
which makes possible for developers to create their own plugins to extend NORMA.
NORMA implements the ORM’s graphical notation for all ORM constraints making
easier for the final user to model a conceptual schema. From the reasoning perspective,
unlike ICOM and DogmaModeler, NORMA is currently able to cover reasoning even on
Derivation Rules (see below). An exhaustive demo of NORMA features can be found
here: https://vimeo.com/159092232 .

ORM main features are:

® formalized, it has a clear syntax and semantics;

e graphical, has an official software (NORMA) that makes possible to express the
conceptual schema in an easy graphical way, like the examples shown in this
paper;

® fact-oriented, all facts and rules are modeled in terms of controlled natural lan-
guage (FORML), sentences easy to understand even for non-technical users;

e attribute-free, unlike ER and UML, it is more stable and adaptable to changing
business requirements.

The following examples show how NORMA works and implements ORM. We show
only the very basic ORM constructs to simplify the general understanding. In Figure [Ia]
we have an ORM conceptual schema with some entities: Person, Male, Female, Husband
and Wife. Male and Female are subentities of Person in disjoint and covering. Husband
is subentity of Male and Wife is subentity of Female. Name is an entity value which
means a collection of data types (string, int, etc.). The relations are depicted with the tiny
rectangle boxes. The arity depends on the number of boxes (roles) and consequently of



Person has Name.
Each Person has exactly one Name.
It is possible that more than one Person has the same Name.
For each Ferson, exactly one of the following holds:
that Person is some Female;
that Person is some Male.
Husband marriage Wife.
Each Husband marrizge exactly one Wife.
marriage For each Wife, exactly one Husband marriage that Wife.

(a) ORM schema. (b) ORM schema verbalization.

g
&

Figure 1. The ORM graphical language in NORMA

role players (entities). Smokes is a unary relation that is exactly like the boolean value in a
SQL column true/false. Has and marriage instead are binary relations. The fact-oriented
approach facilitates the understanding of the ORM conceptual schema in a way that even
the non-technical users can easily understand the semantics of the schema, since it is
expressed in controlled natural language; this approach helps also the modeler during
the validation of the schema to detect errors. This feature is implemented in NORMA by
ORM Verbalization Browser, as shown in Figure |T_5[

3. ORMlIe Plugin

ORMIe stands for ORM Inference Engine and it is a NORMA plugin that performs rea-
soning on ORM schemas. Reasoning helps the modeler to detect relevant formal prop-
erties of the schema that may be undetected during the modeling phase which give rise
to the software quality degradation and/or increased development times and costs. Espe-
cially with large software this is helpful to understand if and why the schema could have
some inconsistencies, redundancies and unexpected behaviors. The reasoning services in
ORM are due to off-the-shelves reasoners developed by the Description Logics commu-
nity. As in [13]] for UML, we have a polynomial encoding of a subset of ORM language
in the Description Logics ALC QT and this encoding preserves enough semantics to keep
reasoning on ORM sound and complete. Once ORMIe is activated, it starts its inference
engine translating the ORM conceptual schema in OWL generating an ontology; after
that, the ontology is processed by Fact++ [[14] reasoner in order to discover the implicit
knowledge, like inconsistencies or redundancies.

In Figure 2a] we can see an example on how this can help the modeler during the
modeling phase. The ORM conceptual schema contains the entity Italian and its subenti-
ties: LatinLover, Lazy and Mafioso, that are in covering and disjoint. Then, we also have
another subentity called ItalianProf, which is in disjointed with Lazy and Mafioso. Con-
sidering that the covering and the disjointness of the Italian set is made by LatinLover,
Lazy, Mafioso and that ItalianProf cannot be Lazy and Mafioso, we can conclude that all
the objects in ItalianProf must also be objects of LatinLover. The result of the reasoning
is shown in Figure 2b]

4. Reasoning on Derivation Rules

ORM is enriched with Derivation Rules that are of particular interest for our demonstra-
tion, because they are able to express knowledge that is beyond ORM capabilities and



ItalianProf

| ItalianProf

(a) ORM conceptual schema without reason-
ing.

(b) ORM conceptual schema with reasoning.

Figure 2. Reasoning over ORM conceptual schema.

swims swims

Animal

0o e - o P O
flizs isDzngarous flies isDangerous
m ((Fish® Shark * Bird * Fish * Shark *

Each Fish is by definition
some Animal that swims
and it is not tue that
(that Animal fhes).

that flies
and it is not tue that
(chat Animal swims).

[Each Shark is by definition
some Animal that
isDzngerous

and swims and

it is not true

that (that Animal flies).

Esch Bird i by definition

|some Animal that fiies

[that Animal swims).

Ezch Shark is by definition
some Animal that
isDangerous

and swims and

it is not true

that (that Animal flies).

Ezch Fish is by definition
[some Animal that swims
2nd it i not true that
{that Animal fliz=).

(a) Derivation Rules without reasoning. (b) Derivation Rules with reasoning.

Figure 3. Reasoning on Derivation Rules

to derive new information from other information, similar to triggers, stored procedures
and views in SQL. In NORMA these rules are expressed in FORML, which is a con-
trolled natural language. This means that Derivation Rules are well structured and they
have a precise syntax. This syntax has been studied and enriched with an unambigu-
ous semantics, so it was possible to catch the encoding in ALC Q7 and consequently in
OWL.

In Figure [3a] there is an example of an ORM conceptual schema with 3 Derivation
Rules (depicted with an asterisk in the entities and a textbox):

e Bird is an Animal that flies and doesn’t swim;
e Fish is an Animal that swims and doesn’t fly;
e Shark is an Animal that swims, doesn’t fly and is dangerous.

Since all the objects in Bird fly and never swim and vice versa for those that are in
Fish, it is pretty clear that a bird cannot be a fish and vice versa, so this constraint leads to
the disjointness between the corresponding entities. The entity Shark is a specialization
of the entity Fish, because it has the same properties of Fish, but it is also “dangerous”.
This leads to the inferred constraints in Figure



Derivation Rules can be placed on subtype entities and also on relations. Until now,
ORMIe covers reasoning only for Subtype Derivation Rules.

5. Conclusions and Future Works

We presented ORM, a modeling language used to design diagram at the conceptual level.
ORM is implemented in NORMA, an advanced conceptual modeling tool that extended
with the plugin ORMIe is able to perform automated reasoning to support the conceptual
modeling phase during the development of the software lifecycle. We demonstrated, by
means of examples, the importance of the reasoning since it provides implicit informa-
tion which can be undetected during the modeling phase. This approach helps the mod-
eler to preserve the quality of the conceptual schema and to avoid mistakes that could
lead the software to unexpected behaviors.

The research and development of NORMA continues on two tracks: we are keeping
studying the formalization of Derivation Rules in order to cover binary relations as well;
we are currently considering to implement the explanation service, which could help the
modeler to understand the reason behind mistakes that may occur during the modeling
phase.

References

[1] T. A. Halpin. Object-role modeling: Principles and benefits. IJISMD, 1(1):33-57, 2010.

[2] T. A.Halpin and T. Morgan. Information modeling and relational databases (2. ed.). Morgan Kaufmann,
2008.

[3] T. Halpin. A Logical Analysis of Information Systems: static aspects of the data-oriented perspective.
PhD thesis, jul 1989.

[4] C.M. Keet. Mapping the object-role modeling language ORM2 into description logic language dlrifd.
CoRR, abs/cs/0702089, 2007.

[S] M. Jarrar. Towards automated reasoning on ORM schemes. In Conceptual Modeling - ER 2007, 26th
International Conference on Conceptual Modeling, Auckland, New Zealand, November 5-9, 2007, Pro-
ceedings, pages 181-197, 2007.

[6] R.Hodrob and M. Jarrar. Mapping ORM into OWL 2. In Proceedings of the Ist International Confer-
ence on Intelligent Semantic Web-Services and Applications, ISWSA 2010, Amman, Jordan, June 14-16,
2010, page 9, 2010.

[71 M. Jarrar. Mapping ORM into the SHOIN/OWL description logic. In On the Move to Meaningful
Internet Systems 2007: OTM 2007 Workshops, OTM Confederated International Workshops and Posters,
AWeSOMe, CAMS, OTM Academy Doctoral Consortium, MONET, OnToContent, ORM, PerSys, PPN,
RDDS, SSWS, and SWWS 2007, Vilamoura, Portugal, November 25-30, 2007, Proceedings, Part I, pages
729-741, 2007.

[8] E. Franconi and A. Mosca. Towards a core ORM2 language (research note). In On the Move to Mean-
ingful Internet Systems: OTM 2013 Workshops - Confederated International Workshops: OTM Academy,
OTM Industry Case Studies Program, ACM, EI2N, ISDE, META4eS, ORM, SeDeS, SINCOM, SMS, and
SOMOCO 2013, Graz, Austria, September 9 - 13, 2013, Proceedings, pages 448456, 2013.

[9]1 P. R. Fillottrani, E. Franconi, and S. Tessaris. The ICOM 3.0 intelligent conceptual modelling tool and
methodology. Semantic Web, 3(3):293-306, 2012.

[10] Dogmamodeler. https://sourceforge.net/projects/dogmamodeler/.

[11] Orm on sourceforge. https://sourceforge.net/projects/orm/\

[12] The orm foundation. https://www.ormfoundation.org,

[13] D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class diagrams. Artif. Intell., 168(1-
2):70-118, 2005.

[14] Fact++ reasoner. http://owl.man.ac.uk/factplusplus/.


https://sourceforge.net/projects/dogmamodeler/
https://sourceforge.net/projects/orm/
https://www.ormfoundation.org
http://owl.man.ac.uk/factplusplus/

