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Abstract

This is the first part of a series consisting of two papers. In this paper
we define the category of partial differential equations. Special cases of
morphisms from an object (equation) are symmetries of the equation
and reductions of the equation by a symmetry groups, but there are
many other morphisms. We develop a special-purpose language for
description and study of the internal structure of this category. We
are mostly interested in a subcategory that arises from second order
parabolic equations on arbitrary manifolds. In the second part of the
series we study the internal structure of this subcategory in detail.

Introduction

This series of two papers is a revised version of the preprint [8]. Here we
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continue an investigation started in [6] and [7], where the category PDE of partial
differential equations was defined and its study was began.

For easier introduction, let us define first the category PDE0, which is a full
subcategory of PDE .

Let π : N →M be a smooth fiber bundle, E be a subset of k-jet bundle Jk(π).
E could be considered as a k-th order partial differential equation for sections of
π; namely, s ∈ Γπ is a solution of E if k-th prolongation jk(s) ∈ Γ

(
Jk(π)→M

)
is contained in E. Here Γπ denotes the space of smooth sections of π.

Let π : N →M , π′ : N ′ →M ′ be smooth fiber bundles. Suppose F : π → π′ is a
smooth bundle morphism with the additional property that F is a diffeomorphism
on the fibers (see Fig. 1). Then F induces the map F ∗ : Γπ′ → Γπ; denote by
ΓFπ its image. We say that a section of π is F -projectable if it is contained in
ΓFπ. If F is surjective, then F ∗ is injective, so it defines the map from ΓFπ to
Γπ′. If additionally F is submersive, then it defines the map F k : JkF (π)→ Jk(π′),
where JkF (π) = F ∗Jk(π′) is the bundle of k-jets of F -projectable sections of π (see
Fig. 2).

Now we are ready to define PDE0. Its objects are pairs(
π : N →M,E ⊂ Jk(π)

)
, k ∈ N, and morphisms from an object(

π : N →M,E ⊂ Jk(π)
)

to an object
(
π′ : N ′ →M ′, E′ ⊂ Jk(π′)

)
are smooth

bundle morphisms F : π → π′ satisfying the following conditions:
1. F defines surjective submersion M →M ′.

2. The diagram Fig. 1 is a pullback square in the category of smooth manifolds, that is the map F : π−1(x)→
π′−1(Fx) is a diffeomorphism for any x ∈M .

3. E ∩ JkF (π) =
(
F k
)−1

(E′).
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If F : (π,E)→ (π′, E′) is a morphism in PDE0, then F ∗ defines a bijection between the set of all solutions of
E′ and the set of all F -projectable solutions of E.

In Section 2 we define a bigger category PDE , whose objects are pairs (N,E) with N a smooth manifold
and E a subset of the bundle Jkm(N) of k-jets of m-dimensional submanifolds of N , and whose morphisms from
(N,E) to (N ′, E′) are maps N → N ′ satisfying some analogue of conditions (1-3) above. By definition, the
solutions of an equation E are smooth m-dimensional non-vertical integral manifolds of the Cartan distribution
on Jkm(N), which are contained in E. Particularly, the set of solutions includes all m-dimensional submanifolds
L ⊂ N such that the k-th prolongation jk(L) ⊂ Jkm(N) is contained in E. Any morphism F : (N,E)→ (N ′, E′)
of PDE defines a bijection between the set of all solutions of E′ and the set of all F -projectable solutions of E
in the same manner as for PDE0.

The category PDE generalizes the notion of symmetry group in two directions:

1. Automorphisms group of an object (N,E) in PDE is the symmetry group of the equation E.
2. For a symmetry group G of E the natural projection N → N/G defines the morphism (N,E)→ (N/G,E/G)

in PDE . Here E/G is the equation describing G-invariant solutions of E.

Note that morphisms of PDE go beyond morphisms of this kind.
In Sections 2 and 6 we discuss the relations between our approach to the factorization of PDE and the other

approaches.
Then we discuss the possibility of the introduction of a certain structure in PDE formed by a lattice of

subcategories. These subcategories may be obtained by restricting to equations of specific kind (for example,
elliptic, parabolic, hyperbolic, linear, quasilinear equations etc.) or to the morphisms of specific kind (for example,
morphisms respecting the projection of N on a base manifold M as in PDE0) or both. When we interested in
solutions of some equation it is useful to look for its quotient objects because every quotient object gives us
a class of solutions of the original equation. It may happen that the position of an object in the lattice gives
information on the morphisms from the object and/or on the kind of the simplest representatives of quotient
objects. In Section 4 we develop a special-purpose language for description and study of such situations. We
introduce a number of partial orders on the class of all subcategories of fixed category and depict these orders
by various arrows (see Table 1 and Fig. 3). For instance, we say that a subcategory C1 is closed in a category

C and depict C • // C1 if every morphism in C with source from C1 is a morphism in C1; we say that C1 is

plentiful in C and depict C // C1 if for every A ∈ ObC1 and for every quotient object of A in C there exists
a representative of this quotient object in C1; and so on.

We use this language in the second part of this series [9] for a detail study of the full subcategory PE of PDE
that arises from second order parabolic equations posed on arbitrary manifolds, but we hope that our approach
based on category theory may be useful for other types of PDE as well. An object of PE is an equation for an
unknown function u(t, x), x ∈ X having the form ut =

∑
i,j b

ij(t, x, u)uij+
∑
i,j c

ij(t, x, u)uiuj+
∑
i b
i(t, x, u)ui+

q(t, x, u) in local coordinates
(
xi
)

on X, where X is a smooth manifold. We prove that every morphism in PE
is of the form (t, x, u) 7→ (t′(t), x′ (t, x) , u′(t, x, u)) (Theorem 1). Particularly, PE appears to be a subcategory
of PDE0.

The use of the structure of PE developed in the second paper [9] is illustrated there on the example of the
reaction-diffusion equation

ut = a(u) (∆u+ η∇u) + q(x, u), x ∈ X, t ∈ R, (1)

posed on a Riemannian manifold X equipped with a vector field η. There are two exceptional cases: a(u) =
eλuH(u) and a(u) = (u − u0)λH(ln(u − u0)), where H(·) is a periodic function; in these cases there are more
morphisms then in a regular case. If only function a(u) does not belong to one of these two exceptional classes,
then every morphism from equation (1) may be transformed by an isomorphism (i.e. by a global change of
variables) of the quotient equation to a “canonical” morphism of very simple kind so that the “canonical”
quotient equation has the same form as (1) with the same function a(u) but is posed on another Riemannian
manifold X ′, dimX ′ ≤ dimX.

1 The “small” category PDE0 of partial differential equations

Let M , K be smooth manifolds. A system E of k-th order partial differential equations for a function u : M → K
is given as a system of equations Φl(x, u, . . . , u(k)) = 0 involving x, u and the derivatives of u with respect to
x up to order k, where x = (x1, . . . , xm) are local coordinates on M and u = (u1, . . . , uj) are local coordinates
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on K. Further we will use the words “partial differential equation”, “PDE” or “equation” instead of “a partial
differential equation or a system of partial differential equations” for short.

Recall some things about jets and related notions. The k-jet of a smooth function u : M → K at a point x ∈M
is the equivalence class of smooth functions M → K whose value and partial derivatives up to k-th order at x
coincide with the ones of u. All k-jets of all smooth functions M → K form the smooth manifold Jk(M,K), and
the natural projection πk : Jk(M,K)→ J0(M,K) = M ×K defines a smooth vector bundle over M ×K, which
is called k-jet bundle. For every function u : M → K, its k-th prolongation jk(u) : M → Jk(M,K) is naturally
defined. k-th order PDE for functions acting from M to K can be considered as a subset E of Jk(M,K);
solutions of E are functions u : M → K such that the image of jk(u) is contained in E.

In more general situation we have a smooth fiber bundle π : N → M instead of a projection M ×K → M ,
and sections s : M → N instead of functions u : M → K. Denote by Γπ the space of smooth sections of π;
recall that a section of π is a map s : M → N such that π ◦ s is the identity. Definitions of the k-jet bundle
πk : Jk(π) → J0(π) = N and of the k-th prolongation jk : Γπ → Γ

(
π ◦ πk : Jk(π)→M

)
are the same as those

for functions. Let E be a subset of Jk(π); then E can be considered as a k-th order partial differential equation
for sections of π, that is s ∈ Γπ is a solution of E if the image of jk(s) is contained in E.

Let π : N → M , π′ : N ′ → M ′ be smooth fiber bundles. Let F : π → π′ be a smooth bundle morphism with
the additional property that F is a diffeomorphism on the fibers (see Fig. 1). F induces the map F ∗ : Γπ′ → Γπ;
denote by ΓFπ its image. We say that a section of π is F -projectable if it is contained in ΓFπ. If F is surjective,
then F ∗ is injective, so it defines the map F# : ΓFπ → Γπ′. If additionally F is submersive, then it defines the
map F k : JkF (π) → Jk(π′), where JkF (π) = F ∗Jk(π′) is the bundle of k-jets of F -projectable sections of π (see
Fig. 2). Recall that a map F is called a submersion if dF : TxN → TF (x)N

′ is surjective at each point x ∈ N .

Definition 1. Let π : N →M , π′ : N ′ →M ′ be smooth fiber bundles, E be a subset of Jk(π), F : π → π′ be a
smooth bundle morphism. We say that F is admitted by E if the following conditions are satisfied:

1. F is a surjective submersion.
2. The diagram Fig. 1 is a pullback square in the category of smooth manifolds, that is the map F : π−1(x)→
π′−1(Fx) is a diffeomorphism for any x ∈M .

3. E ∩ JkF (π) =
(
F k
)−1

(E′) fore some subset E′ of Jk(π′).

If this is the case, then we say that E′ is F -projection of E.

It turns out that the language of category theory is very convenient for our study of PDE. Recall that a category
C consists of a collection of objects ObC , a collection of morphisms (or arrows) HomC and four operations. The
first two operations associate with each morphism F of C its source and its target, both of which are objects of
C. The remaining two operations are an operation that associates with each object C of C an identity morphism
idC ∈ HomC and an operation of composition that associates to any pair (F,G) of morphisms of C such that the
source of F coincides with the target of G another morphism F ◦ G, their composite. These operations should
satisfy some natural axioms [3, sec. I.1].

Definition 2. PDE0 is the category whose objects are pairs
(
π : N →M,E ⊂ Jk(π)

)
with π being a

smooth viber bundle, k ∈ N, and morphisms from an object
(
π : N →M,E ⊂ Jk(π)

)
to an object(

π′ : N ′ →M ′, E′ ⊂ Jk(π′)
)

are smooth bundle morphisms F : π → π′ admitted by E such that E′ is the
F -projection of E.

If F : (π,E)→ (π′, E′) is a morphism in PDE0, then F ∗ defines a bijection between the set of all solutions of
E′ and the set of all F -projectable solutions of E.

2 The category PDE of partial differential equations

In this section we define the category PDE of partial differential equations, whose objects are pairs (N,E) such
that N is a smooth manifold and E is a subset of the bundle Jkm(N) of k-jets of m-dimensional submanifolds of
N .

Let N be a Cr-smooth manifold, 0 < m < dimN . The jet bundle πk : Jkm(N) → N is a fiber bundle
with the fiber Jkm(N)

∣∣
x

over x ∈ N , where Jkm(N)
∣∣
x

is the set of equivalence classes of smooth m-dimensional
submanifolds L of N passing through x under the equivalence relation of k-th order contact in x.

The k-jet of a k-smooth m-dimensional submanifold L over x ∈ L is the equivalence class from Jkm(N)
∣∣
x

determined by L. Thus we have the prolongation map jk : L → Jkm(N) taking each point x ∈ L to the k-jet

123



of L over x (so it is the section of the fiber bundle Jkm(N) restricted to L ⊂ N). For every k > l ≥ 0 the
natural projection πk,l : Jkm(N) → J lm(N) maps the k-jet of L to the l-jet of L over x for every m-dimensional
submanifold L of N and every x ∈ L.

For a submanifold L of N the differential of the prolongation map jk : L→ Jkm(N) takes the tangent bundle
TL to the tangent bundle TJkm(N). The closure of the union of the images of TL in TJkm(N) when L runs over
all m-dimensional submanifolds of N is the vector subbundle of TJkm(N); it is called the Cartan distribution on
Jkm(N).

Let E be a submanifold of Jk(π), π : N → M , m = dimM . The graph of a section is an m-dimensional
submanifold of N , so Jk(π) is an open subspace of Jkm(N) and E could be considered as a submanifold of
Jkm(N). The extended version of E is defined as the closure of E in Jkm(N) [4, p. 222]. Since we don’t plan
to consider infinitesimal properties of E in contrast to the Lie group analysis of PDE, we would consider any
subset E of Jkm(N) as a partial differential equations. By definition, solutions of such an equation are smooth
m-dimensional non-vertical integral manifolds of the Cartan distribution on Jkm(N) that are contained in E. Note
that for any m-dimensional submanifold L of N its prolongation jk(L) is a non-vertical integral manifold of the
Cartan distribution on Jkm(N). Therefore, if E ⊂ Jkm(N) is obtained from a traditional PDE as it was described
above, and if L is the graph of a section u of π, then L is a solution of E in the above sense if and only if u is a
solution of the corresponding traditional PDE in the traditional sense. In addition there is allowed the possibility
of both multi-valued solutions and solutions with infinite derivatives (see [4, sec. 3.5] for the details). Wherever
we write concrete equation in the traditional form below we mean the extended version of this equations, that
is the closure of the corresponding set in Jkm(N).

Now let us introduce some auxiliary notation.
Let F : N → N ′ be a map. We say that L ⊂ N is F -projected if L = F−1(F (L)). Note that if F is a surjective

submersion and L is an F -projectable submanifold of N , then L′ = F (L) is a submanifold of N ′.
Let N , N ′ be Cr-smooth manifolds, 0 < m < dimN . Let F : N → N ′ be a surjective submersion of

smoothness class Cs, k ≤ s ≤ r.

Definition 3. F -projectable jet bundle Jkm,F (N) is the submanifold of Jkm(N) consisting of k-jets of all m-
dimensional F -projectable submanifolds of N .

We write JkF (N) instead of Jkm,F (N) if the value of m is clear from context.

There is natural isomorphism between the bundles Jkm,F (N) and F ∗Jkm′(N
′) over N , where F ∗Jkm′(N

′) =

Jkm′(N
′)×N ′ N is the pullback of Jkm′(N

′) by F , dimN −m = dimN ′ −m′. Therefore we can lift F to the map
F k : Jkm,F (N)→ Jkm′ (N

′) by the following natural way:

1) Suppose ϑ ∈ Jkm,F (N). Take an arbitrary F -projectable submanifold L of N such that the k-th prolongation

of L pass through ϑ (that is the k-jet of L over πk(ϑ)) is ϑ.
2) Assign to ϑ the point ϑ′ ∈ Jkm′ (N ′), where ϑ′ is the k-jet of the submanifold L′ = F (L) ⊂ N ′ over F ◦πk (ϑ).

Definition 4. Let E ⊂ Jkm(N). Let F : N → N ′ be a smooth surjective submersion. We say that F is
admitted by E if the intersection E ∩ Jkm,F (N) is F k-projectable subset of Jkm,F (N) (see the left diagram on

Fig. 3). Equivalently, E ∩ Jkm,F (N) is the inverse image
(
F k
)−1

(E′) of some E′ ⊂ Jkm′(N
′); we say that E′ is

F -projection of E.

E
��

��

E ∩ Jkm,F (N)oooo
��

��

// // E′
��

��
Jkm(N)

πk

����

Jkm,F (N)oooo

����

Fk
// // Jkm′(N

′)

π′k

�� ��
N N

F
// // N ′

E
��

��

E ∩∆oooo
��

��

// // E′
��

��
Jkm(N)

πk

�� ��

∆oooo

����

F̃ // // Jk
′

m′(N
′)

π′k
′

����
N N N ′

Figure 3: Morphisms of PDE (left diagram) and morphisms of PDEext (right diagram).
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Definition 5. The category of partial differential equations PDE is defined as follows:

• objects of PDE are pairs (N,E), where N is a smooth manifold, E is a subset of Jkm (N) for some integer
k,m ≥ 1;

• morphisms of PDE with a source A = (N,E) are all surjective submersions F : N → N ′ admitted by E;
target of such morphism is (N ′, E′) where E′ is F -projection of E;

• the identity morphism from A is the identity mapping of N , and the composition of morphisms is the
composition of appropriate maps.

If F : (N,E)→ (N ′, E′) is a morphism in PDE , then F ∗ defines a bijection between the set of all solutions of
E′ and the set of all F k-projectable solutions of E.

In [5] the author defined the following notion of a map admitted by a pair of equations: a map F : N → N ′

is admitted by an ordered pair of equations (A,A′), A = (N,E), A′ = (N ′, E′) if for any L′ ⊂ N ′ the following
two conditions are equivalent:

• L′ is the graph of a solution of E′,
• F−1(L′) is the graph of a solution of E.

However, we are not happy with this definition; in particular, because it deals only with global solutions of E.
Therefore, here we define the notion of map admitted by an equation in terms of (locally defined) jet bundles.

Remark 1. Let A = (N,E) be an object of PDE . Then its automorphism group Aut(A) is the symmetry
group for the equation E.

Remark 2. Suppose G is a subgroup of the symmetry group of E such that N/G is a smooth manifold. Then the
natural projection N → N/G defines the morphism (N,E) → (N/G,E/G) in PDE . Here E/G is the equation
describing G-invariant solutions of E.

Therefore, reduction of E by subgroups of Aut(A) defines a part of nontrivial morphisms from A. But the
class of all morphisms from A is significantly richer than the class of morphisms arising from reduction by
subgroups of Aut(A). Let Sol(A) be the set of all solutions of A, that is of all smooth m-dimensional non-
vertical integral manifolds of the Cartan distribution on Jkm(N) that are contained in E. In general, the subset
F ∗(Sol(A′)) =

{
F−1(L′) : L′ ∈ Sol(A′)

}
⊆ Sol(A) of solutions of A arising from a morphism F : A→ A′ can not

be represented as a set of solutions that are invariant under some subgroup of Aut(A). In particular, F ∗(Sol(A′))
can be the set of G-invariant solutions, where G is a transformation group that is not necessarily a symmetry
group of E. Moreover, for a morphism F : A → A′ it may occur that for every nontrivial diffeomorphism g of
N there is an element in F ∗(Sol(A′)) that is not g-invariant. More detailed discussion is given in Section 6; see
also [6, sections 9, 10], [7, sections 7–9].

Our approach is conceptually close to the approach developed in [1] that deals with control systems. If we
set aside the control part and look at this approach relative to ordinary differential equations, then we get the
category of ordinary differential equations, whose objects are ODE systems of the form ẋ = ξ, x ∈ X, where X
is a manifold equipped with a vector field ξ, and morphism from a system A to a system A′ is a smooth map F
from the phase space X of A to the phase space X ′ of A′ that projected ξ to ξ′. In other words, F is a morphism
if it transforms solutions (phase trajectories) of A to solutions of A′: F∗(Sol(A)) = Sol(A′).

By contrast, we deal with pullbacks of the solutions of the quotient equation A′ to the solutions of the original
equation A. In our approach, the number of dependent variables in the reduced PDE remains the same, while
the number of independent variables is not increased. Thus, in the approach proposed, the quotient object notion
is an analogue of the sub-object notion (in terminology of [1, sec. 5.1]) with respect to the information about the
solutions of the given equation; however, it is similar to the quotient object notion with respect to interrelations
between the given and reduced equations.

Note also that the above described category of ODE from [1] is isomorphic to a certain subcategory of PDE .
Namely, consider the following subcategory PDE1 of PDE :

• objects of PDE1 are pairs (N,E), where N = X ×R, E is a first order linear PDE of the form Lξu = 1 for
unknown function u : X → R, ξ ∈ TX;

• morphisms of PDE1 are morphisms of PDE of the form (x, u) 7→ (x′(x), u).

One can easily see that the category of ODE from [1] is isomorphic to PDE1: the object Lξu = 1 corresponds
to the object ẋ = ξ, and the morphism (x, u) 7→ (x′(x), u) corresponds to the morphism x 7→ x′(x).
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The category of differential equations was also defined in [2, sec. 6.1.3] in a different way: objects are infinite-
dimensional manifolds endowed with integrable finite-dimensional distribution (particularly, infinite prolonga-
tions of differential equations), and morphisms are smooth maps such that image of the distribution is contained
in the distribution on the image, similarly to morphisms in [1]. Thus, the category of differential equations
defined in [2] is quite different from the category PDE defined here; one should keep it in mind in order to
avoid confusion. The factorization of PDE A by a symmetry group described in [2] is PDE A′ on the quotient
space describing images of all solutions of A at the projection to the quotient space: F∗(Sol(A)) = Sol(A′).
In that approach, every factorization of A provides a part of the information about all the solutions of A. In
our approach, factorization of A is such an equation A′ that the pullbacks of its solutions are solutions of A:
F ∗(Sol(A′)) ⊆ Sol(A); so that from every factorization, we obtain the full information about a certain set of the
solutions of the given equation.

The following two propositions are simple corollaries of our definitions.

Proposition 1. All morphisms in PDE are epimorphisms.

Proposition 2. Suppose (N,E), (N ′, E′), (N ′′, E′′) are objects of PDE, F : N → N ′ is a morphism from (N,E)
to (N ′, E′) in PDE, G : N ′ → N ′′ is surjective submersion. Then the following two conditions are equivalent
(see Fig. 4):
• G is a morphism from (N ′, E′) to (N ′′, E′′),
• GF is a morphism from (N,E) to (N ′′, E′′).

E ∩ JkGF (N)
��

�� '' ''

(GF )k

�� ��

JkGF (N)
��

�� '' ''

E′ ∩ JkG(N ′)
��

�� && &&
JkF (N)
��

��

Fk

'' ''

JkG(N ′)
��

��

Gk

&& &&

E′′
��

��
Jk(N)

πk

����

Jk(N ′)

π′k ����

Jk(N ′′)

π′′k ����
N

F
// // N ′

G
// // N ′′

Figure 4: Diagram for Proposition 2.

3 The extended category PDEext of partial differential equations

Note that the Cartan distribution Ck(N) on Jkm (N) restricted to Jkm,F (N) coincides with the lifting(
F k
)∗
Ckm′ (N

′) of the Cartan distribution on Jkm′ (N
′), m′ = m − dimN + dimN ′. Taking this into account

and using the analogy with higher symmetry group, we replace Jkm,F (N) to arbitrary submanifold ∆ of Jkm(N).
Thus we obtain the category PDEext with the same objects as PDE and extended set of morphisms involving
transformations of jets. (This category will not be used in the rest of the paper.)

Definition 6. An extended category of partial differential equations PDEext is defined as follows:

• objects of PDEext are pairs (N,E), where N is a smooth manifold, E is a subset of Jkm (N) for some integer
k,m ≥ 1;

• morphisms of PDEext from A = (N,E ⊂ Jkm(N)) to A′ = (N ′, E′ ⊂ Jk′m′(N ′)) are all pairs
(
∆, F̃

)
such that

∆ is a smooth submanifold of Jkm(N), F̃ : ∆→ Jk
′

m′(N
′) is a surjective submersion, the Cartan distribution

on Jkm (N) restricted to ∆ coincides with the lifting F̃ ∗Ck
′

m′ (N
′) of the Cartan distribution on Jk

′

m′ (N
′), and

E ∩∆ = F̃−1(E′) (see right diagram on Fig. 3);

126



• the identity morphism from A is
(
∆ = Jkm(N), F̃ = idN

)
;

• composition of
(
∆ ⊂ Jkm(N), F̃ : ∆→ Jk

′

m′(N
′)
)

and
(
∆′ ⊂ J ′k′m (N ′), F̃ ′ : ∆′ → Jk

′′

m′′(N
′′)
)

is(
F̃−1(∆′), F̃ ′ ◦ F̃

)
.

For each integral manifold of the Cartan distribution on E′, its inverse image is an integral manifold of the
Cartan distribution on E. Therefore, for each solution of E′, its pullback is a solution of E.
PDE is embedded to PDEext by the following natural way: to the morphisms F : N → N ′ of PDE from the

equation of k-th order we assign the morphisms
(
∆, F̃

)
of PDEext such that ∆ = Jkm,F (N), F̃ = F k.

4 Usage of subcategories

We start with a review of some basic definitions of category theory [3, sec. II.6]. Given a category C and an
object A of C, one may construct the category (A ↓ C) of objects under A (this is the particular case of the
comma category): objects of (A ↓ C) are morphisms of C with source A, and morphisms of (A ↓ C) from one
such object F : A→ B to another F ′ : A→ B′ are morphisms G : B→ B′ of C such that F ′ = G ◦ F .

Suppose C is a subcategory of PDE , A is an object of C. Then the category (A ↓ C) of objects under A
describes collection of quotient equations for A and their interconnection in the framework of C.

To each morphism F : A→ B with source A (that is to each object of the comma category (A ↓ C)) assign the
set F ∗(Sol(B)) ⊆ Sol(A) of such solutions of A that “projected” onto underlying space of B (space of dependent
and independent variables). We can identify such morphisms that generated the same sets of solutions of A,
that is identify isomorphic objects of the comma category (A ↓ C).

Describe the situation more explicitly. An equivalence class of epimorphisms with source A is called a quotient
object of A, where two epimorphisms F : A → B and F ′ : A → B′ are equivalent if F ′ = I ◦ F for some
isomorphism I : B→ B′ [3, sec. V.7]. If F : A→ B and F ′ : A→ B′ are equivalent, then they lead to the same
subsets of the solutions of A: F ∗(Sol(B)) = F ′∗(Sol(B′)). So if we interested only in the sets of the solutions of
A, then all representatives of the same quotient object have the same rights.

Therefore, the following problems naturally arise:

• to study all morphisms with given source,
• to choose a “simplest” representative from every equivalence class, or to choose representative with the

simplest target (that is the simplest quotient equation).

In order to deal with these problems we develop in this paper a special-purpose language.
Let us introduce a number of partial orders on the class of all categories to describe arising situations. First

of all, we define a few types of subcategories.

Definition 7. Suppose C is a category, C1 is a subcategory of C.
• C1 is called a wide subcategory of C if all objects of C are objects of C1.

• C1 is called a full subcategory of C if every morphism in C with source and target from C1 is a morphism in
C1.

• We say that C1 is full under isomorphisms in C if every isomorphism in C with source and target from C1 is
an isomorphism in C1.

• We say that C1 is closed in C if every morphism in C with source from C1 is a morphism in C1. (Note that
every subcategory that is closed in C is full in C.)

• We say that C1 is closed under isomorphisms in C if every isomorphism in C with source from C1 is an
isomorphism in C1.

• We say that C1 is dense in C if every object of C is isomorphic in C to an object of C1.

• We say that C1 is plentiful in C if for every morphism F : A→ B in C, A ∈ ObC1 , there exists an isomorphism
I : B→ C in C such that I ◦ F ∈ HomC1 (in other words, for every quotient object of A in C there exists a
representative of this quotient object in C1). Such morphism I ◦ F we call C1-canonical for F .

• We say that C1 is fully dense (fully plentiful) in C if C1 is a full subcategory of C and C1 is dense (plentiful)
in C.

The first two parts of this definition are standard notions of category theory, while the notions of the other
parts are introduced here for the sake of description of the structure of PDE .

Remark 3. Using the notion of “the category of objects under A”, we can define the notions of closed subcat-
egory and plentiful subcategory by the following way:
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• C1 is closed in C if for each A ∈ ObC1 the category (A ↓ C1) is wide in (A ↓ C).
• C1 is plentiful in C if for each A ∈ ObC1 the category (A ↓ C1) is dense in (A ↓ C).

Remark 4. C1 is fully dense in C if and only if the embedding functor C1 → C defines an equivalence of these
categories.

Choose some category U , which is big enough to contain all needful for us categories as it’s subcategories. For
our purposes U = PDE is sufficient.

Define the category U≥, whose objects are subcategories C of U , and a collection HomU≥ (C1, C2) of morphisms
from C1 to C2 is a one-element set if C2 is subcategory of C1 and empty otherwise, so an arrow from C1 to C2 in
U≥ means that C2 is the subcategory of C1. Let U= be the discrete wide subcategory of U≥, that is objects of
U= are all subcategories C of U , and the only morphisms are identities, so C1 and C2 are connected by arrow in
U= only if C1 = C2.

Definition 8. Suppose C1, C2 are subcategories of U . A subcategory of U , whose objects are objects of C1 and
C2 simultaneously, and whose morphisms are morphisms of C1 and C2 simultaneously, is called an intersection of
C1 and C2 and is denoted by C1 ∩ C2. In other words, C1 ∩ C2 is the fibered sum of C1 and C2 in U≥.

The following proposition is obvious:

Proposition 3. Suppose C1 is closed in C, and C2 is (full/closed/dense/plentiful) subcategory of C; then C1 ∩C2
is closed in C2 and is (full/closed/dense/plentiful) subcategory of C1.

Now we introduce some graphic designations for various types of subcategories of U≥ (see Table 1). These des-
ignations will be used, particularly, for the representation of the structure of the category of parabolic equations
described below.

We shall use the term “meta-category” both for the category U≥ and for its subcategories defined below
to avoid confusion between U≥ and “ordinary” categories which are objects of U≥; and we shall use Gothic
script for meta-categories except U≥. One may view these meta-categories as a partial orders on the class of all
subcategories of U ; we prefer category terminology here since this allows us to use category constructions for the
interrelations between various partial orders.

 W Wide 

 F Full 

 FI Full under isomorphisms 

 C Close 

 CI Close under isomorphisms 

 D Dense 

 P Plentiful 

 
Table 1: Basic meta-categories (arrows)

Let us define wide subcategories W, F, FI, C, CI, D, and P of meta-category U≥. Objects of them are
categories, while arrows from C1 to C2 have a different meaning:

• in the meta-category W it means that C2 is wide subcategory of C1,

• in the meta-category F it means that C2 is full subcategory of C1,

• in the meta-category FI it means that C2 is full under isomorphisms in C1,

• in the meta-category C it means that C2 is closed subcategory of C1,

• in the meta-category CI it means that C2 is closed under isomorphisms in C1,

• in the meta-category D it means that C2 is dense subcategory of C1,
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• in the meta-category P it means that C2 is plentiful subcategory of C1,

We shall denote the intersections of these meta-categories by the concatenations of appropriate letters, for
example: FD = F ∩D. The following proposition is obvious.

Proposition 4. FI ∩P = F ∩P; CI ∩P = C; F ∩P ∩D = F ∩D.

Interrelations between “basic” meta-categories W, F, FI, C, CI, D, P and their intersections (“composed”
meta-categories) are represented on Fig. 5(a). Here an arrow means the predicate “to be subcategory of”; we
shall call it the “meta-arrow”. For example, meta-arrow from D to W means that W is a subcategory of D.
In the language of “ordinary” categories this meta-arrow means that the statement “C2 is wide in C1” implies
that C2 is dense in C1. Everywhere on Fig. 5(a) a pair of meta-arrows with the same target means that this
meta-category (target of these meta-arrows) is the intersection of two “top” meta-categories (sources of these
meta-arrows). For example, FD = FP ∩PD.

On Fig. 5(b) the same scheme is represented as on Fig. 5(a), but the letter names are replaced by the arrows
of various types.

 

P D FI 

FP PD W 

C FD PW 

a b 

CI 

U≥≥≥≥ 

U ====  U ====  

Figure 5: Interrelations between basic meta-categories (arrows) and their intersections.

Instead of investigation of all or the simplest morphisms with the given source, we want to introduce a certain
structure in PDE , so that the position of an object in it gives an information about the morphisms from the object
and about the kind of the simplest representatives of equivalence classes of the morphisms. In the second part of
this series [9] we describe such a structure for the category of parabolic equations, choosing some subcategories
of PE connected by the arrows from Fig. 5(b). Then we use this structure to describe the morphisms from
nonlinear reaction-diffusion equation.

5 The category of parabolic equations

Let us consider the class P (X,T,Ω) of differential operators on a connected smooth manifold X, which depend
additionally on a parameter t (“time”), locally having the form

Lu =
∑
i,j

bij(t, x, u)uij +
∑
i,j

cij(t, x, u)uiuj +
∑
i

bi(t, x, u)ui + q(t, x, u),

x ∈ X, t ∈ T, u ∈ Ω,

in some neighborhood of each point, in some (and then arbitrary) local coordinates
(
xi
)

on X. Here subscript i
denotes partial derivative with respect to xi, quadratic form bij = bji is positive definite, and cij = cji. Both T
and Ω may be bounded, semi-bounded, or unbounded open intervals of R.

Definition 9. The category PE of parabolic equations of the second order is the full subcategory of PDE , whose
objects are pairs A = (N,E), N = T ×X × Ω such that X is a connected smooth manifold, T and Ω are open
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intervals, and E is an equation of the form ut = Lu, L ∈ P (X,T,Ω) (more exactly, E is the extended version of
the equation ut = Lu, that is a closed submanifold of J2

n+1(T ×X × Ω), n = dimX).

Example 1. Let Φk(x), x ∈ R3 − {0} be a spherical harmonic of the k-th order. Then the map (t, x, u) 7→
(t, |x| , u /Φk(x) ) defines the morphism in the category PE from the object A corresponding to equation ut = ∆u

and X = R3 − {0}, T = Ω = R, to the object A′ corresponding to equation u′t′ = u′x′x′ − k (k + 1)x′
−2
u′ and

X ′ = R+, T ′ = Ω′ = R. One may assign to the set Sol(A′) of all solutions of the quotient equation the set
F ∗(Sol(A′)) of such solutions of the original equation that may be written in the form u = Φk(x)u′ (t, |x|).

Example 2. The following example shows that not every endomorphism in PE is an automorphism. Consider
object A, for which X = S1 = R mod 1, T = Ω = R, E : ut = uxx. Then the morphism from A to A defined by
the map (t, x, u) 7→ (4t, 2x, u) has no inverse.

Theorem 1. Every morphism in PE has the form

(t, x, u) 7→ (t′(t), x′ (t, x) , u′(t, x, u)) , (2)

with submersive t′(t), x′(t, x), and u′ (t, x, u). Isomorphisms in PE are exactly diffeomorphisms of the form (2).

Proof. Passing from the equation ut = Lu to the equation in the extended jet bundle for unknown submanifold
L ⊂ X × T × Ω locally defined by the formula f (t, x, u) = 0, and expressing the derivatives of u by the
corresponding derivatives of f , we obtain the following extended version of E:

ftf
2
u =

∑
i,j

bij
(
fijf

2
u − (fiufj + fjufi) fu + fifjfuu

)
−
∑
i,j

cijfifjfu +
∑
i

bifif
2
u − qf3u . (3)

Suppose F : A→ A′ is a morphism in PE , N ′ = X ′ × T ′ × Ω′, and E′ is defined by the equation

u′ =
∑
i′,j′

Bi
′j′ (t′, x′, u′)u′i′j′ +

∑
i′,j′

Ci
′j′ (t′, x′, u′)u′i′u

′
j′ +

∑
i′

Bi
′
(t′, x′, u′)u′i′ +Q (t′, x′, u′) .

Consider the extended analog of the last equation:

f ′t′f
′2
u′ =

∑
i′,j′

Bi
′j′
(
f ′i′j′f

′2
u′ −

(
f ′i′u′f

′
j′ + f ′j′u′f

′
i′
)
f ′u′ + f ′i′f

′
j′f
′
u′u′

)

−
∑
i′,j′

Ci
′j′f ′i′f

′
j′f
′
u′ +

∑
i′

Bi
′
f ′i′f

′2
u′ −Qf ′

3
u′ , (4)

where f ′ (t′, x′, u′) = 0 is the equation locally defining a submanifold L′ of N ′.
Recall that F : (t, x, u) 7→ (t′, x′, u′) is a morphism in PE if and only if for each point ϑ ∈ N and for each

submanifold L′ of N ′, F (ϑ) ∈ L′, the following two conditions are equivalent:

• the 2-jet of L′ at the point F (ϑ) satisfies (4),

• the 2-jet of F−1 (L′) at the point ϑ satisfies (3).

In other words, the conditions “f ′ is solution of (4)” and “f is solution of (3)” should be equivalent when

f (t, x, u) = f ′ (t′ (t, x, u) , x′ (t, x, u) , u′ (t, x, u)) .

To find all such maps we use the following procedure:

1. Express derivatives of f in (3) through derivatives of f ′:

∂f

∂t
=
∂f ′

∂t′
∂t′

∂t
+

∂f ′

∂x′i
′
∂x′

i′

∂t
+
∂f ′

∂u′
∂u′

∂t

and so on.
2. In the obtained identity substitute the combinations of the derivatives of f ′ for ∂f ′/∂t′ by formula (4).

Then repeat this step for ∂2f ′/∂t′
2

in order to eliminate all derivatives with respect to t′. After reducing to
common denominator, the transformed identity will have the form Φ = 0, where Φ is a rational function of
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partial derivatives of f ′ with respect to x′ and u′. The coefficients φ1, . . . , φs of Φ are functions of 4-jet of the
map F .

3. Solve the system φ1 = 0, . . . , φs = 0 of partial differential equations for a map F .

Let us realize this procedure. Note that we shall not write out function Φ completely. Instead we consider
only some of its coefficients and then use the obtained information about F in order to simplify Φ step by step.

First note that the derivatives of the forth order arise only in term ∂2f ′/∂t′
2

when we fulfill the step 2 of the
above procedure. Write this term before the final realization of step 2 for the sake of simplicity:

Φ =
∑
i,j

bij
(
t′it
′
jf

2
u − t′it′ufjfu − t′jt′ufifu + t′

2
ufifj

) ∂2f ′
∂t′2

+ . . .

=
∑
i,j

bij (t′ifu − t′ufi) (t′jfu − t′ufj)
∂2f ′

∂t′2
+ . . .

The coefficient at ∂2f ′/∂t′
2

must be zero, and the quadratic form bij is positive definite. We get t′ifu = t′ufi, so

t′i (f ′t′t
′
u + f ′x′x

′
u + f ′u′u

′
u) = t′u (f ′t′t

′
i + f ′x′x

′
i + f ′u′u

′
i)

(here and below we use the notation

f ′i′ =
∂f ′

∂x′i′
, f ′x′x

′
u =

∑
j′

f ′j′x
′j′
u

and so on). Hence we obtain the following system of equations:{
t′uu

′
i = u′ut

′
i

t′ux
′
i = x′ut

′
i

(5)

One of the following three conditions holds:

1. t′u = 0, t′x = 0;
2. t′u = 0, t′x 6= 0;
3. t′u 6= 0.

In the second case, u′u = x′u = 0. Taking into account the equality t′u = 0, we obtain a desired contradiction
to the assumption that F is a submersion.

In the third case, we get from (5) the identities t′x = ωt′u, u′x = ωu′u, x′
i′

x = ωx′
i′

u , where ω = t′x/t
′
u is

a section of π∗T ∗X, π : N = T × X × Ω → X is the natural projection, π∗T ∗X is the vector bundle over N
induced by π from the cotangent bundle T ∗X, and ω =

∑
i ωi(t, x, u)dxi in local coordinates. This implies that

fx = ωfu. Substituting the last formula to (3), we get

ft = fu

[∑
i,j

bij
(∂ωi
∂xj
− ωj

∂ωi
∂u

)
−
∑
i,j

cijωiωj +
∑
i

biωi − q
]
.

Denote the expression in square brackets by ζ (t, x, u). Then ft = ζfu. Expressing derivatives of f in terms
of derivatives of f ′, we obtain t′t = ζt′u, x′t = ζx′u, u′t = ζu′u. Consider the field of hyperplanes that kill
the 1-form dt′ in the tangent bundle TM (recall that t′u 6= 0, so dt′ is non-degenerated). The differential of F
vanishes on these hyperplanes because du′ ∧ dt′ = dx′i

′ ∧ dt′ = 0. Therefore rank(dF ) ≤ 1. Since dimN ′ ≥ 3, F
can not be submersive, which contradicts the definition of an admitted map.

Finally, we see that only the first case is possible. Hence t′ is a function of t, and f ′t′ may appear only in the

representation of ft. Let us look at the terms of Φ containing (f ′u′)
−2

:

Φ =
∑

i′,j′,k′,l′

t′tx
′i′
ux
′j′
uB
′k′l′f ′i′f

′
j′f
′
k′f
′
l′f
′
u′u′ (f

′
u′)
−2

+ . . . .

Substitution of any covector ω =
∑
i′ ωi′dx

′i′ ∈ Γ (T ∗X ′) to the expression∑
i′,j′,k′,l′

t′tx
′i′
ux
′j′
uB
′k′l′ωi′ωj′ωk′ωl′ = t′t

(∑
i′

x′
i′

uωi′
)2(∑

k′,l′

B′
k′l′
ωk′ωl′

)
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should give zero. The quadratic form B′
k′l′

is positive definite, so
∑
k′,l′ B

′k′l′ωk′ωl′ > 0 when ω 6= 0. Taking

into account that F is submersive, we obtain t′t 6= 0. Therefore
∑
i′ x
′i′
uωi′ = 0 for any ω, that is x′u ≡ 0. This

implies x′ = x′ (t, x), t′ = t′ (t), which completes the proof. �

6 Comparison with the reduction by a symmetry group

As Remark 2 shows, our definition of morphism in PDE is a generalization of the reduction by a symmetry
group. So we can obtain sets of solutions more general than the sets of group-invariant solutions provided by
the group analysis of PDE (though our approach is more laborious owing to the non-linearity of the system of
PDE describing a morphisms). Let us illustrate this by an example of a primitive morphism.

Definition 10. A morphism F : A → B of a category C is called a reducible in C if there exist non-invertible
morphisms G : A→ C, H : C→ B in C such that F = H ◦G. Otherwise, a morphism is called primitive in C.

Note that the reduction of PDE by a symmetry group defines a primitive morphism if and only if this group
has no proper subgroups The reduction by any symmetry group that is not a discrete cyclic group of prime order
may be always represented as a superposition of two nontrivial reductions, so the corresponding morphism is
a superposition of two non-invertible morphisms and therefore is reducible. In particular, this situation takes
place for any nontrivial connected Lie group.

However, the situation for morphisms is completely different. Even a morphism that decreases the number
of independent variables by 2 or more may be primitive; below we present an example of such a morphism.
In contrast, in the Lie group analysis we always have one-parameter subgroups of a symmetry group, so the
morphism corresponding to a symmetry group is always reducible.

Example 3. Consider the following morphism F : A→ B in PE :

• A is the heat equation ut = a(u)∆u posed on X = {(x, y, z, w) : z < w} ⊂ R4 equipped with the metric

gij =


1 0 0 0
0 γ α β
0 α 1 0
0 β 0 1

 ,

where α = xew, β = xez, γ = 1 + α2 + β2, a /∈ Aexp ∪ Adeg. In the coordinate form, A looks as

a−1(u)ut = uxx + uyy − 2αuyz − 2βuyw +
(
1 + α2

)
uzz

+ 2αβuzw +
(
1 + β2

)
uww + (αβ)w uz + (αβ)z uw.

• B is the heat equation a−1(u)ut = uxx + uyy posed on Y = {(x, y)} = R2 equipped with Euclidean metric.
• The morphism F is defined by the map (t, (x, y, z, w), u) 7→ (t, (x, y), u).

This morphism decreases the number of independent variables by 2 and nevertheless is primitive in PE .

Additional examples of morphisms that are not defined by any symmetry group of the given PDE, and also
a detailed investigation of the case dimY = dimX − 1, may be found in [6, sections 9, 10] and [7, sections 7–9].
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