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Abstract 

A POMDP is a tool for planning:  selecting a 
policy that will lead to an optimal outcome. 
Response to intervention (RTI) is an approach to 
instruction, where teachers craft individual plans 
for students based on the results of progress 
monitoring tests.  Current practice assigns 
students into tiers of instruction at each time 
point based on cut scores on the most recent test.  
This paper explores whether a tier assignment 
policy determined by a POMDP model in a RTI 
setting offer advantages over the current practice. 
Simulated data sets were used to compare the 
two approaches; the model had a single latent 
reading construct and two observed reading 
measures: Phoneme Segmentation Fluency (PSF) 
for phonological awareness and Nonsense Word 
Fluency (NWF) for phonological decoding. The 
two simulation studies compared how the 
students were placed into instructional groups 
using the two approaches, POMDP-RTI and 
RTI. This paper explored the efficacy of using a 
POMDP to select and apply appropriate 
instruction. 

1. INTRODUCTION 

Statistics gathered by local school districts reflect that 
roughly 30% of their first-grade students read below 
grade level standards (Matthews, 2015). Moreover, 
Landerl and Wimmer (2009) reported that 70% of 
struggling readers in first grade continued to struggle in 
eight grade when no intervention was provided. 

Mastropieri, Scruggs, and Graetz (2003) argued that 
reading is the main problem for most students with 
learning disabilities.   

Torgesen (2004) asserts that reading consists of five 
components: phonological awareness, phonological 
decoding, fluency, vocabulary, and reading 
comprehension. According to the Simple View Theory of 
Reading Development (Gough & Tunmer, 1986) for 
children at young ages, mastery of the first two 
components, phonological decoding and phonological 
awareness, generate the remaining three reading 
components: fluency, vocabulary, and reading 
comprehension.  A lack of either phonological decoding 
or phonological awareness affects the other components 
and causes reading difficulties. Because the development 
of reading skills is critical, instructors should identify 
children with reading difficulties and provide additional 
instructional support (Catts, Hogan & Fey, 2003). 

Response to intervention (RTI) is an educational 
framework designed to identify students with difficulties 
in reading and math, and intervene as early as possible by 
providing more intensive instruction for students who 
need it. The RTI approach divides instruction into Tiers; 
each tier includes different intervention or instruction.  
The RTI process starts with screening tests which monitor 
general knowledge and skills of all students in the class. 
The screening tests are administered on multiple 
occasions during a school year. The screening test results 
provide teachers with a rough estimate of each student’s 
proficiency that guides the assignment of students into 
appropriate tiers of instruction. RTI has produced good 
results in both research and operational settings, and 
hence is considered to be one of the evidence-based 
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practices for improving reading and preventing learning 
disabilities (Greenwood et al., 2011). 

Ideally, the placement into Tiers of students in an RTI 
program would be based on their unobservable true 
proficiency.  As this is unobservable, the placement 
decision is instead made basis of the estimates of 
proficiency from screening tests.  Often in current 
practice this is implemented through a cut score on the 
most recent screening test.  Naturally, a certain amount of 
measurement error causes some students to be placed 
incorrectly.  Considering the entire (both students’ 
previous screen-tests results and changes in instruction) 
history in account should improve the proficiency 
estimates performance. Almond (2007) suggested that this 
could be done using a partially observed Markov decision 
process (POMDP) — partially observed, because the true 
student proficiency is latent; a decision process, because 
the instructors decide what instruction or intervention to 
use between measurement occasions.   

A POMDP is a probabilistic and sequential model. A 
POMDP can be in one of a number of distinct states at 
any point in time, and its state changes over time in 
response to events (Boutilier, Dean & Hanks, 1999). One 
noteworthy difference between a RTI approach and a 
POMDP model is that most RTI approaches use only the 
latest test results to identify students’ proficiencies and 
assign them to appropriate tier (Nese et al., 2010). We call 
the approach the current-time only-RTI model. On the 
other hand, a POMDP-RTI model is the combination of a 
periodically applied screening test, and the RTI into a 
POMDP model. Additionally, a POMDP considers the 
students’ entire histories (both actions and test scores) 
when determining appropriate interventions at in order to 
identify their current abilities and forecast their future 
abilities under competing policies. Therefore, a POMDP- 
RTI model should perform better than current-time only-
RTI model.    

To test the last assertion, this paper compares the 
POMDP-RTI model with the current-time only-RTI, 
evaluating the predictive accuracy of each model, the 
quality of the instructional plans produced and the reading 
levels achieved at the end of the year.  It does this through 
simulation studies based on numbers obtained from fitting 
the POMDP model to a group of kindergarten students in 
an earlier RTI study (Al Otaiba, Connor, Folsom, 
Greulich, Meadows, & Li, 2011).  

2. METHOD 
Two simulated datasets were used in order to address how 
properly students are assigned to each tier based on their 
latent reading score in the POMDP-RTI model compared 

based on their observed score in the current-time only-
RTI model. The initial value of the parameters were based 
on a longitudinal Florida Center for Reading Research 
(FCRR) study of reading proficiency (Al Otaiba et al, 
2011) and data sets were simulated based on the Almond 
(2007) model in order to produce realistic data for 
answering the research question posed above.   The 
parameters of the simulation were chosen so that the 
distribution of scores on the screening test were similar to 
those of the Al Otaiba et al. study at both the initial and 
final measurement period. 

2.1 THE POMDP-RTI FRAMEWORK 

Almond (2007) describes a general mapping of a POMDP 
into an educational setting.  It is assumed that the 
student’s proficiency is measured at a number of 
occasions.  The latent proficiencies of the students is the 
hidden layer of the POMDP model.  The actual test scores 
are the observable outcomes, and the instructional options 
for the teacher between measurement occasions are the 
action space.  The utility is assumed to be an increasing 
function of the latent proficiency variable at the last 
measurement occasion; thus, it is finite time horizon 
model. 

Figure 1 show a realization of an RTI program in this 
framework. The nodes marked R represent the latent 
student proficiency as it evolves over time. At each time 
slice, there is generally some kind of measurement of 
student progress represented by the observable outcomes, 
Phoneme Segmentation Fluency (PSF) for phonological 
awareness and Nonsense Word Fluency (NWF) for 
phonological decoding. Tiers are instructional tasks 
chosen by the instructor and applied during time slices.  
Note that in an RTI implementation, Tier 1 refers to 
whole class instruction given to all students, while Tier 2 
is small group supplemental instruction generally given 
only to the students most at risk.  Students in Tier 2 are 
given the Tier 1 instruction as well.  

 
Figure 1: The POMDP-RTI model 

The Figure 1 was designed based on evidence-centered 
assessment design (ECD; Mislevy, Steinberg, & Almond, 
2003) we call this an evidence model. In general, both the 
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proficiency variables at Measurement Occasion m, Rm, 
and the observable multivariate outcome variables are 
PSFm and NWFm on that occasion. Extending the ECD 
terminology, Almond (2007) calls the model for the Rm's, 
the proficiency growth model. Following the normal logic 
of POMDPs this is expressed with two parts: the first is 
the initial proficiency model, which gives the population 
distribution for proficiency at the first measurement 
occasion. The second is an action, which gives a 
probability distribution for change in proficiency over 
time that depends on the instructional activity chosen 
between measurement occasions. 
 
There are two notable differences between the POMDP 
models used in this application and those commonly seen 
in the literature.  First, the models have a fixed and finite 
time horizon, with the reward occurring only at the last 
time step (although the actions at each step have a cost 
which is subtracted from the reward).  This removes the 
need for the usual discounting of future rewards.  The 
second is that the Markov process in non-stationary (it is 
hoped that the student’s abilities will improve over time).  
This produces a potential identifiability issue, as growth is 
difficult to distinguish between difficulty shifts in the 
measurement instruments (Almond, Tokac & Al Otaiba, 
2012).  Assuming that the screening tests have all be 
equated, hence are on the same scale, takes care of the 
identification issue.  An alternative approach would be to 
subtract the expected growth from the model, making the 
latent proficiency variable represent deviations from the 
expected growth model (Almond, et al., 2014). 

2.1.1 Proficiency Growth Model  

The model from which the data was simulated was a 
unidimensional model of reading with a single latent, 
continuous variable: Rnm, the reading ability of individual 
n on measurement occasion m.  In this case, N was 300 
students and M represented the three equally spaced time 
points, t1, t2, t3.  (RTI screening tests are typically given 3 
times per year.) 

This study assumed that a teacher provided general 
instruction to all the students until the first time point, t1, 
and that the initial ability distribution was normal,          
R0 ~ N(0,1). As this is a purely latent variable, the scale 
and location is arbitrary.  Fixing the initial population to 
have a standard normal distribution establishes the scale.  

After analyzing the results of assessments administered 
at t1, the teacher delivered additional and more intensive 
instruction to students who were assigned to Tier 2, but 
delivered only general instruction to students in Tier 1. 
The tier to which student n is assigned at time m is 
represented by a(n,m). The growth rate for the students is 

assumed to depend on the tier assignment.  Thus, for 
measurement occasion m > 1, 

Rnm = Rn(m-1) + γa(n,m) ΔTm + ηnm,              (1)                                                  

where     ηnm ~N(0, σa(n,m)�∆𝑇𝑇𝑚𝑚), 

and where ΔTm represents the elapsed time period 
between measurement occasions m and m-1 for Tier 1 and 
Tier 2. In this study, each school year was equal to 1, and 
ΔTm was fixed and equal to 1/M (e.g. M = 3, so ). 
The parameter γa(n,m) is a tier-specific growth rate and it 
was fixed and had two different initial values for each 
tier. We set γam = 0.9 for Tier 1, and γam = 1.2 for Tier 2.  
The residual standard deviation, σa(n,m)�∆𝑇𝑇𝑚𝑚, depends on 
both a tier-specific rate, σa(n,m), and the length of time, 
ΔTm, between measurements (thus, growth is occurring 
via a non-stationary Brownian motion process). The 
standard deviation of the growth per unit time, σa(n,m), was 
fixed to 1 for both tiers.  

2.1.2 Evidence Model   

The evidence model involved two independent 
regressions, one for each observed variable i. These two 
observable variables were chosen because they are critical 
reading components for later reading performance in the 
first two years of elementary school (Rock, 2007).  Let 
Ynmi be the observation for individual n at measurement 
occasion m on observed variable i of the proficiency 
variables, then: 

Rn0 ~ N(0,1)  

                Ynmi = ai + biRnm +𝜀𝜀𝑛𝑛𝑚𝑚𝑛𝑛,             (2)                                          

𝜀𝜀𝑛𝑛𝑚𝑚𝑛𝑛 ~ N(0, ωi).          

The reliability of the instruments can be used to determine 
b and ω. The reliability of an observed variable i at any 
time point was represented as ri.  In classical test theory, 
the reliability is the squared correlation coefficient 
between the true score and the observed score of the 
student. This definition translates into an equation as 

     ri = 1- (Varn(ϵnmi)/ Varn(Ynmi))                                                    

where Varn(.) indicates that the variance comes from 
individuals (where measurement occasion and instrument 
are considered as constant). Then  

   bi = 𝜎𝜎𝑌𝑌𝑖𝑖/𝜎𝜎𝑅𝑅𝑖𝑖*√𝑟𝑟2    and                                                       

 ωi =𝜎𝜎𝑌𝑌𝑖𝑖*√1 − 𝑟𝑟2 

In order to make ri = .45 at each time point, tm, for the 
measurement of each skill on observed variable i, bi = .98 
and ωi = .65 was used at tm.   These numbers are 
comparable to reading measures commonly used with 1st 
grade students.  At this point, the model is very close to 
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the model described in Almond, Tokac and Al Otaiba 
(2012), except that the previous work assumed all 
students were in the same Tier.  Appropriate values for a 
and b depend on the scale of the instruments chosen.  The 
values used in the simulation were chosen so that the 
mean and standard deviation of the simulated data 
matched the data set from Al Otaiba et al. (2011) at the 
first and last time points. 

2.1.3 Decision Rules   

The key research question compares the performance of 
the system under two different policies.  The first is a 
fixed decision rule implicit in the current-time RTI policy:  
Students who are below a cut-score on either of the two 
screening tests are placed into Tier 2 instruction.  The 
second policy is the optimal policy found by solving the 
POMDP.  Implementing this policy requires an explicit 
specification of the utility function and the cost function 
for the instructional options. 

Many RTI implementations used the reference score 
(general class median score or some other percentile rank) 
as a cut score for assigning each student to either the 
Tier 1 or Tier 2 group. The simulated model used 
different Tier 2 for each of the two screening tests (NWF 
and PSF) giving four possible Tier assignments. For 
instance, if a student’s score on the NWF test is lower 
than the cut score for NWF but higher for PSF, the 
student was assigned to Tier 2 for NWF and Tier 1 for 
PSF.  (This differs slightly from the common practice 
which would put students who fail to meet the cut on 
either measure into a single Tier 2.)  

The POMDP forecasts expected learning under each 
possible outcome and assigns students to tiers in a way 
that balances the expected learning gains with the cost of 
instruction. The utility function is the expected gain at the 
last time point and the cost function is the sum of costs of 
applied instruction at each state.  The benefit is always 
higher for Tier 2, as is the cost. However, the cost exceeds 
the utility of the benefit for some regions of the 
distribution because the utility is nonlinear, while for 
other regions it does not.  

The contact hours with the instructor drive the cost of 
each block. Cost is high for more intensive instruction in 
Tier 2, and, without loss of generality, it is zero for Tier 1, 
as all students receive Tier 1 instruction. The cost 
function consists of three components: the frequency with 
which the group meets, fa, the duration of the meeting 
time, da, and size of the group, ga (Almond & Tokac, 
2014).     Then  

 c(a) = k fa da/ga ,                              (3)                                

represents the model cost of taking action or activity a in 
state s, where k is a constant used to put the cost function 
on the same scale as the utility function. In this study, the 
cost value was fixed at c(Tier 2) = 0.1 and  c(Tier 1) = 0. 

The utility function is  

   u(RM)  =  logit-1(α(RM -β)).       (4)                                             

In this equation α and β are fixed parameters; β is a 
proficiency target, which is on the scale of the internal 
latent variable RM. Specifically β = 0.5 for Tier 1 and β= 
0.1 for Tier 2. Also, α is a slope parameter, and α= 0.8 for 
both Tier 1 and Tier 2. High values of α favor bringing 
students near proficiency standards above the proficiency 
target β, while low values of α give more weight to 
enriching students at the high end of the scale and 
providing remediation at the low end of the scale 
(Almond & Tokac, 2014).  (Almond & Tokac 
alternatively recommend using a probit function in place 
of a logit, so that α becomes effectively a standard 
deviation; however, the as the shape of the logit and 
probit curves are so similar, we expect the results using a 
probit curve would be similar as well.) 

In this case, the total reward is u(RM) – c(a(s,2)) – 
c(a(s,3)). The difference between the utility function and 
the cost function is the total reward for getting the student 
to proficiency level Tier 1 using instruction a(s,2) and 
a(s,3)  between measurements 1 and 2, and 2 and 3. The 
reward is the basis for the assignment of each student to 
Tier 1 or Tier 2. The POMDP model forecasts the 
expected reward, and balances that with cost during each 
period. 

2.2 SIMULATION DESIGN  

The initial value of the simulated data student distribution 
at time 0 was based on the FCRR data set (Al Otaiba, 
2007). In the FCRR data, the correlation between NWF 
and PSF was .65. The simulation generated latent 
proficiency variables for each simulee, and simulated 
scores on the reading scores on the NWF and PSF test 
administered at t1, t2 and t3 in the model. At each time 
point, the correlation coefficient between NWF and PSF 
was around 0.65 and the same growth and measurement 
error residuals were used for both the POMDP-RTI and 
current-time only-RTI models.   

The proficiency growth model and evidence model 
parameters were estimated from the simulated data 
through Markov Chain Monte Carlo (MCMC) simulation 
using JAGS (Plummer, 2003).  Four independent Markov 
chains with random starting positions were used with 
500000 iterations.  This is consistent with standard 
practice (Gelman, Carlin, Stern & Rubin, 2004; Neal, 
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2010).  Tokac (2016) describes tests done for 
convergence and parameter recovery with this model. 

3. RESULTS 
Data were simulated for students under two different 
policies, (1) current-time only-RTI policy where students 
are assigned to Tier 1 or Tier 2 based on a cuts scores on 
the PSF and NWF tests at the most recent time point, and 
(2) a POMDP-RTI policy where each student is assigned 
to the tier that maximizes the expected utility for that 
student.  This resulted in two different simulated series:  
𝑅𝑅𝑛𝑛𝑚𝑚ˇ  was the true reading ability under the current-time 
only cut score policy and 𝑅𝑅𝑛𝑛𝑚𝑚^  was the true reading ability 
under the POMDP-RTI policy.  Note that the two 
simulations used the same residuals in equation (1) 
(growth residual ηnm) and equation (2) (measurement error 
𝜀𝜀𝑛𝑛𝑚𝑚𝑛𝑛).  Thus, they differed only by the value of the growth 
rate parameter, γa(n,m) , used in equation (1). 

Table 3: Comparison of the number of PSF and NWF 
scores between tiers categorized by cut scores or POMDP 
estimates  

Method Tier PSFt2  NWFt2 PSFt3 NWFt3 

POMDP  
Tier 1 150 149 181 181 
Tier 2 150 151 119 119 

Cut 
Score  

Tier 1 150 149 150 150 
Tier 2 150 151 150 150 

Table 3 shows the pattern of Tier assignment under the 
two models.  At the second time point, the two policies 
behave roughly the same assigning the lowest performing 
50% of students to Tier 2.  However, at the third time 
point, substantially fewer students are assigned to Tier 2 
under the POMDP-RTI policy.  This might be a result of 
better placement policies, or simply that the Tier 2 
support is less needed in the latter part of the school year. 

Table 4 breaks down the differences between the two 
policies at time point 3.  Recall that the students were 
classified into Tiers independently based on the PSF and 
NWF measures, resulting effectively in four different 
classifications:  1-1 (both in Tier 1), 1-2, 2-1 (mixed), and 
2-2 (both Tier 2).  Table 4 shows the number of students 
who were classified into one of the four groups who were 
classified into a different group by the other policy. 
Slightly over half (151) students were assigned different 
instruction under the different policies. 

Table 4: Comparison of POMDP-RTI and Current-Time 
only-RTI models 

 Number of Non-Matching Students 
 Time 3 

Tiers POMDP - RTI Current - Time RTI 
1-1 49 20 
1-2 38 36 
2-1 42 40 
2-2 22 55 

Thus, there is a fair bit of difference in the placement, but 
which placement is better?  As this is a simulation 
student, the true abilities are known it should be possible 
to determine an ideal placement based on the known 
simulated abilities.  However, the abilities, 𝑅𝑅𝑛𝑛𝑚𝑚ˇ  and 𝑅𝑅𝑛𝑛𝑚𝑚^ , 
are different in the two branches of the assessment 
(because a different policy was actually employed).  
Therefore, the ideal placements will be different under 
each policy. 

In determining the ideal placement, the two mixed 
assignments, 1-2 and 2-1, were combined into a single 
mixed tier.  Cut scores on the latent ability variable were 
calculated based on the utilities in equations (3) and (4) 
and a single growth step after the last measurement: the 
students with abilities higher than 0.1 should be placed 
into Tier 1, those lower than -0.4 into Tier 2 and students 
in between into the Mixed Tier. Both policies used the 
same cut points for determining the ideal placement, but 
because the abilities were different, the actual ideal 
placement could be different for the two students under 
the same policy at Time 3. 

Table 5 presents the number of students placed in each 
tier under the actual and ideal placements under both 
policies.  It also presents a measure of agreement which is 
the number of students assigned to that tier in the ideal 
placement that were actually assigned to the Tier.  The 
POMDP-RTI does well under that metric, with all of the 
students who should be placed into Tier 1 or 2 correctly 
placed in that tier.  This policy only had problems with 
the mixed tier, with 35% of the students being incorrectly 
placed in Tier 1 or Tier 2. 

The current-time only-RTI policy did not fare as well.  
First, note that under the ideal placement for this policy 
fewer students would be in the high-performing Tier 1 
group.  This is likely due to incorrect assignment at 
Time 2.  Next, note that agreement rates are lower.  So the 
POMDP-RTI model did better on two important metrics. 

To summarize the agreement numbers, we used Goodman 
and Kruskall’s lambda (Almond, Mislevy, Steinberg, 
Yan, and Williamson, 2015).  Usually, this adjusts the 
raw agreement rate by subtracting out the agreement with 
a classifier which simply classifies everybody at the 
modal category (which would be the mixed tier for both 
policies).  However, Tier 1 has a special meaning in the 
context of RTI; Tier 1 is the normal whole-class 
instruction that is given regardless of the test score.   
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Table 5.  Agreement between ideal and actual placement 
under POMDP-RTI. 

  
 

POMDP-RTI Placement 

 
Tier 1 Mix Tier Tier 2 Total 

Tier 1 118 0 0 118 
Mix Tier 18 90 30 138 

Tier 2 0 0 44 44 
Total 136 90 74 300 

 

Table 6.  Agreement between ideal and actual placement 
under current-time only RTI. 

  
 

Current-Time only-RTI Placement 

 
Tier 1 Mix Tier Tier 2 Total 

Tier 1 72 17 0 89 
Mix Tier 35 58 50 143 

Tier 2 0 11 57 68 
Total 107 86 107 300 

 

Therefore, by using Tier 1 as the baseline in lambda, the 
result is a statistic that describes how much better the RTI 
is performing than undifferentiated whole class 
instruction.  Let ki be the number of students correctly 
classified into Tier i, and let kTier1 be the number of 
students who should ideally be assigned to Tier 1.    Then 

λ = ∑ 𝑘𝑘𝑖𝑖−𝑘𝑘𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇1𝑖𝑖
𝑁𝑁−𝑘𝑘𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇1

 

Like a correlation coefficient, the value of lambda ranges 
between -1 and 1, with 0 representing a classifier which 
does no better than simply assigning everybody to the 
model category. If it is 1, it means that the policy did a 
perfect job of assigning students to the ideal tier. Using 
the data in Table 5, λ = 0.74 for POMDP-RTI, λ = 0.51 
for Current-time only RTI.  So RTI does better than 
undifferentiated instruction, but the POMDP-RTI policy 
also does better than the current-time only-RTI. 

4. CONCLUSION  
As expected, a policy produced by a POMDP (which is 
designed to produce optimal policies) performed better 
than current-time only cut-score policy current used in 
many RTI implementations.  In particular, the POMDP-
RTI had a better agreement with the ideal placement (λ = 
0.74) than the current-time only model did (λ = 0.51).  
The likely reason for the better performance is that the 
POMDP model is better able to use the entire student 
record, both the history of assessments and instruction 
and multiple tests taken at the same time to build a more 
accurate estimate of student proficiency, although some 

may have been influenced by the use of the same utility 
model used in the POMDP to define ideal placement. 

The cut-score approach currently in common use does 
have one clear advantage over the POMDP model:  it is 
simpler to implement and explain.  However, if the 
POMDP recommendations were integrated into an 
electronic gradebook, it might be better received by 
teachers.  However, while teachers may not feel the need 
for the POMDP software to address the Tier 1/Tier 2 
placement, there is another aspect of the RTI framework 
which was not addressed in this study.  During Tier 2, 
students receive regular progress monitoring assessments, 
and the teacher is supposed to be making fine-grained 
adjustments if the student is not responding to the 
intervention (hence the name response-to-intervention).  
In particular, the teachers can adjust the intensity of the 
intervention (equation 3) adding more time on task if 
needed, or using less support if the teacher is appearing to 
do well.  This is a target of opportunity for the POMDP 
model, as teachers have responded favorability to the idea 
of computer support to help them with tracking and 
intervention adjustment for Tier 2 students.1  The present 
work shows that POMDPs are a promising approach to 
this problem. 

Another limitation of the current work is that it assumes 
all students grow at the same rate under each of the 
instructional conditions (e.g., given the tier placement).  
In practice, many studies looking at RTI have found that 
students grow at different rates, with a low growth rate 
often corresponding to low initial ability.2  While this 
adds complexity to the model, we think that the POMDP 
framework will help educators make optimal policy 
decisions with this additional information. 
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