
The Impact of an Extra Feature on
the Scalability of Linked Connections

Pieter Colpaert, Sander Ballieu, Ruben Verborgh, and Erik Mannens

Ghent University – iMinds – Data Science Lab
firstname.lastname@ugent.be

Abstract. Calculating a public transit route involves taking into account
user preferences: e.g., one might prefer trams over buses, one might prefer
a slight detour to pass by their favorite coffee bar or one might only be
interested in wheelchair-accessible journeys. Traditional route planning
interfaces do not expose enough features for these kind of questions to
be answered. In previous work, we proposed a Linked Data interface,
called Linked Connections, which allows user-agents to evaluate the route
planning queries on the client-side, and thus allow for extra features to be
implemented by data reusers. In this work, we study how and where these
new features can be added to the Linked Connections framework. We
researched this by adding the feature of wheelchair accessibility both on
server and client, and comparing these two solution on query execution
time, cache performance and CPU usage on server and client. We found
that for the use case of wheelchair accessibility, there is no advantage
of adding this feature on the server: the query execution time does not
improve, while the cache hit rate lowers.

Keywords: Linked Connections, route planning, Connection Scan Algorithm,
wheelchair accessibility, public transit

1 Introduction

It is in the interest of transport companies to maximize the reuse of their data.
Having the latest updates on every possible screen will indeed give a higher
customer satisfaction to the traveler. Today, we see evidence thereof by public
transit companies that publish their data as data dumps on the Web using the
General Transit Feed Specification (GTFS) on the one hand, or expose route
planning interfaces over HTTP on the other. One might want to have the fastest
route while a passenger with heavy luggage wants to minimize the number of
transfers. Other travelers want to find journeys that are not only short but also
pleasant [5] or journeys that are accessible with a certain disability. To this end,
Linked Connections [2] was introduced as a way for user-agents to download the
data just in time, when executing the route planning algorithm itself.

In this paper, we investigate how such extra features can be added to a transit
route planner that uses the Linked Connections framework. More specifically, we



add the possibility to filter on journeys that are wheelchair-accessible, as this
is a good example of a personal feature which the client can know in advance.
We wonder what the effect on the query execution time, cache hit rate and CPU
time is when adding a wheelchair accessibility filter on the server, compared
to adding nothing to the server at all. Our hypothesis is that adding a filter
on the server-side will take off load from the client and add load to the server.
Furthermore, when adding a filter on the server-side and under “normal” load,
we expect to see a lower query execution time.

In the next section the background and related work within public transit
route planning are described. Then the Linked Connections framework is intro-
duced followed by the changes that are needed to support wheelchair-accessible
journeys. We then describe the used evaluation method and the corresponding
results. Finally, we conclude and give perspectives for consuming and publishing
Linked Data.

2 Related Work

GTFS, as used by Google Maps since 2005, contains a collection of text files. It
defines the base vocabulary we are working with:
stop A location where passengers board or disembark from a transit vehicle1.
trip A collection of stops followed by a transit vehicle at specific times2.
route An advertised route followed by one or more trips that follow a similar

set of stops3.
transfer A rule to transfer from one stop to another4.

The most relevant files within GTFS are: stops.txt, routes.txt, trips.txt,
stop_times.txt, and transfers.txt. GTFS is also available as Linked-GTFS at
http:// vocab.gtfs.org/ , which is a mapping of these terms to URIs. However, the
de facto way to exchange transit data is to send this file over e-mail or publish a
zip-file on the Internet using FTP or HTTP.

The problem that we need to solve using this data is the Earliest Arrival Time
(EAT) problem. An EAT query consists of a departure stop, a departure time,
and a destination stop. The goal is to find the fastest journey to the destination
stop (qdeststop) starting from the departure stop (qdepstop) at the departure
time (qdeptime). In order to solve EAT queries, the Connection Scan Algorithm
(CSA) [3], introduced in 2013, uses a stream of connections. A connection is a
combination of a departure stop (cdepstop) with a departure time (cdeptime) and
an arrival stop (carrstop) with an arrival time (carrtime). It represents a public
transit vehicle that goes from cdepstop at cdeptime to carrstop at carrtime without
stopping at an intermediate stop. All connections are combined into a connection
stream, sorted by increasing departure time. The CSA algorithm scans every
reachable connection. Because the stream of connections is sorted by departure
1 http:// vocab.gtfs.org/ terms#Stop
2 http:// vocab.gtfs.org/ terms#Trip
3 http:// vocab.gtfs.org/ terms#Route
4 http:// vocab.gtfs.org/ terms#TransferRule

http://vocab.gtfs.org/
http://vocab.gtfs.org/terms##Stop
http://vocab.gtfs.org/terms##Trip
http://vocab.gtfs.org/terms##Route
http://vocab.gtfs.org/terms##TransferRule


time, it is sufficient to only consider the connections where the cdeptime is later
than qdeptime. A connection is reachable when there exists a series of connections
that starts at qdepstop and ends at cdepstop. When a new scanned connection leads
to a faster route to the arrival stop, the MST will be updated. This is the case
when carrtime is earlier than the actual EAT at carrstop. Finally the algorithm
ends when the destination stop is added to the minimum spanning tree. The
resulting journey can be obtained by following the path in the MST backwards,
starting from qdeststop to qdepstop.

Linked Connections (LC) is a framework for publishing public transit data [2].
The framework publishes and consumes data using the Linked Data vocabularies
of Linked-GTFS, Linked Connections and Hydra. It consists of a server which
is responsible for publishing connections in an ordered fashion and a client that
uses the Connection Scan Algorithm to process these connections. The LC server
publishes its connections as Linked Connections Fragments (LCF) over HTTP
using a REST API. A LCF is a part of a list of connections that is sorted by
departure time and then fragmented based on departure time intervals. The
different LCFs are connected with each other by hypermedia-links: it contains a
link to the next and the previous page. This allows the server to dynamically shrink
or expand the departure time intervals depending on the number of connections
within the interval. The Hydra ontology [4] is used to specify the next and
previous page links as well as how the resource itself should be discovered.

The LC client is responsible for building a stream of connections that can
be given to the Connection Scan Algorithm as input. In order to do this the
LC client downloads LC fragments from the LC server. The URI template to
discover the first page is specified in the entry point of a LC server. To get the
following LC fragments the client needs to follow next page links. Because it is
likely that multiple identical HTTP requests will be executed by the same or
other user-agents, both server and client caching are enabled.

3 Linked Connections with wheelchair accessibility

A wheelchair-accessible journey has two important requirements: first, all vehicles
used for the route should be wheelchair-accessible. Thus, the trip (a sequence of
stops that are served by the same vehicle), should have a wheelchair-accessible
flag set to true when there is room to host a wheelchair on board. Secondly,
every transfer stop, the stop where a person needs to change from one vehicle to
another vehicle, should be adapted for people with limited mobility. As the LC
server does not know where the traveler is going to hop on as it only publishes
the time tables in pages, it will not be able to filter on wheelchair-accessible
stops.

When extending the framework of Linked Connections with a wheelchair
accessibility feature, there are two possible ways of implementing this:
1. Filter both the wheelchair-accessible trips and stops on the client, and
2. Only filter the wheelchair-accessible trips on the server, filter the stops on

the client.



3.1 Linked Connections with filtering on the client

In a first approach, the server does not expose wheelchair accessibility information
and only exposes the Linked Data of the train schedules using the Linked
Connections vocabulary. The client still calculates wheelchair-accessible journeys
on the basis of its own sources. We thus do not extend the server: the same server
interface is used as in LC without wheelchair accessibility. The LC client however
is extended with two filter steps: the first filter removes all connections from the
connections stream whose trip is not wheelchair-accessible. The second filter is
added to CSA, to filter the transfers stops. When CSA adds a new connection
to the minimum spanning tree (MST), it detects whether this would lead to a
transfer. CSA can use the information from stops in the Linked Open Data (LOD)
cloud to decide if the transfer can be made and the connection can be added to
the MST. To be able to support dynamic transfers times, CSA can also request
Linked Data on “transfers” from another source. When a transfer is detected, the
Connection Scan Algorithm will add the transfer time to the departure time of
the connection. The trips, stops and transfers in our implementation are simple
JSON-LD documents. They are connected to a module called the data fetcher
that takes care of the caching and pre-fetching of the data.

LC Client
LC Server 

&
http cache

http
Cache

Filter
trips

CSA
journey 
planning

Fetch transfer 
times

between stops

LOD Cloud

Fetch trip 
information

Fig. 1. Architecture for Linked Connections with wheelchair accessibility filtering on
the client-side.A user that needs wheelchair-accessible route planning advice consults
the LC client. The LC client discovers the first page of a connections stream through
the entrypoint of a LC server. Once the connections stream is set up by downloading
the next page linked from every HTTP response, the LC client can filter the wheelchair-
accessible trips based on data it got from the LOD cloud. The filtered connections
stream is then provided to the CSA algorithm, which when discovering transfer times
also takes into account the wheelchair accessibility of a stop. Every HTTP request is
easily cacheable as each client will request similar pages.

This solution provides an example of how the client can now calculate routes
using more data than the data published by the transit companies. As wheelchair



accessibility is specified in the GTFS standard, we can expect that the public
transit companies provide this data. In practice we have noticed that the data is
mostly not available, which can be consider normal for an optional field. This
makes us believe an external organisation that represents the interests of the less
mobile people should be able publish this data.

3.2 Linked Connections with filtering on the server and client

In the Linked Connections solution with filtering on both server and client-side,
the trips filtering, as illustrated in Figure 2. The server still publishes the time
schedules as Linked Data, yet an extra hypermedia control is added to the LC
server to enable the trips filter on the resulting connections. The wheelchair
accessibility information is directly added to the servers’ database, and an index
is configured, so that the LC server can query for this when asked.

LC Client
LC Server

&
trips filter

&
http cache

http
Cache

CSA
journey 
planning

Fetch transfer 
times

between stops

LOD Cloud

Fig. 2. Architecture for Linked Connections with wheelchair-accessible trips filtering
on the server-side shares a similar narrative with Figure 1. Now, the server however
already knows the wheelchair accessibility of the trips and exposes a filter functionality
over HTTP.

4 Evaluation

The purpose of the evaluation is to compare the two LC solutions based on the
scalability of the server-interface, the query execution time of an EAT query and
the CPU time used by the client.

4.1 Query mixes

There exists an Open Data source for the query logs of a real route planner in
Belgium [1] called iRail5. As we also have access to the timetables of the Belgian
5 http:// api.irail.be

http://api.irail.be


railways, we chose to benchmark a route planner for Belgium. From these logs we
made approximate query mixes where the average number of queries per second
grows linearly, by taking the 15 minutes during peak hours on the first of October
2015, and consequentially adding the next 15 minutes as if they also happened
during that time6. Figure 3 plots the average number of queries per second for
the 10 query mixes.

Fig. 3. The 10 query mixes that are used for the evaluation have a growing average
number of queries per second.

The iRail route planner does not support wheelchair-accessible route planning
and thus the logs do not contain any information about wheelchair accessibility.
According to European statistics7, 13.9% of Belgians have a basic activity difficulty
in 2011. Not all of these need wheelchair-accessible journeys, yet also people
pushing strollers might be interested in wheelchair-accessible journeys. For the
query mixes, we therefore randomly added a wheelchair accessibility flag in 10%
of the queries.

4.2 Evaluation design

Following resources have been set up for the evaluation:
– Two LC servers one for the LC with filtering on the client setup and one for

the LC with trips filtering on the server setup. The MongoDBs used by the
6 You can download these query mixes at https:// github.com/ linkedconnections/
benchmark-belgianrail

7 http:// ec.europa.eu/ eurostat/ statistics-explained/ index.php/Disability_statistics_
-_prevalence_and_demographics

https://github.com/linkedconnections/benchmark-belgianrail
https://github.com/linkedconnections/benchmark-belgianrail
http://ec.europa.eu/eurostat/statistics-explained/index.php/Disability_statistics_-_prevalence_and_demographics
http://ec.europa.eu/eurostat/statistics-explained/index.php/Disability_statistics_-_prevalence_and_demographics


LC servers are populated with connections of the Belgian railway company
of 2015.

– A transfers, trips and stops resource as a data source for the wheelchair
accessibility information.
A NGINX proxy cache server is installed in front of each HTTP server to

enable compression and caching with a max memory of 1GB. Each Linked
Connections resource is configured to be able to cached for 1 minute, which is
the update velocity of the information of the Belgian railway company. The other
resources are fetched once when the client is started.

On each run, a specific query load and route planner is selected. Then, the
NGINX cache is cleared for all HTTP servers. During a period of 15 minutes the
queries from the query mix are sent to the route planner depending on their time
offset and four metrics are measured during this evaluation:
– The percentage CPU usage at the server side measured by measuring the

CPU time used by the server application and divide it by the CPU time
already passed since the start of the application. The pidstat command from
the Sysstat package was used to calculate the CPU time.

– The percentage CPU usage at the client side measured the same way, now
on the client application.

– The query execution time per connection. As the time complexity of the
query execution time is O(n) with n the number of connections, we divide
the execution time by the number of scanned connection to have a fair
comparison.

– Cache hit rate at the client-side by counting the number of cache misses and
divide it by the number of hits and misses.
We only take into account one agent that has to process multiple queries.

Multiple agents could nonetheless be simulated by disabling the client-side cache.
The results would be similar, only the server cache would be used instead of the
client cache.

The experiments were executed on an Intel(R) Core(TM) i5-3470 CPU @
3.200 MHZ with 8 GB of RAM with each script being executed on a single thread.

5 Results

Figure 4 contains the CPU load of the server. The server interface with filtering
on the server has a similar scalability as without the filter functionality. However,
an average raise of 1.24% in processing power needed can be noticed.

In Figure 5, we can see the CPU load of the client performing the algorithm.
When the query load is half of the real iRail load, we notice that the load is 20%
for filtering on the client and 21% for trips foltering on the server. Continuously
increasing the query load results in an increased client CPU load. The client load
of the solution with filtering on the client increases from 27% at query mix 1 to
93% at query-mix 16 while the solution with filtering on the server-side increases
from respectively 30% to 93%. For query loads higher than 12 times the iRail
load the difference between the two solution becomes less than 1%.



Fig. 4. The CPU usage at the server-side under increasing query load shows that
wheelchair accessibility filtering on the server takes more effort for the server under all
query loads.

Fig. 5. The CPU usage of the client is higher under increasing query load for the LC
setup with filtering on both the client and server-side than only on the client-side.

Figure 6 shows the average query response time per connection. We notice
that the fastest solution is the solution with filtering on the client for lower query
loads, yet for higher query loads, the execution times become comparable.

The cache performance for the three evaluated setups is given in Figure 7.
When observing half of the normal iRail query load the measured cache rate is
76% and 70% for respectively with filtering on the client as with trip filtering
on the server. The cache hit rate slowly decreases to respectively 70% and
64% at query mix 8 and finally to 64% and 61% at the highest query mix 16.
When observing all query loads, the cache hit rate measured from the Linked



Fig. 6. The average time needed to process one connection in milliseconds shows that
for the normal query loads the Linked Connections solution with trip filtering on the
server is on average slower than the solution with filtering only on the client. When the
query load is 8 times the normal query load, we can no longer notice a difference.

Connections framework with filtering on the client is lower than the framework
with filtering on both client and server-side.

Fig. 7. The cache hit rate shows that a boolean filter on the server reduces the cache
performance by 3% to 6%



When comparing the two LC implementations we can observe that moving
the trips filter from the client to the server-side does not cause an improvement
of the query execution time. The cache performance is better for the client-filting
solution because hybrid solution needs an extra parameter to query the LC server.
This results in more unique requests and consequently in a lower cache hit rate.
The loss of cache performance increases the number of requests that the LC
server needs to handle which leads to a higher CPU load at the server-side and
an increased query execution time. The difference becomes smaller as the query
load increases, as more queries can use the already cached Linked Connections
documents.

6 Conclusion

Our hypothesis that the server can help user-agents by doing the filtering on trips,
did not turn out to be true. There is no real advantage to be found for adding a
boolean filter on the server for wheelchair accessibility as the query execution time
does not improve. Furthermore, the server needs to invest 1.2% more CPU time in
order to answer the same queries, and the client needs to invest between 0.1% and
5.6% more CPU time. These results can be attributed to the drop in cacheability
of filtering trips on the server. For the Linked Connections framework, we will
not add a feature to the data publisher for filtering on wheelchair-accessible
trips. Instead, the distributed nature of Linked Data allows anyone to publish
wheelchair-accessible trips and stops in a different resource, which can also be
discovered and consumed by user-agents.

Finally there are also other aspects to take into account which can lead to an
increased user experience when using the option with all filtering on the client. As
the filtering is executed by the client, we can easily change the parameters that
are used within the filter. For example the transfer times can be changed based
on your own walking speed, or you can choose to use an external source (different
from the public transit company) to determine the wheelchair accessibility of the
stops. Running the algorithm on the client-side also insures the privacy of the
end-user: departure stops and arrival stop are never sent to the public transit
agencies.

For consuming and publishing Linked Data on the Web using public interfaces,
we might never know at the time of publishing what consumers are going to be
doing with the data. Adding functionality on the server might not always lead to
a better Linked Data reuse framework, as evidenced by this paper.

References

1. P. Colpaert, A. Chua, R. Verborgh, E. Mannens, R. Van de Walle, and A. Vande Mo-
ere. What public transit API logs tell us about travel flows. In Proceedings of the
6th USEWOD Workshop on Usage Analysis and the Web of Data, Apr. 2016.

2. P. Colpaert, A. Llaves, R. Verborgh, O. Corcho, E. Mannens, and R. Van de Walle.
Intermodal public transit routing using Linked Connections. In Proceedings of the
14th International Semantic Web Conference: Posters and Demos, Oct. 2015.



3. J. Dibbelt, T. Pajor, B. Strasser, and D. Wagner. Intriguingly Simple and Fast
Transit Routing. In Experimental Algorithms, pages 43–54. Springer, 2013.

4. M. Lanthaler and C. Gütl. Hydra: A vocabulary for hypermedia-driven web apis.
LDOW, 996, 2013.

5. D. Quercia, R. Schifanella, and L. M. Aiello. The shortest path to happiness:
Recommending beautiful, quiet, and happy routes in the city. In Proceedings of the
25th ACM Conference on Hypertext and Social Media, HT ’14, pages 116–125, New
York, NY, USA, 2014. ACM.


	The Impact of an Extra Feature on the Scalability of Linked Connections
	Introduction
	Related Work
	Linked Connections with wheelchair accessibility
	Linked Connnections with filtering on the client
	Linked Connections with filtering on the server and client

	Evaluation
	Query mixes
	Evaluation design

	Results
	Conclusion


