
A Case Study of
the JADEL Programming Language

Federico Bergenti∗, Eleonora Iotti†, Stefania Monica∗ and Agostino Poggi†
∗ Dipartimento di Matematica e Informatica

Università degli Studi di Parma
Parco Area delle Scienze 53/A, 43124 Parma, Italy

Email: federico.bergenti@unipr.it, stefania.monica@unipr.it
† Dipartimento di Ingegneria dell’Informazione

Università degli Studi di Parma
Parco Area delle Scienze 181/A, 43124 Parma, Italy

Email: eleonora.iotti@studenti.unipr.it, agostino.poggi@unipr.it

Abstract—This paper presents and discusses a first complete
example of the use of JADEL. JADEL is a novel agent-oriented
domain-specific programming language built on top of JADE, the
well-known agent platform which provides solid agent technology
and several tools for the creation of agents and multi-agent
systems. The purpose of JADEL is to make the development
of JADE agents and multi-agent systems easier and clearer by
means of specific abstractions and a lighter syntax. In order
to understand, and properly assess, the actual advantages of
using JADEL, a well-known JADE demo that uses JADE-
specific features like ontologies and interaction protocols has been
rewritten in JADEL. This paper first briefly presents the main
features of JADEL, then it discusses the rewritten demo and
compares it with original JADE code.

I. INTRODUCTION

JADEL (JADE Language) [1] is a novel programming lan-
guage that provides agent-oriented abstractions and domain-
specific expressions to help the development of JADE multi-
agent systems. JADE (Java Agent DEvelopment framework,
jade.tilab.com) [2] is a software framework that permits to
build complex and distributed multi-agent systems. A wide
variety of extensions and APIs are provided with JADE and
the documentation of JADE APIs is exhaustive and clear.
JADE allows use of agent technology in various areas, such
as smart emergency applications [3] and localization [4], [5].
JADE is currently maintained and in recent years some related
projects have been developed. In particular, WADE [6], [7]
(Workflows and Agents Development Environment) adds a
lightweight workflow engine to JADE agents, thus supporting
business process management, and AMUSE [8]–[10] (Agent-
based Multi-User Social Environment) focuses on multi player
Android-based online games. These are some of the reasons
that make JADE one of the most comprehensive and hence
most popular FIPA-compliant agent platform [11]. Although
there is a wide and clear documentation of JADE APIs, new
developers and students in the field of agents and multi-
agent systems may have difficulties in approaching JADE.
As a matter of fact, users of JADE have to deal with lots of
complementary technical details that are sometimes perceived
as difficult and confusing in terms of agent-oriented features.

These difficulties are due to the fact that JADE has grown in
complexity and now it has a steep learning curve.

JADE allows users to make appropriate design choices for
their specific application domains, without forcing them to rely
on a specific agent model. Such flexibility and adaptability
makes it a very powerful instrument that can be applied to
several domains. The disadvantage of such an approach is that
the agent-oriented features have been used in many different
ways, resulting in a loss of transparency of the agent model.

Finally, the AOP (Agent-Oriented Programming) paradigm
is inherently different from the OOP (Object-Oriented Pro-
gramming) one. As a matter of fact, agents are character-
ized by mental states and they exchange specific types of
messages, responding to them in a truthful and consistent
way. To this extent, agents are viewed as specialization of
objects [12], [13]. For this reason, the management of agents
and multi-agent systems often requires the use of specific
languages, which focus on agent-oriented abstractions and
provide particular constructs and structures. In order to match
the AOP paradigm, JADE APIs offer facilities written in Java.
This design choice was made in the early stage of JADE
development and it presents several advantages: it makes
possible to develop applications compliant with agent-oriented
technologies and it ensures interoperability with other Java
libraries and applications. Despite its advantages, at the present
day, a Java-only approach is often perceived as a limitation,
due to the rising of several valid alternatives and the increased
popularity of domain-specific solutions tailored on the needs
of the application and of its context. Such solutions are often
DSL (Domain-Specific Languages) designed intentionally to
deal with the chosen domain. These languages have a lighter
syntax and help avoiding repetitive tasks, workaround and
unclear technicalities.

In summary, the main problems in developing agent-based
applications and multi-agent systems in JADE today can be
listed as follows. First, the complexity of the framework
requires not only expertise in management of distributed multi-
agent systems but also a deep understanding of JADE mech-
anisms. Second, the lack of a fixed agent model sometimes

85

causes unclear or incorrect utilizations of the available agent
technologies. Finally, some procedures and patterns become
repetitive or verbose, hence not clear in terms of AOP, due to
the gap between the AOP and OOP paradigms.

The solution proposed to address these problems is JADEL,
which was first presented in [1], [14]. JADEL is an agent-
oriented DSL which aims at reducing the complexity of
JADE by providing a new syntax relying completely on
agent abstractions. According to this syntax, constructs and
expressions are introduced in order to write simple and
clear agent programs. JADEL is developed with the Xtext
framework (www.eclipse.org/Xtext), which ensures a tight
integration with the JVM and provides a specific language
that can be used as host language of the DSL. This specific
language is called Xtend (www.eclipse.org/xtend) and it is
a dialect of Java. An advantage of the use of Xtend is that
JADEL programs generate Java source code which is easily
readable and which runs as fast as the equivalent Java code.
This feature makes also possible the embedding of JADE
native code. As a consequence, the use of JADEL is quite
straightforward for Java and JADE users. JADEL is still under
development and an evaluation of its capabilities, usability
and effectiveness is necessary. This paper presents a JADEL
translation of the Meeting Scheduler demo, a well-known
example of JADE that comes together with JADE distribution.

The structure of the paper is as follows. In Section II,
JADEL main ideas and abstraction are presented, together with
a brief explanation of its syntax. Then, Section III introduces
the Meeting Scheduler example in JADEL and its comparison
with the JADE implementation. Finally, Section IV concludes
the paper with a discussion of the results and future develop-
ments and improvements.

II. THE JADEL PROGRAMMING LANGUAGE IN BRIEF

As previously explained, the scope of JADEL is to simplify
the creation of JADE agents and multi-agent systems and
to make the agent model clearly visible, avoiding technical
and implementation details as much as possible. JADE APIs
consist in a large amount of classes that have various pur-
poses, such as the representation of core abstractions and the
management of message passing among agents, from interac-
tion protocols to agent communication languages. Hence, the
choice of the primary features, among those provided by JADE
classes, is fundamental in the development of a JADE DSL.
In particular, two criteria for the selection of JADEL features
are considered, namely (i) the significance of such features in
agent creation and life-cycle and (ii) the FIPA compliance and
the help they give to manage message passing. According to
the previously listed criteria, JADEL core abstractions are the
agent, the behaviour and the communication ontology. These
abstraction are explained in detail in Section II-A.

Features of such entities are designed as domain-specific
constructs and expressions, whose purpose is to shorten the
most repetitive tasks and to focus on the agent life-cycle and
behaviour action. Constructs are meant to handle events, e.g.,
the reception of a messages and creation or destruction of

agents, while expressions are used, for instance, to create
agent behaviours. In Section II-B such features are described
in detail.

The above listed criteria must not be seen as a limitation. On
the contrary, they represent a tentative of making JADEL code
simple and readable, without detracting from its expressive-
ness. As a matter of fact, the underlying JADE platform and
the interoperability with Java given by Xtext and Xtend ensure
the possibility of embedding JADE native implementations.

A. Abstractions

In terms of syntax, all JADEL abstractions are declared
in a similar way, namely with a keyword that identifies the
abstraction, followed by the name of the entity and its relations
with other declared entities. After the declaration, a block of
code contains the description of its main features, by means
of specific constructs.

The first entity that we discuss is the communication on-
tology. In detail, communication ontologies contain the defini-
tions of propositions, composite concepts and predicates. From
a theoretical point of view, propositions are first-order logic
well-formed formulas. In JADEL they are declared simply by
means of the keyword proposition followed by a name.
Basic (or atomic) concepts are simple terms that can be used in
JADEL, but they do not have to be declared, because they are
provided directly by JADEL. Composite concepts are defined
by means of other basic or composite concepts. According to
JADEL syntax, composite concepts can be declared by using
the keyword concept followed by the name of the concept
and by a list of parameters. Such parameters identify the
other concepts that compose the one that is being declared.
Predicates have a similar syntax and their parameters can be
basic or composite concepts. Predicates do not state a fact nor
describe an entity, but they make relations among concepts, as
in the semantics of logic predicates.

The second entity is the behaviour. In JADEL, behaviours
are used to define actions that can be performed by agents
and they can be cyclic or oneshot. The difference between
cyclic and oneshot behaviours is that cyclic ones remain in
the agent behaviours list for the entire life of an agent, while
oneshot behaviours are removed after a single execution. Both
of them can be associated with a specific agent class. A special
consideration is given to those behaviours that are roles of an
interaction protocol. Roles are behaviours defined by means
of a FIPA protocol name and the role of the agent in such
protocol. In the body of a role, each step of the protocol
is handled individually as a particular event caused by the
reception of different types of messages.

Finally, agents are the most important JADEL entities. In
their declarations and setup, they put together all the ontologies
and behaviours that will be used in their life cycles, thus
making explicit relations among the various entities. Agents
are multitask single-threaded entities that manage their actions
by means of an internal scheduler. An agent life cycle is
composed of: (i) a start-up phase, during which the agent
initializes, (ii) a loop, where actions are performed, and (iii) a

86

final phase of take-down, in which the agent performs cleanup
tasks. In JADEL, creation and destruction of an agent are
events, so they are managed with specific constructs, whose
syntax is coherent with the one of the behaviour events.

B. Domain-Specific Expressions

Particular expressions are used to manage events, message
passing and domain-specific tasks, such as the behaviours
registration in the agent list.

Events are managed by means of the keyword on, followed
by the type of event. Events can be the creation and the
destruction of an agent, the change of state of a participant
in an interaction protocol, and the reception of a message.
Notably, the JADEL construct on− when− do is used in a
behaviour body to define an action. In detail, an action can
be simple, i.e., it does not need an event to be triggered. In
such a case, only the keyword do is used, followed by a block
of code that describes the action. Otherwise, an action can
be triggered by an event, and the keyword on specifies such
event. The keyword when is optional and it can be used to set
conditions on the event nature.

Communication among agents consists in message passing,
which can be managed with ontologies and/or with interaction
protocols. Interaction protocols provide a scenario with, at
least, two different roles, initiator and participant, and estab-
lish the types of messages exchanged among agents that are in
such roles. JADEL encourages the usage of such technologies
by providing expressions that allow messages to be viewed as
special data structures and by means of specific constructs that
permit creating and sending messages, and extracting message
contents. These expressions and constructs are exactly the
same for each type of message, regardless of their content,
which can be a string, a sequence of bytes, a concept, a
proposition or a predicate.

The simple example below shows syntax and usage of some
domain-specific expressions.
agent Ping {

on c r e a t e {
var a i d L i s t = # [newAID (‘ pong ’)]
a c t i v a t e behaviour SendPing (a i d L i s t)

}
}

agent Pong {
on c r e a t e {

a c t i v a t e behaviour ReplyPong ()
}

}

oneshot behaviour SendPing (L i s t<AID> a i d L i s t){
do {

send message {
per format ive i s INFORM
r e c e i v e r s are a i d L i s t
c o n t e n t i s ‘ p ing ’

}
}

}

o n t o lo g y PingPongOnto logy {
p r o p o s i t i o n Ping
p r o p o s i t i o n Pong

}

c y c l i c behaviour ReplyPong {
on message msg
when {

c o n t e n t i s ‘ p ing ’
} do {

send message {
per format ive i s INFORM
r e c e i v e r s are #[msg . s e n d e r]
o n t o lo g y i s PingPongOnto logy
c o n t e n t i s Pong

}
}

}

III. THE MEETING SCHEDULER DEMO

The Meeting Scheduler demo launches two (or more)
agents, with their own GUI that consists in a calendar where
the user can fix and view his/her appointments, invite known
users to an appointment, and receive other users invitations.
The agent is responsible for the management of the calendar,
so the user does not have to bother about the overlap of two
appointments. As a matter of fact, the agent schedules the
appointments correctly by messaging with other agents.

The JADE source code of the demo consists in (i) a Meeting
Scheduler agent, (ii) a set of classes that manage the GUI,
(iii) three behaviours, and (iv) an ontology that defines two
composite concepts. Regarding the behaviours, two of them
are implementations of the initiator and responder roles of the
FIPA Contract Net interaction protocol and the third deals with
the cancellation of an appointment.

A. JADEL Implementation

The first entity implemented in JADEL is the communica-
tion ontology, with the concept Person and Appointment,
whose sub-concepts are declared as parameters. The keyword
many identifies a list. Declaration of MSOntology is self-
contained and it does not need any other classes to define
its two concepts, as in JADE.

package demo . m e e t i n g s c h e d u l e r . o n t o l o g i e s

o n t o l o g y MSOntology {
concept Pe r s on (s t r i n g name , a i d AID , a i d DFName)
concept Appoin tment (a i d i n v i t e r , s t r i n g d e s c r i p t i o n ,

d a t e s t a r t i n g O n , d a t e endingWith , d a t e FixedDate ,
many P e r s o n i n v i t e d P e r s o n s , many d a t e p o s s i b l e D a t e s

) ex tends C l o n e a b l e
}

Then, the agent is declared as a JadelGuiAgent, an exten-
sion of the JADE class GuiAgent that provides some built-in
functionalities, e.g., log(String) function, used to manage
the logging for the agent. Classes that build the GUI are
coded in Java, exactly as in the original demo. It is possible to
refer to those classes into the agent body, thanks to the close
integration that Xtext and Xtend provide with the underlying
JVM.

First, some variables are declared in the
MeetingSchedulerAgent entity. These will be translated
into fields of the agent class. According to Xtend syntax, the
keyword val denotes a private final field, while var stands
for a mutable private field.

87

agent M e e t i n g S c h e d u l e r A g e n t uses on t o l o g y MSOntology
ex tends J a d e l G u i A g e n t {

var S t r i n g userName
var Vector<AID> knownDF = new Ve c t o r ()
var HashMap<S t r i n g , Person> knownPersons = newHashMap ()
var HashMap<S t r i n g , Appointment> a p p o i n t m e n t s =

newHashMap ()
var mainFrame mf
v a l i n t STARTTASKS = 2
v a l i n t FIXAPPOINTMENT = 3
v a l i n t REGISTERWITHDF = 4
v a l i n t CANCELAPPOINTMENT = 5
v a l i n t SEARCHWITHDF = 6
v a l S t r i n g NAME = ‘ A p p o i n t m e n t S c h e d u l i n g ’
v a l S t r i n g TYPE = ‘ p e r s o n a l−a g e n t ’
v a l S t r i n g PROTOCOL = ‘ f i p a−r e q u e s t f i p a−C o n t r a c t−Net ’

Then, a setup method is used only to start the GUI, as follows.
on c r e a t e {

var p a s s w o r d D i a l o g = new PasswordDia log (t h i s ,
t h i s . loca lName)

p a s s w o r d D i a l o g . v i s i b l e = t r u e
}

Finally, all needed methods of the agent are defined similarly
to those in JADE implementation, with some difference re-
garding domain-specific expressions. In the following, two of
such methods are shown.

vo id s t a r t T a s k s (S t r i n g name) {
userName = name
mf = new mainFrame (t h i s , userName +

‘− Appoin tment S c h e d u l e r ’)
mf . v i s i b l e = t r u e
t r y {

DFServ ice . r e g i s t e r (t h i s ,
g e t D F A g e n t D e s c r i p t i o n (NAME, TYPE , MSOntology : :NAME,

userName , PROTOCOL))
knownDF += d e f a u l t D F
addKnownPerson (new Per so n (userName , AID , d e f a u l t D F))

} c a t c h (FIPAExcept ion e) {
e . p r i n t S t a c k T r a c e ()
mf . showErrorMessage (e . ge tMessage ())
l o g (e . ge tMessage () , Logger .WARNING)

}
take r o l e m y F i p a C o n t r a c t N e t R e s p o n d e r B e h a v i o u r (t h i s)
a c t i v a t e behaviour Canc e lAppo in tmen tBehav i ou r (t h i s)

}

vo id c a n c e l A p p o i n t m e n t (Date d) {
var Appoin tment a p p o i n t m e n t = getMyAppointment (d)
i f (a p p o i n t m e n t == n u l l) {

mf . showErrorMessage (‘ Noth ing t o c a n c e l : no
a p p o i n t m e n t was f i x e d on ’ + d)

l o g (‘ Noth ing t o c a n c e l : no a p p o i n t m e n t was f i x e d on
’ + d , Logger .WARNING)

re turn
}
i f (! a p p o i n t m e n t . i n v i t e d P e r s o n s . empty) {

var Ac t i on a c t i o n = new A c t ion ()
a c t i o n . a c t o r = AID
a c t i o n . a c t i o n = a p p o i n t m e n t
var r e c e i v e r s L i s t = # []
f o r (p : a p p o i n t m e n t . i n v i t e d P e r s o n s)

r e c e i v e r s L i s t . add (p . AID)
send message {

per format ive i s CANCEL
o n t o lo g y i s MSOntology
r e c e i v e r s are r e c e i v e r s L i s t
c o n t e n t i s a c t i o n

}
}
removeMyAppointment (a p p o i n t m e n t)

}

The roles are completely listed below and all the details
required to define roles are given. Their declarations indicate

the owner agent, protocol name and protocol role. As for the
agent, a list of variables can be specified and the role creation
is an event that can be handled as follows.
r o l e m y F i p a C o n t r a c t N e t I n i t i a t o r B e h a v i o u r (Appoin tment

appo in tmen t , L i s t<AID> group) f o r M e e t i n g S c h e d u l e r A g e n t
as FIPA CONTRACT NET : I n i t i a t o r {

var Appoin tment pendingApp
var a c c e p t a b l e D a t e s = newArrayLis t<Date >()
var a c c e p t e d D a t e s = newArrayLis t<Date >()

on c r e a t e {
var a c t i o n = new A c t i o n ()
a c t i o n . s e t A c t o r (t h e A g e n t . AID)
a c t i o n . s e t A c t i o n (a p p o i n t m e n t)

c r e a t e message cfpMsg {
per format ive i s CFP
o n t o lo g y i s MSOntology
r e c e i v e r s are group
c o n t e n t i s a c t i o n

}

pendingApp = a p p o i n t m e n t
p r i n t l n (‘ I n i t i a t o r msg : ’ + cfpMsg)

}

Roles are finite-state machine behaviours that change state
when a new message with a certain performative is received.
As explained in FIPA Contract Net specification, the initiator
sends CFP messages to a group of agents and it has to
handle their responses. In the following, negative responses
are handled.

on REFUSE msg {
p r i n t l n (‘ I n i t i a t o r r e c e i v e d Refuse : ’ + msg . t o S t r i n g)

}

on NOT UNDERSTOOD msg {
p r i n t l n (‘ I n i t i a t o r h a n d l e NotUnders tood : ’ + msg .

t o S t r i n g)
}

on FAILURE msg {
p r i n t l n (‘ I n i t i a t o r r e c e i v e d F a i l u r e : ’ + msg . t o S t r i n g)

}

In case of acceptance of the CFP by the responder, initiator
handles the propose message, as follows.

on PROPOSE msg {
var C a l e n d a r c = C a l e n d a r . i n s t a n c e

f o r (d : pendingApp . p o s s i b l e D a t e s) {
c . t ime = d
a c c e p t a b l e D a t e s . add (new I n t e g e r (c . g e t (c .DATE)))

}

e x t r a c t p r o p o s a l as A c t i on from msg
var a p p o i n t m e n t = p r o p o s a l . a c t i o n as Appoin tment

f o r (d : a p p o i n t m e n t . p o s s i b l e D a t e s) {
c . t ime = d
var day = new I n t e g e r (c . g e t (c .DATE))
i f (a c c e p t a b l e D a t e s . c o n t a i n s (day))

a c c e p t e d D a t e s . add (day)
}

a c c e p t a b l e D a t e s = a c c e p t e d D a t e s . c l o n e
i f (! a c c e p t a b l e D a t e s . empty) {

var d = new Date ()
var i n t dateNumber =

((I n t e g e r) a c c e p t a b l e D a t e s . g e t (0)) . i n t V a l u e ()

c . s e t (c .DATE , dateNumber)
pendingApp . s e t F i x e d D a t e (c . t ime)

var a c t i o n = new A c t i o n ()
a c t i o n . s e t A c t o r (t h e A g e n t . AID ())
a c t i o n . s e t A c t i o n (pendingApp)

88

c r e a t e message replyMsg {
o n t o lo g y i s MSOntology
per format ive i s ACCEPT PROPOSAL
r e c e i v e r s are #[msg . s e n d e r]
c o n t e n t i s a c t i o n

}
} e l s e {

c r e a t e message replyMsg {
per format ive i s REJECT PROPOSAL
r e c e i v e r s are #[msg . s e n d e r]
c o n t e n t i s ‘No d a t e a v a i l a b l e ’

}
}

}

Finally, if the proposal is accepted and the responder succeeds
in fixing the appointment, a final message that informs the
initiator is sent. Here the handling of the reception of such
message is shown.

on INFORM msg {
var Pe r s on p = t h e A g e n t . getPersonByAgentName (

msg . s e n d e r)
pendingApp . i n v i t e d P e r s o n s . c l e a r
i f (p == n u l l)

p = new P er so n (msg . s e n d e r . name , n u l l , n u l l)
pendingApp . g e t I n v i t e d P e r s o n s () . add (p)
t h e A g e n t . addMyAppointment (pendingApp)

}

Below, the source code of the responder behaviour is listed.
In case the responder receives a CFP, it will decide to accept
it or not.
r o l e m y F i p a C o n t r a c t N e t R e s p o n d e r B e h a v i o u r f o r

M e e t i n g S c h e d u l e r A g e n t as FIPA CONTRACT NET : Responder {
on CFP msg {

e x t r a c t c f p as Ac t i on from msg
var a p p o i n t m e n t = c f p . a c t i o n as Appoin tment
var p r o p o s a l = a p p o i n t m e n t
p r o p o s a l . p o s s i b l e D a t e s . c l e a r ()
f o r (d : p r o p o s a l . p o s s i b l e D a t e s)

i f (t h e A g e n t . i s F r e e ())
p r o p o s a l . p o s s i b l e D a t e s . add (d)

i f (! p r o p o s a l . p o s s i b l e D a t e s . empty) {
var a = new Ac t io n ()
a . a c t o r = t h e A g e n t . AID
a . a c t i o n = p r o p o s a l
c r e a t e message r e p l y {

per format ive i s PROPOSE
o n t o lo g y i s MSOntology
r e c e i v e r s are #[msg . s e n d e r]
c o n t e n t i s a

}
} e l s e {

c r e a t e message r e p l y {
per format ive i s REFUSE
r e c e i v e r s are #[msg . s e n d e r]
c o n t e n t i s ‘No a v a i l a b l e d a t e ’

}
}

}

The initiator can decide to accept or reject a proposal and, in
both cases, it sends a notification message to the responder.

on ACCEPT PROPOSAL msg {
e x t r a c t a as Ac t i on from msg
var a p p o i n t m e n t = a . a c t i o n as Appoin tment
i f (t h e A g e n t . i s F r e e (a p p o i n t m e n t . f i x e d D a t e)) {

t h e A g e n t . addMyAppointment (a p p o i n t m e n t)
c r e a t e message r e p l y {

per format ive i s INFORM
}

} e l s e {
c r e a t e message r e p l y {

per format ive i s FAILURE
}

}
}

on REJECT PROPOSAL msg {
p r i n t l n (‘ Responder r e c e i v e d Refuse : ’ + msg . t o S t r i n g ())

}

Finally, the CancelAppointmentBehaviour is shown in the
following.
c y c l i c behaviour C an ce l App o i n t m en tB eh a v iou r f o r

M e e t i n g S c h e d u l e r A g e n t {
on message msg
when {

per format ive i s CANCEL
} do {

e x t r a c t con as Appoin tment
i f (con . i n v i t e r == t h e A g e n t . AID)

t h e A g e n t . c a n c e l A p p o i n t m e n t (con . f i x e d D a t e)
e l s e

t h e A g e n t . removeMyAppointment (con)
}

}

B. Quantitative Assessment

As shown in the previous section, JADEL implementation
of the Meeting Scheduler demo is composed by the same
entities of the JADE version, but it is characterized by specific
syntax for agent-oriented features. Moreover, the operations
and methods have the same semantics of those in JADE, but
some parts are much shorter than the original ones. Beside the
original demo and the JADEL implementation shown above,
we obtained a third Java implementation directly by JADEL
code generator. The generated code is more redundant than
the original JADE demo source code, but it does not introduce
significant overhead and the number of messages exchanged
by the agents are the same. Hence, there is not a notable
performance loss.

The scope of JADEL is mainly to simplify the use of JADE
and to make clear and transparent the agent model. In order to
evaluate the actual advantages in use of JADEL, we compare
the original JADE implementation with our JADEL translation,
by using two measures based on Lines Of Code (LOC). First,
we consider the total number of non-comment and non-blank
LOC of the agent, of the ontology, and of the behaviours.
Then, we emphasize the fraction of domain-specific features
and expressions over the total number of lines. In JADEL,
such domain-specific features are those presented in Section II:
entity declaration, event handler, message related expressions,
and behaviours/role activation. For example, in the previously
shown listing of CancelAppointmentBehaviour, there are
12 non-blank LOC and 6 lines of domain-specific features. In
particular, those lines are the first, namely, the entity declara-
tion, the event handling with the on− when− do construct,
and the extraction of the received message. Thus, the fraction
of domain-specific features is the 50% of the LOC. In JADE,
we consider as domain-specific all the actual call to the APIs,
including the lines that identify the base class, i.e., the entity.

From the Table I, we can see that JADEL implementation
is shorter than JADE one. This is particularly evident when
considering the ontology, that consists in only eight non-blank
LOC, in JADEL. Instead, 175 lines are required by the JADE
ontology, which includes also the declaration of two more
classes that define concepts. Also JADEL behaviours seem to
be simpler than JADE ones, with a little advantage in focusing

89

MSAgent MSOntology Behaviours
JADEL (LOCs) 264 8 173
DS/JADEL (%) 20 75 32

JADE (LOCs) 305 175 233
DS/JADE (%) 23 11 20

Table I
NUMBER OF LOC AND PERCENTAGE OF DOMAIN-SPECIFIC (DS)

FEATURES OVER THE TOTAL NUMBER OF LOC, FOR JADEL AND JADE
IMPLEMENTATION OF THE MEETING SCHEDULER DEMO.

on the domain-specific tasks. The number of LOC of JADEL
agent, instead, is only slightly smaller than that of JADE agent
and domain-specific features are approximately the same. This
is due to the point-to-point translation that has been made, in
order to reproduce precisely the original demo. As a matter
of fact, we have chosen not to change the demo specification,
in order to make a fair comparison between the two versions.
We argue that a revisited and original JADEL implementation
of the Meeting Scheduler demo may be more focused on
behaviours rather than on agent methods, thus improving the
readability of the agent code and reducing its size.

However, LOC and domain-specific fraction of those lines
are only indicators of size and density of JADEL code, but
they cannot fully describe qualitative factors, such as the
readability of the code, nor how much the code is reusable
and maintainable.

IV. CONCLUSIONS

This paper presents a complete example of JADEL usage,
related to the well-known Meeting Scheduler demo of JADE.
Scope and motivations of JADEL development are briefly
explained, then main abstractions, domain-specific features
and expressions are introduced. The example is presented
by showing JADEL source code of the Meeting Scheduler
ontology, notable parts of the agent, and all the behaviours. A
comparison between JADE and JADEL implementations of
such a demo is made by counting non-comment and non-
blank LOC and by measuring the rate of domain-specific
agent-oriented features over the total number of LOC. These
indicators are useful in a first approximation to enlighten
some JADEL advantages, namely, its lighter syntax and the
conciseness in the definition of ontologies. Nevertheless, other
aspects are difficult to be precisely evaluated, due to their
qualitative nature. For instance, some constructs and expres-
sions are meant to reduce the complexity of the framework
and to improve readability rather than to reduce the amount
of code written. As illustrative examples, the on− when− do

and the extract− as are specifically designed to clarify
message reception, while the corresponding JADE patterns are
repetitive and full of implementation details.

In summary, JADEL is shown to be sufficiently expressive
to fully reproduce the Meeting Scheduler demo and the best
results with respect to JADE are obtained in the ontology

implementation. Also roles and behaviours are shorter and
clearer, due to the frequent use of domain-specific constructs,
especially for message passing. Moreover, the entire code of
the GUI was reused, thanks to the tight integration of JADEL
entities into Java type-system.

As previously said, numbers of LOCs and the percentage of
DS-LOCs are not sufficient to measure the actual advantage in
the use of JADEL. For this reason, future works will address
the problems of language evaluation and testing. Such an
evaluation could be done by scheduling the development of
an application by a team of several users. Users could have
different experiences in the use of JADE, from beginners to
experts. Moreover, making an application that deals with a
real-world problem is a good strategy for testing.

JADEL was not yet released, because it is still under
development and its quality, in terms of readability and
reusability, still have to be assessed. Anyway, the compiler,
related documentation and examples are freely available open
source upon request to authors.

REFERENCES

[1] F. Bergenti, “An introduction to the JADEL programming language,”
in Procs. of the IEEE 26th Int’l Conference on Tools with Artificial
Intelligence (ICTAI). IEEE, 2014, pp. 974–978.

[2] F. Bellifemine, G. Caire, and D. Greenwood, Developing multi-agent
systems with JADE. Wiley Series in Agent Technology, 2007.

[3] F. Bergenti and A. Poggi, “Developing smart emergency applications
with multi-agent systems,” International Journal of E-Health and Med-
ical Communications, pp. 1–13, 2010.

[4] S. Monica and F. Bergenti, “Location-aware JADE agents in indoor
scenarios,” in Proceedings of 16th Workshop “Dagli Oggetti agli
Agenti” (WOA ’15), Napoli, Italy, 2015, pp. 103–108.

[5] S. Monica and F. Bergenti, “A comparison of accurate indoor localization
of static targets via WiFi and UWB ranging,” in Advances in Intelligent
Systems and Computing (PAAMS 2016), Special Session on Agents and
Mobile Devices (AM), 2016.

[6] F. Bergenti, G. Caire, and D. Gotta, “Interactive workflows with WADE,”
in Procs. of the 21st IEEE International Conference on Collaboration
Technologies and Infrastructures (WETICE 2012), 2012, pp. 10–15.

[7] F. Bergenti, G. Caire, and D. Gotta, “Large-scale network and service
management with WANTS,” in Industrial Agents: Emerging Applica-
tions of Software Agents in Industry, 2015, pp. 231–246.

[8] F. Bergenti, G. Caire, and D. Gotta, “Agent-based social gaming with
AMUSE,” in Procs. of the 5th Int’l Conf. Ambient Systems, Networks
and Technologies (ANT 2014) and 4th Int’l Conf. Sustainable Energy
Information Technology (SEIT 2014), ser. Procedia Computer Science,
vol. 32. Elsevier, 2014, pp. 914–919.

[9] F. Bergenti, G. Caire, and D. Gotta, “An overview of the AMUSE social
gaming platform,” in Procs. Workshop From Objects to Agents, 2013.

[10] F. Bergenti and S. Monica, “Location-Aware Social Gaming with
AMUSE,” in Trends in Practical Applications of Scalable Multi-Agent
Systems, the PAAMS Collection (PAAMS 2016), 2016, pp. 36–47.

[11] K. Kravari and N. Bassiliades, “A survey of agent platforms,” Journal
of Artificial Societies and Social Simulation, vol. 18, no. 1, p. 11, 2015.

[12] Y. Shoham, “Agent-oriented programming,” Artificial intelligence,
vol. 60, no. 1, pp. 51–92, 1993.

[13] F. Bergenti, M.-P. Gleizes, and F. Zambonelli, Methodologies and
software engineering for agent systems: the agent-oriented software
engineering handbook. Science & Business Media, 2006, vol. 11.

[14] F. Bergenti, E. Iotti, and A. Poggi, “Core features of an agent-oriented
domain-specific language for JADE agents,” in Trends in Practical
Applications of Scalable Multi-Agent Systems, the PAAMS Collection.
Springer, 2016, pp. 213–224.

90

