

Agent based P2P Social Networks Modeling

Eleonora Iotti, Agostino Poggi and Michele Tomaiuolo

Dipartimento di Ingegneria dell’Informazione

Università degli Studi di Parma

Parma, Italy

{eleonora.iotti,agostino.poggi,michele.tomaiuolo}@unipr.it

Abstract — Nowadays, social networks are the most

important means for the interaction between people on the Web.

The large part of such networks are deployed on a centralized

architecture that allows a simple browser-based user experience

and, moreover, many algorithms, e.g., friend suggestion, are far

easier and more efficient to implement in this setting. Peer-to-

peer social networks do not exploit a central server for storing

users' data. Therefore, their development and maintenance is

more difficult, but they enable users to have more control on

their profile content, ensuring a higher level of privacy. The main

challenge of such a kind of network comes from guaranteeing

availability of the data of the user profiles when their owners are

offline. Different solutions have been proposed, but each of them

presents advantages and drawbacks (e.g., data availability vs.

cost). In this paper we present our preliminary work on the

design of a peer-to-peer social network architecture that took

advantage of an actor based development system for the

modelling and analysis of a set of possible algorithms that can

support the availability of the profiles of the offline users in the

social network.

Keywords—P2P social network; network analysis; agent

based modeling and simulation; software development system;

actor model.

I. INTRODUCTION

Online social networks are used by hundreds of millions of
people every day and play the main role in the spread of
information in the Internet. Even if the social networking
systems are greatly dissimilar in their user base and
functionality, they are almost always centralized systems. The
centralized nature allows a simple browser-based user
experience and, moreover, many algorithms, e.g., friend
suggestion, are far easier and more efficient to implement in
this setting.

Peer-to-Peer (P2P) define an open and decentralized
overlay network on top of the Internet that users can use for
directly communicating to find and share resources, often
music and movie files [1]. Such networks are one of the few
largest distributed computing systems ever, and more
surprisingly, they can run with great stability and resilient
performance in face of possibly the most ferocious dynamics
[2].

Thus, the use of P2P technologies for the development of
social networks is not only viable, but also highly desirable [3].
First of all, P2P systems essentially achieve automatic resource
scalability, in the sense that the availability of resources is

proportional to the number of users. This property is especially
desirable for media sharing social networking systems,
considering the exceptionally high amount of resources needed.
Secondly, the popularity over time of most content on such
systems exhibits either a power-law or an exponential behavior
and is consequently well suited for P2P distribution [4],
possibly with fallback strategies for less popular content.
Finally, enable users to have more control on their profile
content, ensuring a higher level of privacy and support to
anonymity and resilience to censorship.

In a P2P social network there is no single provider but a set
of peers that take on and share the tasks needed to run the
system. The development of the existing functionalities of
social networks in a distributed context requires finding ways
for providing robustness against churn, distributing storage of
data, propagating updates, defining an overlay topology and a
protocol enabling searching and addressing, etc. One of the
main challenge comes from guaranteeing the availability of a
user profile even when she/he is offline. Some of the solutions
rely on external storage systems, for example exploiting a
distributed file system [5], while some other more recent
approaches [6][7] propose to store the profile of a user on the
storage support provided by users’ friends. In these proposals, a
user serves his own profile when she/he is online, and elects a
subset of his friends to make the profile available when he is
offline.

This paper presents an actor based development system,
ActoDeS, (Actor Development System) providing a set of
suitable software components for the modeling and simulation
of social networks and the analysis of their results and its use
for the design of the architecture of a P2P social network. The
next section introduces related work. Section 3 provides an
overview of the software framework. Section 3 describes the
features of such development system and shows how it makes
easy the developing of agent based models and simulations
(ABMS). Section 4 introduces our modelling and analysis
work on a set of possible algorithms for supporting the
persistent availability of the data to the offline users of a P2P
social network. Finally, section 6 concludes the paper by
discussing its main features and the directions for future work.

II. RELATED WORK

A lot of work has been done for the development of agent-
based software platforms that can be also used for the
modelling and simulation of complex networks. Moreover,

74

several researchers propose solutions for supporting the
availability of the profiles of the offline P2P social networks.
The rest of the section presents some of the most interesting
works on the previous two topics.

Swarm [8] is the ancestor of many of the current ABMS
platforms. The basic architecture of Swarm is the simulation of
collections of concurrently interacting agents, and this
paradigm is extended into the coding, including agent inspector
actions as part of the set of agents. So in order to inspect one
agent on the display, you must use another hidden, non-
interacting agent. Swarm is a stable platform, and seems
particularly suited to hierarchical models. Moreover, it supports
good mechanisms for structure formation using multi-level
feedback between agents, groups of agents, and the
environment (all treated as agents).

Ascape [9] is a framework for developing and analyzing
agent based models following some of the ideas of Swarm.
However, it is somewhat easier to develop models with Ascape
than with Swarm. Indeed, its goal is to allow people with only
a little programming experience to develop quite complex
simulations by providing a range of end user tools. Ascape is
implemented in Java and users would require some ability to
program in Java together with understanding of the object
orientation philosophy.

NetLogo [10] is an ABMS platform based on the Logo
programming language. Its initial goal was to provide a high-
level platform allowing students, down to the elementary level,
to build and learn from simple ABMS applications. Now it
offers many sophisticated capabilities and tools that make it
suitable for complex applications too. Moreover, a big
advantage respect to the other platforms is the simplicity of its
own language.

Repast [11] is a well-established ABMS platform with
many advanced features. It started as a Java implementation of
the Swarm toolkit, but rapidly expanded to provide a very full
featured toolkit for ABMS. Although full use of the toolkit
requires Java programming skills, the facilities of the last
implementations allow the development of simple models with
little programming experience [12].

MASON [13] is a Java ABMS tool designed to be flexible
enough to be used for a wide range of simulations, but with a
special emphasis on “swarm” simulations of a very many (up
to millions of) agents. MASON is based on a fast, orthogonal,
software library to which an experienced Java programmer can
easily add features for developing and simulating models in
specific domains.

PeerSoN [6] is a prototype of P2P social network designed
to provide encryption, decentralization and direct data
exchange in the field of social networks. A DHT is used to
trace the user's network presence and for obtaining the index of
the user's recent content. However, this DHT is logically a
separate and central entity that is could become a bottleneck
and single point of failure of the social network

Conti et al. [14] present a distributed storage support which
guarantees the users' data persistence of a social network. In
their system, users dynamically elect a minimal set of point of
storage among their friends and their data are dynamically

transferred between online users in order to maximize the
availability of users' profiles in the social network.

My3 [15] is a privacy-friendly decentralized online social
network that exploits some interesting features of the current
online social networks (i.e., locality of access, predictable
access times, friends geo-localization, unique access
requirements of the social content, and implicit trust among
friends. It particular, it proposes different replication strategies
that support users’ profile availability, access delay, freshness
and storage load.

III. ACTODES

ActoDeS is an actor based software framework that has the
goal of both simplifying the development of concurrent and
distributed complex systems and guarantying an efficient
execution of applications.

ActoDeS is implemented by using the Java language and
takes advantage of preexistent Java software libraries and
solutions for supporting concurrency and distribution. ActoDeS
has a layered architecture composed of an application and a
runtime layer. The application layer provides the software
components that an application developer needs to extend or
directly use for implementing the specific actors of an
application. The runtime layer provides the software
components that implement the ActoDeS middleware
infrastructures to support the development of standalone and
distributed applications.

In ActoDeS an application is based on a set of interacting
actors that perform tasks concurrently. An actor is an
autonomous concurrent object, which interacts with other
actors by exchanging asynchronous messages [16]. Moreover,
it can create new actors, update its local state, change its
behavior and kill itself.

Communication between actors is buffered: incoming
messages are stored in a mailbox until the actor is ready to
process them; moreover, an actor can set a timeout for waiting
for a new message and then can execute some actions if the
timeout fires. Each actor has a system-wide unique identifier
called reference that allows it to be reached in a location
transparent way. An actor can send messages only to the actors
of which it knows the reference, that is, the actors it created
and of which it received the references from other actors. After
its creation, an actor can change several times its behavior until
it kills itself. Each behavior has the main duty of processing a
set of specific messages through a set of message handlers
called cases. Therefore, if an unexpected message arrives, then
the actor mailbox maintains it until a next behavior will be able
to process it.

An actor can be viewed as a logical thread that implements
an event loop [17][18]. This event loop perpetually processes
events that represent: the reception of messages, the behavior
exchanges and the firing of timeouts. The life of an actor starts
from the initialization of its behavior that then processes the
received messages and the firing of message reception
timeouts. During its life, an actor can move from a behavior to
another one more times, and its life ends when it kills itself.

75

ActoDeS provides different actor implementations and the
use of one or of another implementation represents one of the
factors that mainly influence the performance of an application.
In particular, actor implementations can be divided in two
classes: active actors, i.e., actors that have their own thread of
execution, and passive actors, i.e., actors that share a single
thread of execution. In this last case, the scheduler has the duty
of guaranteeing a fair execution of all the actors.

IV. ACTODES AND ABMS APPLICATIONS

The features of the actor model and the flexibility of its
implementation make ActoDeS suitable for building ABMS
applications and for analyzing the results of the related
simulations [19]. In particular, actors have the suitable features
for defining agent models that can be used in ABMS
applications and to model the computational agents found in
MAS) and DAI systems. In fact, actors and computational
agents share certain characteristics: i) both react to external
stimuli (i.e., they are reactive), ii) both are self-contained, self-
regulating, and self-directed, (i.e., they are autonomous), and
iii) both interact through asynchronous messages and such
messages are the basis for their coordination and cooperation
(i.e., they are social). Moreover, given that actors interact only
through messages and there is not a shared state among them, it
is not necessary to maintain an additional copy of the
environment to guarantee that agents decide their actions with
the same information (thing that is usually necessary in some
application domain with other ABMS platforms). Finally, the
use of messages for exchanging state information decouples the
code of agents. In fact, agents do not need to access directly to
the code of the other agents to get information about them, and
so the modification of the code of a type of agent should cause
lesser modifications in the code of the other types of agent.
Finally, the use of actors simplifies the development of real
computational agents in domain where, for example, they need
to coordinate themselves or cooperate through direct
interactions.

 Moreover, the use of ActoDeS simplifies the development
of flexible and scalable ABMS applications. In fact, the use of
active and passive actors allows the development of
applications involving large number of actors, and the
availability of different schedulers and the possibility of their
specialization allow a correct and efficient scheduling of the
agents in application domains that require different scheduling
algorithms [20]. Moreover, the efficient implementation of
broadcasting and multicast removes the overhead given to the
need that agents must often diffuse the information about their
state to the other agents of the application (e.g., their location
in a spatial domain).

A. Simulation

In large part of ABMS platforms usually a simulation is
given by a sequence of steps where each agent needs only to
get information about its surround (i.e., about a subset of the
other agents and about the environment) and then to use such
information for deciding its actions.

In ActoDeS the simulation is similar, but agents get
information about agents and the environment through

messages. Moreover, to simplify the interaction between agents
and the environment, the relevant parts of an environment are
represented by a set of actors whose goals are to inform the
agents acting in the environment about their presence and their
state, and to update their state when the agents act on them.
Given that the behavior of such actors is similar to the one
expressed by the agents acting in the environment, we call both
agents, but we divided them in active and passive agents.
Active agents are the typical agents of an ABMS, i.e., they
represent the entities able to move and cooperate with other
entities acting in the environment. Passive agents define the
environment of an ABMS, i.e., they represent the relevant
elements of the environment (e.g., in a spatial domain the
obstacles and the reference points for the movement of the
active agents).

Such agents are usually implemented taking advantage of
the shared actor implementation provided by ActoDeS, but it is
necessary to develop a specific scheduler. Such a scheduler
executes repeatedly all the agents and after each execution step
broadcasts them a “clock” message. This last message allows
to the agents to understand that they have all the information
for deciding their actions, therefore, they decide, perform some
actions and, at the end, broadcast the information about their
new state.

In ActoDeS, all the agents are usually represented by one or
more actor behaviors that process the input messages through
two cases. The first case processes the messages informing an
agent about the state of the other agents. The second case
processes the “clock” messages. However, while active agents
exchange messages and perform other types of action (e.g., in a
spatial domain to change their location), often, passive agents
have the only duty of sending messages for informing the
active agents about their presence (e.g., immutable obstacles or
path points in a spatial domain). Therefore, such passive agents
are represented by an actor behavior providing a case that get
the “clock” messages for deciding when sending the
information about their presence and state.

Of course, different types of agent have different
implementations of the cases of their behaviors. In particular,
ActoDeS provides some abstract behavior implementations for
developing applications in different domains. Such
implementations define the state information that an agent need
to maintain in its specific application domain and provides a set
of abstract methods for processing incoming information and
for performing the actions in response to the “clock” messages.

Often the modelling of some systems (e.g., social networks)
requires a massive number of agents. However, in such kind of
systems, usually only a part of them is simultaneously active
and the actions of the different agents do not need a
synchronization. Therefore, it is necessary a scheduler that can
manage a massive number of agents, but that can try to
optimize the execution by scheduling only the active agents.
The solution we implemented derives from the virtual memory
techniques used by operating systems: agents increment an
inactivity counter in the scheduling cycles in which they do not
process messages and reset it in the cycles in which they
process a message. The scheduler can get the value of such
counters and can move an actor in a persistent store when its

76

inactivity counter becomes greater than a fixed (or dynamic)
threshold. The scheduler reloads an actor from the persistent
store when it receives a new message from another agent.

Of course, the number of active agents can vary over the
simulation, but the quality of the simulation can be guaranteed
if the number of the agents, maintained by the scheduler,
remains in a range that depends on the available computational
resources. The adopted solution, to limit to the number of
active actors and to guarantee good performances, is to provide
a scheduler able to move an inactive agent in the persistent
storage on the basis of a variable number of inactive cycles. In
particular, this number is low when there is a large number of
scheduled agents and high when there are few scheduled agents
(i.e., the scheduler spends time for storing agents in the
persistence storage and reloading them only when there may be
memory problems for maintaining all the actors).

B. Data Analysis

After a simulation is important to summarize and analyze
the results, in a way that will yield maximum insight and help
with decision-making. However, before the analysis is
necessary to define the data that a simulation must provide as
its result and must write the code necessary for generating such
data during the simulation.

ActoDeS provides a logging service that allows the
recording (as serialized objects) of the information about the
relevant actions of actors of the simulation (i.e., initialization,
reception, sending and processing of messages, creation of
actors, change of behavior, and its shutdown). In particular,
such an information allows to get the state of each actor for any
simulation cycle. Therefore, it is possible to analyze all the
information about both the interaction among the actors and the
dynamics of their state.

Moreover, ActoDeS provides some tools for filtering the
logging information and extracting statistical data from such
information and offers a simple API to summarize the results in
tables and charts.

V. MODELLING P2P SOCIAL NETWORKS

In the last year, our work has been mainly oriented to the
analysis and simulation of social networks [21][22][23]. In
particular, currently we are working on the modeling of P2P
social networks [24] and we are using ActoDeS for designing a
peer-to-peer social network that supports the availability of the
profiles of the offline users in the social network. In fact, the
problem of P2P social networks is that they do not have a
centralized service that maintain the information shared among
the users and so, for example, is difficult for a user that wakes
up after a period of inactivity to get the last information about
the users that moves to the offline state during her/his last
inactivity time.

Our work was divided in two phases. The first phase had
the goal of measuring the level of users’ profile availability
provided by the algorithms presented in [14] and in [15] and by
two simple algorithms that replicated the users’ profile on all
the online friends. In particular, the third algorithm allows that
a user gets a friend’s profile from another friend, and the forth

one allows that a user gets a friend’s profile from any user of
the network that is friend of the offline user, (i.e., she/he might
be not a friend of the user that require the profile). The second
phase (that is not yet terminated) has the goal of measuring
their costs and performances of the algorithms and finding
solutions for the cases in which the availability of the profiles
of the offline users cannot be guaranteed from the simple
interaction among the online users.

The first work of the first phase was the generation of the
data of a set of social networks where a thousand of users have
different values of the probability for becoming friends and
different values of probability for moving from the online to
the offline state and vice versa. Such data was obtained through
a set of simulations of the social networks where their users are
modelled as simple agents that are created with a set of friends
(on the basis of the friendship probability value) and that can
decide to move between the online and offline state (on the
basis of the probability value assigned in the simulation).

Fig. 1. Analysis results of the two simple algorithms.

After that, we defined the four agent models that implement
the four algorithms for providing users’ profile availability
introduced above, then we performed the simulations, and,

77

finally, we analyzed the results. The results of the analysis
show that the two fourth algorithm provides better users’
profile availability that the others. Of course, the results show
also that the level of availability of the four algorithms depends
on the number of friends and on time that each user spends
online. Fig. 1 show the analysis results of both the third (level
0) and the fourth (level 1) algorithms for a specific set of
probability values. However, a complete comparison of the
four algorithms should take into account the costs (e.g., number
of replicas, transfer of the profile data, algorithms for selecting
the node where replicated the profile data, …) and the level of
reliability provided by the four algorithms. We are in the
middle of this activity and we hope to have the possibility to
present the results in the next future.

VI. CONCLUSIONS

This paper presented a software development system,
ActoDeS, (Actor Development System) that offers a set of
suitable software components for the modeling and simulation
of social networks and the analysis of their results.

ActoDeS is implemented by using the Java language and is
an evolution of CoDE [25] that simplifies the definition of
actor behaviors and provides more scalable and performant
implementations. Moreover, it takes advantages of some
implementation solutions used in JADE [26] for the definition
of some internal components.

Current and future research activities are and will be
dedicated to complete the analysis of the algorithms for
supporting the availability of offline users’ profiles and to start
the analysis of the possible techniques to provide a good level
of security in P2P social networks [27][28] and use the same
techniques for the design of computer-supported cooperative
work systems [28].

REFERENCES

[1] R. Schollmeier, “A definition of peer-to-peer networking for the
classification of peer-to-peer architectures and applications,” in Proc. 1st
Int. Conf. on Peer-to-Peer Computing Linköping, Sweden, 2001, pp.
101-102.

[2] D. Qiu, and R. Srikant, “Modeling and performance analysis of
BitTorrent-like peer-to-peer networks,” ACM SIGCOMM Computer
Communication Review, Vol. 34, No. 4, pp. 367-378, 2004.

[3] F. Wang, Y. Moreno and Y. Sun, “Structure of peer-to-peer social
networks,” Physical Review E, Vol. 73, No. 3, pp. 1-8, 2006.

[4] M. Zink, K. Suh, Y. Gu and J. Kurose, “Characteristics of YouTube
network traffic at a campus network - Measurements, models, and
implications,” Computer Networks, Vol. 53, No. 4, pp. 501-514, 2009.

[5] I. Clarke, O. Sandberg, B. Wiley and T. Hong, T. “Freenet: A distributed
anonymous information storage and retrieval system,” in Designing
Privacy Enhancing Technologies, LNCS, Vol. 2009, Berlin, Germany:
Springet, 2001, pp. 46–66.

[6] S. Buchegger, D. Schiöberg, L. Vu, A. Datta, “PeerSoN: P2P social
networking: early experiences and insights,” in Proc 2nd ACM EuroSys
Workshop on Social Network Systems, Nuremberg, Germany: ACM,
2009, pp. 46–52.

[7] R. Baden, A. Bender, N. Spring, B. Bhattacharjee and D. Starin,
“Persona: an online social network with user-defined privacy,” in Proc.
Conf. on Data Communication Barcellona, Spain, 2009, pp. 135-146.

[8] N. Minar, R. Burckhart, C. Langton, and V. Askenasi, 1996. “The
Swarm simulation system: a toolkit for building multi-agent systems,”

Santa Fe Institute, Santa Fe, NM, USA. [Online] Available
http://www.swarm.org.

[9] M. T. Parker, "What is Ascape and why should you care," Journal of
Artificial Societies and Social Simulation, vol. 4, no. 1, 2001.

[10] S. Tisue, and U. Wilensky, “Netlogo: A simple environment for
modeling complexity,” in Proc. Int. Conf. on Complex Systems (ICCS
2004), 16-21, Boston, MA, USA, 2004, pp. 16-21.

[11] M. J. North, N. Collier, and J. Vos, “Experiences in creating three
implementations of the repast agent modeling toolkit,” ACM Trans. on
Modeling and Computer Simulation, vol. 16, no. 1, pp. 1-25, 2006.

[12] M. J. North, T. R. Howe, N. T. Collier, and J. R. Vos, “The Repast
Simphony runtime system,” in Proc. Conf. on Generative Social
Processes, Models, and Mechanisms, Chicago, IL, USA, 2005

[13] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan,
“MASON: A multiagent simulation environment,” Simulation, vol. 81,
no. 7, pp. 517-527, 2005.

[14] M. Conti, A. De Salve, B. Guidi, F. Pitto, and L. Ricci, "Trusted
dynamic storage for dunbar-based P2P online social networks," In Prpc.
OTM Int. Conf. on the Move to Meaningful Internet Systems, Berlin,
Germany: Springer, 2014, pp. 400-417.

[15] R. Narendula, T. G. Papaioannou and K. Aberer, “A decentralized
online social network with efficient user-driven replicatio,” in Proc. Int.
Conf. on Social Computing, Amsterdam, The Netherlands: IEEE, 2012,
pp. 166-175.

[16] G.A. Agha, “Actors: A Model of Concurrent Computation in Distributed
Systems,” Cambridge, MA, USA: MIT Press, 1986.

[17] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt and W. De
Meuter, “Ambient-oriented programming in ambienttalk,” in ECOOP
2006 – Object-Oriented Programming, Berlin, Germany: Springer, 2006,
pp. 230-254.

[18] M. S. Miller, E. D. Tribble, and J. Shapiro, “Concurrency among
strangers,” in Trustworthy Global Computing, Berlin, Germany:
Springer, 2005, pp. 195-229.

[19] A. Poggi, “Agent based modeling and simulation with ActoMoS,” in
Proc. 16th Workshop on From Object to Agents (WOA 2015), Naples;
Italy, 2015, pp. 91-96.

[20] P. Mathieu, and Y Secq, “Environment Updating and Agent Scheduling
Policies in Agent-based Simulators,” in Proc. 4th Int. Conf. on Agents
and Artificial Intelligence, Algarve, Portugal, 2012, pp. 170-175.

[21] F. Bergenti, E. Franchi, and A. Poggi,. “Selected models for agent-based
simulation of social networks,” in Proc. 3rd Symp. on Social Networks
and Multiagent Systems (SNAMAS 2011), York, UK. 2011, pp. 27-32.

[22] F. Bergenti, E. Franchi and A. Poggi, “Agent-based interpretations of
classic network models,” Computational and Mathematical Organization
Theory, Vol. 19, No. 2, 2013, pp. 105-127, 2013.

[23] E. Franchi, A. Poggi, and M. Tomaiuolo. "Open social networking for
online collaboration," International Journal of e-Collaboration, vol. 9,
no. 3, pp. 50-68, 2013.

[24] E. Franchi, A. Poggi and M. Tomaiuolo, “Blogracy: A Peer-to-Peer
Social Network,” International Journal of Distributed Systems and
Technologies, Vol. 7, No. 2, pp.37-56, 2016.

[25] F. Bergenti, A. Poggi, and M. Tomaiuolo, "An Actor Based Software
Framework for Scalable Applications," in Internet and Distributed
Computing Systems, Berlin, Germany: Springer, 2014, pp. 26-35.

[26] A. Poggi, M. Tomaiuolo, and P. Turci, “Extending JADE for agent grid
applications,” in Enabling Technologies: Infrastructure for Collaborative
Enterprises, Modena, Italy: IEEE, 2004, pp. 352-357.

[27] A. Poggi, M. Tomaiuolo and G. Vitaglione, “A Security Infrastructure
for Trust Management in Multi-agent Systems,” in Trusting Agents for
Trusting Electronic Societies, Theory and Applications in HCI and E-
Commerce, Berlin, Germany: Springer, 2005, pp. 162-179.

[28] E. Franchi, A. Poggi, and M. Tomaiuolo, “Information and password
attacks on social networks: An argument for cryptography,” Journal of
Information Technology Research (JITR), Vol. 8, No. 1, 2015, pp.25-42.

[29] F. Bergenti and A. Poggi. "An agent-based approach to manage
negotiation protocols in flexible CSCW systems," in Proc. 4th Int. Conf.
on Autonomous agents, ACM, 2000, pp. 267-268.

78

