
Managing and Consuming
Completeness Information for Wikidata

Using COOL-WD

Radityo Eko Prasojo(�), Fariz Darari, Simon Razniewski, and Werner Nutt

KRDB, Free University of Bozen-Bolzano, 39100, Italy
rprasojo@unibz.it

Abstract. Wikidata is a fast-growing, crowdsourced, and entity-centric
KB that currently stores over 100 million facts about more than 21 mil-
lion entities. Such a vast amount of data gives rise to the question: How
complete is information in Wikidata? It turns out that there is no easy
answer since Wikidata currently lacks a means to describe the complete-
ness of its stored information, as in, Which entities are complete for
which properties?
In this paper, we discuss how to manage and consume meta-information
about completeness for Wikidata. Due to the crowdsourced and entity-
centric nature of Wikidata, we argue that such meta-information should
be simple, yet still provide potential benefits in data consumption. We
demonstrate the applicability of our approach via COOL-WD (http:
//cool-wd.inf.unibz.it/), a completeness tool for Wikidata, which at
the moment collects around 10,000 real completeness statements.

Keywords: data completeness, meta-information, completeness analytics, query
completeness, Wikidata, entity-centric KBs

1 Introduction

Given its open and distributed nature, data semantics on the Semantic Web
has always been problematic. Generally the open-world assumption (OWA) is
taken [7], i.e., datasets are assumed only to describe a subset of reality. However,
the OWA leaves users clueless as to whether present data describes all data about
a certain topic, and is particularly ill-suited for non-monotonic query languages.
SPARQL, for instance, simply computes query answers based on the closed-world
assumption (CWA), even though these may be incorrect under the OWA.

In fact, the data modeling community observed early on the need for a
more fine-grained setting between the OWA and CWA, called the partial closed-
world assumption (PCWA) [11,8,14]. The PCWA uses specifications called table-
completeness (TC) statements for distinguishing parts of a database that should
be considered under CWA from those that should be considered under OWA.
This knowledge can then be propagated to query answers, thus allowing to as-
sess whether a query answer is complete, or potentially not. The PCWA has also
been proposed for the Semantic Web [3].

http://cool-wd.inf.unibz.it/
http://cool-wd.inf.unibz.it/

Yet, the theoretical foundations so far have not reached practice. Up to now,
users can only write completeness information manually in RDF, and would
need to publish and link them on their own, in order to make them available.
Similarly, users interested in making use of completeness statements have no
central reference for retrieving such information so far. We believe that the lack
of tools supporting both ends of the data pipeline, production and consumption,
is a major reason for the PCWA not being adapted on the Semantic Web so far.

From the data quality perspective, data completeness is an important quality
aspect.1 When data is verified to be complete, decisions taken from the data will
be more justifiable. As a motivating scenario, let us consider the data about
Switzerland (https://www.wikidata.org/wiki/Q39) on Wikidata.

Fig. 1. Wikidata page of Switzerland

At the moment of the writing, Wikidata contains 26 cantons of Switzerland
from Appenzell Ausserrhoden to Canton of Zürich. According to the official page
of the Swiss government,2 there are exactly these 26 Swiss cantons as stored in
Wikidata. Therefore, as opposed to the public holidays, whose completeness
is still unclear, the data about Swiss cantons in Wikidata is actually complete.
However, Wikidata currently lacks support for expressing completeness informa-
tion, thus limiting the potential consumption of its data (e.g., assessing query
completeness or completeness analytics). In general, not only Wikidata, but also
other entity-centric KBs (e.g., DBpedia, YAGO) have such a limitation. In this
work, we focus on Wikidata as an example use case of the idea of adding com-
pleteness information and enhancing data consumption with such completeness
information as it is open, fast-growing, and one of the most actively-edited KBs.

Contributions. In this paper we present COOL-WD, a completeness tool for
Wikidata. With COOL-WD, end users are provided with web interfaces (avail-
able both via COOL-WD external tool or COOL-WD integrated Wikidata gad-
get) to view completeness information about Wikidata facts, and to perform the
creation of completeness information without writing any RDF syntax. Similarly,

1 http://www.wired.com/insights/2013/05/the-missing-vs-in-big-data-viability-and-value/
2 https://www.admin.ch/opc/de/classified-compilation/13.html

https://www.wikidata.org/wiki/Q39
http://www.wired.com/insights/2013/05/the-missing-vs-in-big-data-viability-and-value/
https://www.admin.ch/opc/de/classified-compilation/13.html

a query interface is provided that allows one to assess whether query answers
can be considered under the OWA or CWA, and Linked Data API to access
completeness statements as RDF resources. Finally, COOL-WD provides a cen-
tralized platform for collecting completeness information. It comes prepopulated
with over 10,000 completeness statements, which are available for download.3

Related Work. Knowledge base quality has received attention since long, facing
general issues [9,22], entity linking issues [13], or inconsistency issues [19,18].
Completeness itself is a quality aspect that relates to the breadth, depth, and
scope of information contained in the data [21]. A number of approaches aimed
to achieve a higher degree of data completeness [12,2,1]. Yet in these approaches,
no assumption was made about completeness wrt. the real-world information.

The idea for a declarative specification of data completeness can be traced
back to 1989 [11]. Various works have built upon this, most lately leading to a
tool called MAGIK [17], which allows one to collect expressive completeness in-
formation about relational databases, and to use it in query answering. In [3], the
framework underlying MAGIK [14] has been ported to the Semantic Web, from
which a prototype to gather schema-level completeness information over generic
RDF data sources, called CORNER, was then developed [4]. What are still miss-
ing from this prototype are practical considerations: completeness statements
were too complex for general users and there was no tight integration with the
data to which completeness statements are given due to their generality. In [5],
a practical fragment of completeness statements, called SP-statements, was first
identified. The work focused more on the formal aspects of SP-statements, espe-
cially on how to characterize fine-grained query completeness assessment from
such statements. Now, in this paper practical aspects of SP-statements are dis-
cussed, including how to make them available as Linked Data resources.

2 Background

2.1 Wikidata

We focus on the Wikidata [20] knowledge base, which provides its data in RDF.
Wikidata is a fast-growing,4 entity-centric, volunteered KB with currently 16,000
active users5 that aims to complement the Wikipedia effort with structured
data. In Wikidata, entities and properties are identified by internal IDs with
the format Q(number) for entities (e.g., Q39 for Switzerland), and P(number)
for properties (e.g., P150 for “contains administrative territorial entities”). As
an illustration, Wikidata stores the triple (Q39,P150,Q12724),6 meaning that
Switzerland contains Ticino (Q12724) as one of its administrative territorial
entities.
3 http://completeness.inf.unibz.it/rdf-export/
4 https://tools.wmflabs.org/wikidata-todo/stats.php
5 https://www.wikidata.org/wiki/Wikidata:Statistics
6 We omit namespaces for readability. Later on, we also refer to resources via their

labels.

http://completeness.inf.unibz.it/rdf-export/
https://tools.wmflabs.org/wikidata-todo/stats.php
https://www.wikidata.org/wiki/Wikidata:Statistics

2.2 SP-Statements

Now we describe SP-statements and show how they can enrich entity-centric KBs
(including Wikidata) with completeness information. Furthermore, we discuss
how to provide them as Linked Data resources.

Motivation. Popular knowledge bases (KBs) like Wikidata, DBpedia, and YAGO,
provide their information in an entity-centric way, that is, information is grouped
into entities in such a way that each entity has its own (data) page, showing
the entity’s property-value pairs. Those KBs in general follow the open-world
assumption: it is unknown whether an entity is complete for the values of a
property. Yet, in practice, oftentimes entities are complete for specific properties
(e.g., all children of Obama, all crew members of Apollo 11, etc). Having explicit
completeness information increases the informativeness of an entity: not only do
we know that some property values are valid for an entity, but also we know
that those are all the values.

SP-statements are statements about the completeness of the set of values of
a property of an entity. Such statements capture exactly the idea of providing
completeness information whose structure is as close as possible to the SPO-
structure underlying entity-centric KBs. Moreover, given their simplicity, SP-
statements can be provided in the crowdsourcing way, which again would fit into
how entity-centric KBs are typically constructed (e.g., Wikidata). Furthermore,
since SP-statements are basically (quality) metadata about KBs, they may also
complement existing approaches to describe KBs like VoID7 and DCAT.8 Later
in Section 5, we will also show how SP-statements pave the new way toward
consuming Linked Data.

Syntax and Semantics. Formally, an SP-statement is written as a pair (s, p)
where both s and p are URIs. A graph (or dataset) G having an SP-statement
(s, p) would mean that all the values of the property p of the entity s in the real-
world are captured in G, that is, for a hypothetical ideal graph G′ ⊇ G where all
kinds of information are complete, G′ does not contain new information about
the property p of s. For example, an SP-statement for all cantons9 in Switzerland
can be written as follows: (Switzerland, canton). Stating that Wikidata has this
SP-statement implies that all the cantons of Switzerland in reality are recorded
in Wikidata. Observe that SP-statements can also be used to state the non-
existence of a property of an entity. To do this is simply by assigning an SP-
statement (s, p) over a graph in which there is no corresponding triple (s, p, o)
for any URI or literal o. For example, to say that Wikidata has the SP-statement
(elizabethI, child) would be the same as to say that Elizabeth I had no children
since Wikidata contains no children of Elizabeth I.

7 https://www.w3.org/TR/void/
8 https://www.w3.org/TR/vocab-dcat/
9 A canton is a direct administrative subdivision of Switzerland.

https://www.w3.org/TR/void/
https://www.w3.org/TR/vocab-dcat/

SP-Statements as Linked Data Resources. Having motivated and formalized SP-
statements, now we want to make them available in practice, especially by follow-
ing the Linked Data principles.10 Therefore, SP-statements should be identifiable
by URIs and accessible in RDF. To improve usability, URIs for SP-statements
should indicate which entity is complete for what property. For example, in our
COOL-WD system later on, we identify the SP-statement (Switzerland, canton)
with the URI http://cool-wd.inf.unibz.it/resource/statement-Q39-P150, indi-
cating the entity Switzerland (Wikidata ID: Q39) and the property “contains
administrative territorial entities” (Wikidata ID: P150).

Next, looking up an SP-statement’s URI must give a description of the state-
ment. Thus, we provide an RDF modeling of SP-statements. We divide the mod-
eling into two aspects: core and provenance. The core aspect concerns the intrin-
sic aspect of the statement, whereas the provenance aspect deals with the extrin-
sic aspect of the statement, providing information about the generation of the
statement. The core aspect consists of the type of the resource, the subject and
predicate of the SP-statement, and the dataset to which the statement is given (in
the scope of this paper, the dataset is Wikidata). The provenance aspect consists
of the author of the statement, the timestamp when the statement is generated,
and the primary reference of the statement. For the core aspect, we developed our
own vocabulary, available at http://completeness.inf.unibz.it/sp-vocab. For
the provenance aspect, to maximize interoperability we reused the W3C PROV
ontology.11 The following is an RDF modeling of the SP-statement “Complete
for all cantons in Switzerland” for Wikidata.

@prefix wd: <http://www.wikidata.org/entity/> .
@prefix spv: <http://completeness.inf.unibz.it/sp-vocab#> .
@prefix coolwd: <http://cool-wd.inf.unibz.it/resource/> .
@prefix wdt: <http://www.wikidata.org/prop/direct/> .
@prefix prov: <http://www.w3.org/ns/prov#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

wd:Q2013 spv:hasSPStatement coolwd:statement-Q39-P150 . # Q2013 = Wikidata

coolwd:statement-Q39-P150 a spv:SPStatement ;

spv:subject wd:Q39 ; # Q39 = Switzerland

spv:predicate wdt:P150 ; # P150 = canton

prov:wasAttributedTo [foaf:name "Fariz Darari" ;

foaf:mbox <mailto:fariz.darari@stud-inf.unibz.it>] ;

prov:generatedAtTime "2016-05-19T10:45:52"^^xsd:dateTime ;

prov:hadPrimarySource

<https://www.admin.ch/opc/en/classified-compilation/19995395/index.html#a1>.

In the RDF snippet above, we see all the core and provenance aspects of the
SP-statement for Wikidata of all cantons in Switzerland with self-explanatory
property names. Having such snippets would also provide the possibility to ex-
port SP-statements about a dataset into an RDF dump, which may then be
useful for data quality auditing or completeness analytics purposes.

10 https://www.w3.org/DesignIssues/LinkedData.html
11 http://www.w3.org/ns/prov

http://cool-wd.inf.unibz.it/resource/statement-Q39-P150
http://completeness.inf.unibz.it/sp-vocab
https://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/ns/prov

3 Creating Completeness Information

In general, one can imagine that SP-statements could either originate from (i)
KB contributors, (ii) paid crowd workers, or (iii) web extraction [10]. While our
focus with COOL-WD is to provide a tool for the first purpose, we used also
other methods to pre-populate COOL-WD with completeness information.

KB Contributors. Wikidata already provides a limited form of completeness
statements: no-value statements, that is, assertions stating that for a certain
subject-predicate pair, no values exist (e.g., Elizabeth I had no children). We im-
ported about 7600 no-value statements from Wikidata12 as completeness state-
ments. They directly translate to completeness information. The top-three prop-
erties used in no-value statements are “member of political party” (12%), “taxon
rank” (11%), and “follows” (11%). The properties “spouse”, “country of citizen-
ship”, and “child” are among the top-15.

Paid Crowd Workers. We imported around 900 SP-statements created for work
on completeness rule mining [6], which were created using crowdsourcing. Re-
garding the crowdsourcing done in that work, it is noteworthy that it comes
with issues. The first is the price, about 10 cents per statement. The other is,
that crowd workers did not truly provide completeness assertions, instead, they
were asked, whether they could find additional facts on a limited set of web-
pages. Truly asking crowd workers for checking for evidence for completeness
was deemed too difficult in that work.

Web Extraction. We imported about 2200 completeness assertions for the child
relation that were created in [10] via web extraction. These statements are all
about the “child” property in Wikidata, and were generated as follows: The
authors manually created 30 regular expressions that were used to extract in-
formation about the number of children from biographical articles in Wikipedia.
For instance, the pattern “X has Y children” would match the phrase “Obama
has two children and lives in Washington”, and can thus be used to construct
the assertion that Obama should have exactly two children. In total, the authors
found about 124,000 matching phrases, of which, after filtering some low-quality
information, about 84,000 phrases that had a precision of 94% were retained.
For each of these 84,000 assertions, it was then checked whether the asserted
cardinality matched the one found in Wikidata. If that is the case, it was then
concluded that Wikidata is complete wrt. the children of the person. For in-
stance, for Obama one truly finds two children in Wikidata, and thus, assuming
the correctness of the phrase in Wikipedia, can conclude that Wikidata is com-
plete.

12 https://www.wikidata.org/wiki/Help:Statements#Unknown_or_no_values

https://www.wikidata.org/wiki/Help:Statements#Unknown_or_no_values

4 COOL-WD: A Completeness Tool for Wikidata

We developed COOL-WD, a web-based completeness tool for Wikidata, that
provides a way to annotate complete parts of Wikidata in the form of SP-
statements. COOL-WD focuses on the direct-statement fragment of Wikidata,
in which neither references nor qualifiers are being used. A COOL-WD user is
able to view any Wikidata entity that is annotated with SP-statements for all of
its properties. A complete property of an entity is denoted by a green checkmark,
while a possibly incomplete one is denoted by a gray question mark. A user can
add a new SP-statement for a property of an entity by clicking on the gray
question mark. In Section 5, we discuss several ways to consume completeness
statements in COOL-WD.

In providing its features, COOL-WD maintains real time communication
with Wikidata. On the client side, user action like entity search is serviced by
MediaWiki API13 calls towards Wikidata, while on the server side the COOL-
WD engine retrieves entity and property information via SPARQL queries over
the Wikidata SPARQL endpoint14. User-provided SP-Statements are stored in
a specialized database. The engine retrieves SP-statements from the database
to annotate the entities and properties obtained from the Wikidata SPARQL
endpoint with completeness information, and then sends them to the user via a
HTTP connection. The engine also manipulates the DB whenever a user adds a
new SP-statement.

Hardware and system specification. Our web server and database server run on
separate machines. The web server is loaded with 16GB of virtual memory and
1 vCPU of 2.67GHz Intel Xeon X5650. It runs on Ubuntu 14 and uses Tomcat 7
and Java 7 for the web services. The database server has 8GB of virtual memory
and 1 vCPU of 2.67GHz Intel Xeon CPU X5650, running on Ubuntu 12 and
using PostgreSQL 9.1.

SPARQL	Endpoint MediaWiki API

COOL-WD	
Engine

COOL-WD	
User	Interface

HTTP RequestData access Web browsing

SPARQL Queries API Calls

SP-Statements DB

Fig. 2. System architecture of COOL-WD

13 https://www.wikidata.org/w/api.php
14 https://query.wikidata.org/bigdata/namespace/wdq/sparql

https://www.wikidata.org/w/api.php
https://query.wikidata.org/bigdata/namespace/wdq/sparql

COOL-WD Gadget. Another way is to directly add completeness statements
from inside Wikidata, using a Wikidata user script that we created.15 To acti-
vate the script, a user needs a Wikimedia account. Then, she has to import it
to her common.js page at https://www.wikidata.org/wiki/User:[wikidata_
username]/common.js. Basically, the script makes API requests over our own
completeness server that provides a storage service for completeness statements.

Fig. 3. COOL-WD Gadget: The green box indicates completeness, while the yellow
box indicates potential incompleteness

Figure 3 shows that the property box of “contains administrative territorial
entity” is colored green, which indicates completeness. The information icon
“(i)”, when clicked, provides the reference URL, the Wikidata username, and the
timestamp of the completeness statement. Note that for properties not yet known
to be complete, they will be colored yellow. To add a completeness statement
one simply clicks the yellow property box. To add a reference URL is simply by
clicking the information icon and add the URL in the provided form.

5 Consuming SP-Statements

The availability of completeness information of the form SP-statements opens
up novel ways to consume data on Wikidata, realized in COOL-WD.

5.1 Data Completion Tracking

The most straightforward impact of completeness statements is that creators
and consumers of data become aware of their completeness. Thus, creators know
where to focus their efforts, while consumers become aware of whether consumed
data is complete, or whether they should take into account that data may be
missing, and possibly should do their own verification, or contact other sources.

5.2 Completeness Analytics

Having completeness statements allows us to analyze how complete an entity is
compared to other similar entities. For example, for some cantons in Switzerland,

15 https://www.wikidata.org/wiki/User:Fadirra/coolwd.js

https://www.wikidata.org/wiki/User:[wikidata_username]/common.js
https://www.wikidata.org/wiki/User:[wikidata_username]/common.js
https://www.wikidata.org/wiki/User:Fadirra/coolwd.js

Wikidata has complete information about their official languages, but it may
not for the other cantons. A Wikidata contributor could exploit this kind of
information to spot some entities that are less complete than other similar ones,
then focus their effort on completing them.

In COOL-WD, a class of similar entities is identified by a SPARQL query.
For example, the class of all cantons of Switzerland consists of the entities re-
turned by the query SELECT * WHERE { wd:Q39 wdt:P150 ?c }, where Q39 is
the Wikidata entity of Switzerland and P150 is the Wikidata property “contains
administrative territorial entity.” A user may add a new class by specifying a
valid SPARQL query for the class. Then, COOL-WD would populate all possible
properties of the class as a union of properties of each entity of the class. The
user would then asked to pick some property that they feel to be important for
the class. Now, suppose we pick “official language” and “head of government” as
important properties for the cantons of Switzerland, and suppose that we have
only the following SP-statements: (Bern, lang), (Geneva, lang), (Ticino, lang),
(Zurich, lang), (Bern, headOfGov). Figure 4 shows how COOL-WD displays
such analytic information. A user then can see that Wikidata is verified to have
complete information about official languages only for 4 out of 26 cantons of
Switzerland (15.38 %), which means that the remaining 22 cantons are possibly
less complete than the four. Among the four, Wikidata has also complete infor-
mation for the head of government of Canton of Bern, only one out of the 26
cantons. Using this information, a contributor is able to focus on checking the
completeness of the language of the remaining 22 cantons and the head of gov-
ernment of the 25 cantons, whether Wikidata has already complete information
about them, so some completeness statements should be added, or Wikidata has
incomplete information, so they should add the missing information.

7/16/2016 COOL-WD

http://cool-wd.inf.unibz.it/?p=aggregation 1/1

Class name #Objects Property Completeness
percentage Complete entities

Cantons of
Switzerland

26 official language 15.38% Canton of Geneva

 Canton of Bern Ticino

 Canton of Zürich Show less

Cantons of
Switzerland

26 head of
government

3.85% Canton of Bern

Fig. 4. An overview of the completeness analytics feature. Clicking on the class name
shows a more detailed analytics of the class.

5.3 Query Completeness Assessment

With explicit completeness information over data comes the possibility to assess
query completeness. Intuitively, queries can be answered completely whenever
they touch only the complete parts of data. We focus on tree-shaped queries,
which include also path and star queries that are often used in practice [16],
where the root and edges are URIs. Such tree-shaped queries are suitable for

exploring facts about an entity, for instance, who are Obama’s children and
spouse, and for his children, what are their schools. In COOL-WD, we imple-
mented an algorithm for completeness assessment as described in [5] and further
extended it with a diagnostics feature: depending on whether a query can be
guaranteed to be complete or not, users may also see either all SP-statements,
including their provenance (i.e., author, timestamp, and reference URL), con-
tributing to the query completeness, or a missing SP-statement as a cause of no
completeness-guarantee.

Let us give an illustration on how query completeness assessment works.
Consider the query “give all languages of all cantons in Switzerland.” With no
completeness information, there is no way to know whether the query answer
is complete: it might be the case that a canton, or a language of a canton, is
missing.

Now, suppose we have the following SP-statements: (Switzerland, canton),
(Aargau, lang), . . . , (Zurich, lang). The statements ensure the completeness of all
cantons in Switzerland, and for each canton of Switzerland from Aargau to
Zurich, the completeness of all languages. With such completeness information,
our query can be answered completely in the following way. The query basically
asks for two parts: all cantons of Switzerland, and then for each canton, all of
their languages. For the first part, its completeness can be guaranteed by the
first statement above. Therefore, by instantiating that complete part, we now
need to be complete for the following set of queries: all the languages of Aargau,
. . . , all the languages of Zurich. For each of the language queries, we know from
the corresponding language SP-statements above that they can be answered
completely. Therefore, our whole query can then be answered completely. Ad-
ditionally, users would see all those SP-statements (and their provenance) that
contribute to the query completeness. In contrast, suppose that we do not have
the SP-statement (Zurich, lang). In this case, the query cannot be guaranteed to
be complete, and COOL-WD reports that (Zurich, lang) is missing.

Experimental Evaluation. To show the feasibility of query completeness assess-
ment over COOL-WD, we conducted an experimental evaluation based on real
entities in Wikidata. The experimental setup is as follows. First, we take four
various Wikidata classes: country (Q6256), software (Q7397), animated film
(Q202866), and political party in Spain (Q6065085). Next, we obtain randomly
100 entities for each class. Then, we generate tree-shaped queries by assigning
each entity as the root and traversing the entity over its randomly-chosen prop-
erties. We distinguish query generation cases based on the maximum width and
depth of the traversal: w2d1, w3d1, w4d1, w5d1, w1d2, w1d3, w1d4, w1d5, w2d2,
w3d2, and w2d3, where “w” is the width and “d” is the depth. As each case
generates 400 queries, there are in total 4,400 queries. Next, we generate SP-
statements from the queries, again by traversing and instantiating each triple
pattern of the queries from the root in a top-down manner, taking the subject
and predicate of the instantiated triple pattern along the way. Such a gener-
ation, however, makes all queries complete. To have a variety of success and
failure cases of completeness, we thus randomly remove 50% of the statements.

In total, there are around 11,000 SP-statements generated. In the experiment,
we measure the query completeness assessment time and query evaluation time,
and group the results by query generation case.

From the experiment results, we can draw several observations. On an ab-
solute scale, the average completeness assessment time of all cases ranges from
74 ms to 309 ms. Also, more complex queries tend to have longer completeness
assessment time, with the case w1d2 having the lowest and the case w2d3 hav-
ing the highest assessment time. Furthermore, query evaluation takes around
200 ms on average for all the cases. Hence, the completeness assessment time is
comparable to the query evaluation time, and is even faster for simpler cases.

6 Conclusions and Future Work
Wikidata as a large-scale entity-centric KB might contain complete data that
is currently still unexplored. We argue that for entity-centric, crowdsourcing
KBs, SP-statements offer a good trade-off between expressiveness and practical
usability of completeness information. In this paper, we have explored several
ways to provide completeness information (in the form of SP-statements) for
Wikidata. We have described COOL-WD, the first tool to manage completeness
of a large knowledge base, which currently stores around 10,000 real completeness
statements. COOL-WD allows one not only to produce but also to consume
completeness statements: data completion tracking, completeness analytics, and
query completeness assessment. COOL-WD offers great opportunities for further
developing a high-quality linked open data space. Though in this paper we take
Wikidata as a use case of completeness management and consumption, our ideas
can also be adopted relatively easily to other entity-centric KBs.

An open, practical issue is the semantics of completeness for less well-defined
predicates such as “medical condition” or “educated at,” as detailed in [15].
When it is unclear what counts as a fact for a predicate, it is also not obvi-
ous how to assert completeness. A possible solution is to devise a consensus
or guidelines on what it means by a (complete) property, for instance: IMDb
guidelines on complete cast or crew at https://contribute.imdb.com/updates/

guide/complete. Further, the subjectivity of completeness along with poten-
tial impacts of COOL-WD has been discussed by the Wikidata community
at https://lists.wikimedia.org/pipermail/wikidata/2016-March/008319.html.

Acknowledgment

This work has been partially supported by the projects “MAGIC”, funded by
the province of Bozen-Bolzano, and “TQTK” and “CANDy”, funded by the Free
University of Bozen-Bolzano. We would thank Amantia Pano and Konrad Hofer
for their technical support for COOL-WD server, as well as Lydia Pintscher for
pointers regarding Wikidata gadget development.

References

1. M. Acosta, E. Simperl, F. Flöck, and M. Vidal. HARE: A hybrid SPARQL engine
to enhance query answers via crowdsourcing. In K-CAP, 2015.

https://contribute.imdb.com/updates/guide/complete
https://contribute.imdb.com/updates/guide/complete
https://lists.wikimedia.org/pipermail/wikidata/2016-March/008319.html

2. X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, and Y. Ye.
KATARA: A data cleaning system powered by knowledge bases and crowdsourcing.
In ACM SIGMOD, 2015.

3. F. Darari, W. Nutt, G. Pirrò, and S. Razniewski. Completeness statements about
RDF data sources and their use for query answering. In ISWC, 2013.

4. F. Darari, R. E. Prasojo, and W. Nutt. CORNER: A completeness reasoner for
SPARQL queries over RDF data sources. In ESWC Demos, 2014.

5. F. Darari, S. Razniewski, R. E. Prasojo, and W. Nutt. Enabling fine-grained RDF
data completeness assessment. In ICWE, 2016.

6. L. Galárraga, S. Razniewski, A. Amarilli, and F. M. Suchanek. Predicting
completeness in knowledge bases. Technical report, 2016. Available at http:

//a3nm.net/publications/galarraga2016predicting.pdf.
7. P. J. Hayes and P. F. Patel-Schneider, editors. RDF 1.1 Semantics. W3C Recom-

mendation, 25 February 2014.
8. A. Y. Levy. Obtaining complete answers from incomplete databases. In VLDB,

1996.
9. P. N. Mendes, H. Mühleisen, and C. Bizer. Sieve: Linked Data quality assessment

and fusion. In Joint EDBT/ICDT Workshops, 2012.
10. P. Mirza, S. Razniewski, and W. Nutt. Expanding Wikidata’s Parenthood In-

formation by 178%, or How to Mine Relation Cardinalities. In ISWC Posters &
Demos, 2016.

11. A. Motro. Integrity = validity + completeness. ACM TODS, 14(4):480–502, 1989.
12. H. Paulheim and C. Bizer. Improving the Quality of Linked Data Using Statistical

Distributions. Int. J. Semantic Web Inf. Syst., 10(2):63–86, 2014.
13. D. Rao, P. McNamee, and M. Dredze. Entity Linking: Finding Extracted Entities

in a Knowledge Base. In Multi-source, Multilingual Information Extraction and
Summarization, pages 93–115. Springer, 2013.

14. S. Razniewski and W. Nutt. Completeness of queries over incomplete databases.
PVLDB, 4(11):749–760, 2011.

15. S. Razniewski, F. M. Suchanek, and W. Nutt. But what do we actually know? In
AKBC Workshop at NAACL, 2016.

16. M. Saleem, M. I. Ali, A. Hogan, Q. Mehmood, and A. N. Ngomo. LSQ: The Linked
SPARQL Queries Dataset. In ISWC, 2015.

17. O. Savkovic, P. Mirza, S. Paramonov, and W. Nutt. MAGIK: managing complete-
ness of data. In CIKM Demos, 2012.

18. Z. Sheng, X. Wang, H. Shi, and Z. Feng. Checking and handling inconsistency of
DBpedia. In WISM. 2012.

19. G. Töpper, M. Knuth, and H. Sack. DBpedia ontology enrichment for inconsistency
detection. In I-SEMANTICS, 2012.

20. D. Vrandečić and M. Krötzsch. Wikidata: a free collaborative knowledgebase.
Communications of the ACM, 57(10):78–85, 2014.

21. R. Y. Wang and D. M. Strong. Beyond accuracy: What data quality means to
data consumers. J. of Management Information Systems, 12(4):5–33, 1996.

22. A. Zaveri, D. Kontokostas, M. A. Sherif, L. Bühmann, M. Morsey, S. Auer, and
J. Lehmann. User-driven quality evaluation of DBpedia. In I-SEMANTICS, 2013.

http://a3nm.net/publications/galarraga2016predicting.pdf
http://a3nm.net/publications/galarraga2016predicting.pdf

	Managing and Consuming Completeness Information for Wikidata Using COOL-WD

