
EPC Verification in the ARIS for MySAP

reference model database

B.F. van Dongen M.H. Jansen-Vullers

Department of Technology Management

Eindhoven University of Technology

P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

{b.f.v.dongen,m.h.jansen-vullers}@tue.nl

Abstract: Process aware information systems, such as Workflow Management Sys-
tems or ERP systems require process specifications for their implementation. Since
many of those process specifications are similar for different companies, databases
with so-called reference models, such as Aris for My-SAP, have been developed.
These databases can be customized towards company-specific process specifications,
thus keeping implementation costs down. To avoid costly problems with information
systems on an operational level, it is of the utmost importance that the reference mod-
els used to design the information system are correct.

In this paper, we analyze a selection of the reference models for SAP R/3 that are
stored in the ARIS for MySAP database, and we verify whether they are correct. Since
these models are stored as Event-driven Process Chains (EPCs), we use a verification
approach tailored towards the verification of this language to check for errors in the
models. We show that the reference models in ARIS for MySAP indeed contain some
errors and we present the implications of those errors, if these models would be used
for the execution of business processes.

1 Introduction

Nowadays, more and more enterprise information systems rely on process models for their

specification. Companies offering large information systems employ consultants who,

together with the customer, make process specifications in terms of executable process

models. These process models are then used to configure the final installation of the in-

formation system. Many of these process aware information systems (for example En-

terprise Resource Planning (ERP) [KT98] systems and Workflow Management (WFM)

[AH02, LR99]) are designed to support business processes on an operational level and to

fully benefit from these systems, process models need to be specified as precise as possible.

However, designing process models precisely is a complicated and error prone task. For-

tunately, process models that are used in different companies, but with similar purposes,

often have very similar designs. For this reason, databases have been developed that con-

tain generic process models that can be customized towards company-specific business

processes. These process models can serve as a guideline when designing process models

to implement large information systems, i.e. they serve as a reference for the designer,



Business

Model

Executable

Specification

Reference

Model

Process

Model

process model design

implementation

Figure 1: Phases in the configuration of a PAIS

hence the term reference models.

For a large information system to support one process, the configuration can roughly be

divided in two phases as shown in Figure 1. In the first phase, a reference model that best

suits the process under consideration is selected (for example for a purchasing process,

this should be the best purchasing reference model, such as vendor selection or internal

procurement). Together with the business model of the specific organization, the refer-

ence model is customized, resulting in a process model. This process model is used in

the implementation phase to configure a specific information system, such as SAP R/3.

Although all the steps presented here are usually executed by trained professionals, still

they are performed by humans, thus errors are likely to be introduced.

Using reference models in the process model design phase helps to avoid making too many

errors. It does however not eliminate the possibility of errors being introduced completely.

When using reference models, errors are likely to be introduced for two main reasons.

First, errors that are already present in the reference models are likely to be copied into

the final process model. Second, process models are designed for each process indepen-

dently, while in real life, processes are mutually dependent. Any error in a process model

used for the implementation phase has a high possibility of leading to severe operational

consequences, once the information system is fully implemented. Since the costs of cor-

recting operational errors by far exceeds the costs of correcting modelling errors, it is of

the utmost importance that the reference models used are correct.

To find errors in process models, many authors have developed verification methods. Ba-

sically, all of these verification methods can be used to check whether a process model is

correct, in other words, they can be used to check for correctness of a process model. In

Section 2, we categorize verification methods and we show that some methods look on

the level of the executable specification, some on level of the business model and some on

process models or reference models.

In this paper, we focus on the correctness of reference models for a specific information

system, SAP R/3. The reference models are available in the ARIS for MySAP database

in the ARIS Toolset, a commercial product of IDS-Scheer. As a modelling language,

the ARIS Toolset uses Event-driven Process Chains (EPCs) [KNS92, KT98, Sch94]. We

selected SAP R/3, since EPCs are used in a large variety of systems, including SAP R/3.

Moreover, SAP R/3 is market leader in the field of Enterprise Resource Planning systems.

Many verification approaches exist for EPCs. The verification method we chose looks at



verification from a designers point of view and assumes the process designer to know what

he intends to model. In the field of software engineering, this could be seen as validation,

i.e. does the software (in our case the model) do what it is intended to do (in our case,

what the process designer intended to model). However, a process specification such as an

EPC should not be seen as an executable specification. Instead, the EPC should be seen

as the specification of the process. Using this specification an operational system can later

be implemented in a company. The approach presented in this paper, verifies the process

specification (the EPC) against the possible future behaviour of an operational system.

Hence the term verification.

We take the SAP reference models as a starting point, and use the verification approach

presented in [DVA05], as our verification method. We show that many of the SAP refer-

ence models are correct and can indeed be used without any problems. However, we also

show that some of the models should be used with care, i.e., the environment in which

they are used needs to satisfy certain conditions for them to be correct. Furthermore, we

show that a small number of the reference models is structurally incorrect, i.e., they need

to be revised before they can be used as executable models. With respect to these errors,

we investigate some common causes, and show how designers could avoid these errors.

The remainder of this paper is structured as follows. In Section 2 we discuss related work

with respect to the verification of process models. In Section 3 we describe our domain of

analysis: SAP R/3, the EPC modelling method and the reference models. Next, in Section

4, we describe the approach for the verification of these models as implemented in the

ProM framework1, and described in [DMV+, DVA05]. Following this approach we are

able to evaluate the SAP reference models in Section 5. This evaluation is based on two

lines: the evaluation of one complete module (Section 5.1) and a guided search through

the database with reference models (Section 5.2). Finally, in Section 6, we draw some

conclusions.

A subset of the work presented here has been published at the International Conference on

Business Process Management (BPM05) [DJV05]. That paper however deals mainly with

the question if the verification approach of [DVA05] could be used for the verification

of reference models. This paper extends [DJV05] by presenting the verification results

for the whole module from Section 5.1. Furthermore, we present a guided search trough

the reference model database in Section 5.2, illustrating some of the errors related to the

independent modelling of dependent business processes.

2 Related work

Since the mid-nineties, a lot of work has been done on the verification of process models,

and in particular workflow models. In 1996, Sadiq and Orlowska [SO96] were among the

first to point out that modeling a business process (or workflow) can lead to problems like

livelock and deadlock. In their paper, they present a way to overcome syntactical errors,

but they ignore the semantical errors. Nowadays, most work that is conducted focusses on

1See www.processmining.org for details.



semantical issues, i.e. “will the process specified always terminate” and similar questions.

The work that has been conducted on verification in the last decade can roughly be put

into three main categories, namely “verification of models with formal semantics”, “veri-

fication of informal models” and “verification by design”. In this section, we present these

categories and give relevant literature for each of them.

2.1 Verification of models with formal semantics

In the first category we consider the work that has been done on the verification of mod-

eling languages with formal semantics. One of the most prominent examples of such a

language are Petri nets [DE95, Mur89, RR98]. Since Petri nets have a formal mathe-

matical definition, they lend themselves to great extent for formal verification methods.

Especially in the field of workflow management, Petri nets have proven to be a solid the-

oretical foundation for the specification of processes. This, however, led to the need of

verification techniques, tailored towards Petri nets that represent workflows. In the work

of Van der Aalst and many others [Aal00, AH00, DR01, HSV03, VA00] these techniques

are used extensively for verification of different classes of workflow definitions. How-

ever, the result is the same for all approaches. Given a process definition, the verification

tool provides an answer in terms of “correct” or “incorrect”. However, not all modeling

languages have a formal semantics. On the contrary, the most widely used modeling tech-

niques, such as UML and EPCs are merely an informal representation of a process. These

modeling techniques therefore require a different approach to verification.

2.2 Verification of informal models

Modeling processes in a real-life situation is often done in a less formal language. People

tend to understand informal models easily, and even if models are not executable, they

can help a great deal when discussing process definitions. However, at some point in

time, these models usually have to be translated into a specification that can be executed

by an information system. This translation is usually done by computer scientists, which

explains the fact that researchers in that area have been trying to formalize informal models

for many years now. Especially in the field of workflow management, a lot of work has

been done on translating informal models to Petri nets. Many people have worked on the

translation of EPCs to Petri nets, cf., [Aal99, ADK02, DA04, LSW98]. The basic idea of

these authors however is the same: “Restrict the class of EPCs to a subclass for which we

can generate a sound Petri net”. As a result, the ideas are appealing from a scientific point

of view, but not useful from a practical point of view.

Also non-Petri-net based approaches have been proposed for the verification of informal

modeling languages. One of these ideas is graph reduction. Since most modeling lan-

guages are graph-based, it seems a good idea to reduce the complexity of the verification

problem by looking at a reduced problem, in such a way that correctness is not violated



by the reduction, i.e. if a model is not correct before the reduction, it will not be correct

after the reduction and if the model is correct before the reduction, it will be correct after

the reduction. From the discussion on graph reduction techniques started by Sadiq and Or-

lowska in 1999 [SO99, SO00] and followed up by many authors including Van der Aalst

et al. in [AHV02] and Lin et al in [LZLC02], it becomes clear that again the modeling

language is restricted to fit the verification process. In general this means that the more

advanced routing constructs cannot be verified, while these constructs are what makes

informal models easy to use.

The tendency to capture informal elements by using smarter semantics is reflected by

recent papers, cf. [ADK02, DA04, Kin04]. In these papers, the problem is looked at

from a different perspective. Instead of defining subclasses of models to fit verification

algorithms, the authors try to give a formal semantics to an informal modeling language.

Even though all these authors have different approaches, the goal in every case is similar:

try to give a formal executable semantics for an informal model.

2.3 Verification by design

The last category of verification methods is somewhat of a by-stander. Instead of doing

verification of a model given in a specific language, it is also possible to give a language in

such a way that the result is always correct. An example of such a modelling language is

IBM MQSeries Workflow [LR99]. This language uses a specific structure for modelling,

which will always lead to a correct and executable specification. However, modelling

processes using this language requires advanced technical skills and the resulting model is

usually far from intuitive.

In this section, we have presented an overview of the literature on process model verifica-

tion. We have categorized the various methods in three main categories and pointed out

why many of them are not used in practice. In this paper, we use the technique presented

in [DVA05] that can be seen as a combination of the first two categories. It assumes the

designer to be able to decide whether or not a specification is semantically correct. This

technique has been implemented in the Process Mining (ProM) Framework2, that is able

to import EPCs defined in the ARIS Toolset3 and provides the designer with feedback

about possible problems. SAP reference models are available in the ARIS Toolset format,

and the users of these reference models are typically consultants that have a deep knowl-

edge about the process under consideration. Hence, we found the approach described in

[DVA05] to be the best approach for the verification of the SAP R/3 reference models.

2See www.processmining.org for details.
3See www.ids-scheer.com for information about the ARIS toolset.



3 SAP R/3 Reference models

Several authors researched the area of reference models before, see e.g. [Ber, CK97,

FL03, Ros03, RA03, Sch00, Sil01a, Sil01b, Fra99]. In this section we introduce reference

models based on [RA03] and then explain Event-driven Process Chains (EPCs).

3.1 Reference models

Reference models are generic conceptual models that formalize recommended practices

for a certain domain [FL03, Fra99]. Reference models accelerate the modelling process

by providing a repository of potentially relevant business processes and structures. With

the increased popularity of business modelling, a wide and quite heterogenous range of

purposes can motivate the use of a reference model. These purposes include software

development, software selection, configuration of Enterprise Systems, workflow manage-

ment, documentation and improvement of business processes, education, user training,

auditing, certification, benchmarking, and knowledge management [RA03].

What we learn from previous authors is that we can distinguish two types of reference

models: industry models and application models. Industry reference models are generally

higher level models and they aim to streamline the design of enterprise-individual (par-

ticular) models by providing a generic solution. Application reference models describe

the structure and functionality of business applications including Enterprise Systems. In

these cases, a reference model can be interpreted as a structured semi-formal description

of a particular application. This application can then be seen as an existing off-the-shelf-

solution that supports the functionality and structure described in the reference model.

Rosemann and van der Aalst explain in [RA03] that application reference models tend to

be more complex than industry reference models. They explain that the SAP reference

model is one of the most comprehensive models [CK97]. Its data model includes more

than 4000 entity types and the reference process models cover more than 1000 business

processes and inter-organizational business scenarios. In the early nineties, two compa-

nies called SAP and IDS Scheer, have developed an intuitive process modelling langauge,

which resulted in the process modelling language Event-driven Process Chains (EPCs).

This language has been used for the design of the reference process models in the ARIS

for MySAP database that we consider in this paper. EPCs also became the core modelling

language in the Architecture of Integrated Information Systems (ARIS) [Sch00, KNS92].

3.2 Event-driven Process Chains (EPCs)

The SAP R/3 reference models are modelled as Event-driven Process Chains, or EPCs, in

the ARIS Toolset. An EPC consists of three main elements. Combined, these elements

define the flow of a business process as a chain of events. The elements used are:



Functions, which are the basic building blocks. A function corresponds to an activity

(task, process step) which needs to be executed. A function is drawn as a box with

rounded corners.

Events, which describe the situation before and/or after a function is executed. Functions

are linked by events. An event may correspond to the position of one function and

act as a precondition of another function. Events are drawn as hexagons.

Connectors, which can be used to connect functions and events. This way, the flow of

control is specified. There are three types of connectors: ∧ (and), × (xor) and ∨
(or). Connectors are drawn as circles, showing the type in the center of the circle.

Functions, events and connectors can be connected with edges in such a way that (i) events

have at most one incoming edge and at most one outgoing edge, but at least one incident

edge (i.e. an incoming or an outgoing edge), (ii) functions have precisely one incoming

edge and precisely one outgoing edge, (iii) connectors have either one incoming edge and

multiple outgoing edges, or multiple incoming edges and one outgoing edge, and (iv) in

every path, functions and events alternate (no two functions are connected and no two

events are connected, not even when there are connectors in between).

In the ARIS for MySAP reference databases, there are hundreds of EPCs that can be used

in many different situations, from “asset accounting” to “procurement” and “treasury”.

Since we cannot discuss all these models here, we focus on one of the modules that can be

considered to be a representative subset of all reference models, namely “procurement”.

This is a set of some 40 EPCs, all in the area of procurement. They describe processes for

(i) internal procurement, (ii) pipeline processing (iii) procurement of materials and external

services, (iv) procurement on a consignment basis, (v) procurement via subcontracting,

(vi) return deliveries, and (vii) source administration.

All 40 models were analyzed using the approach described in [DVA05]. Before we show

the results of this verification process in Section 5, we first briefly introduce this verifica-

tion approach in Section 4.

4 Verification approach

For the verification of the EPCs in our reference model database, we use the approach

described in [DVA05]. This verification approach is tailored towards the verification of

Event-driven Process Chains and it assumes the designer of an EPC to be able to decide

whether or not the EPC is correct. The approach is implemented in the ProM framework

([DMV+]) and it is freely available for download.

The verification process described in [DVA05] consists of several steps. In the first step,

the designer of the EPC has to provide the tool with all combinations of initial events

that could initiate the modelled process. Using this, the tool calculates all the possible

outcomes of the process (in terms of events that occurred and have not been dealt with).

Then, the tool requires the designer to divide those outcomes in two groups, the first of

which contains all the outcomes that represent the desired behavior of the process. The



A B

e
2

e
5

e
4

e
3

XX

/\

/\

C D

e
1

/\

Figure 2: EPC with choice synchronization

A B

e
2

e
5

X

C

e
1

/\

Figure 3: EPC with erroneous routing

second group contains the undesired behavior. Clearly, depending on the model, either of

the two groups can be empty.

4.1 Semantically correct models

Models that are semantically correct are models of processes that, when started in any

allowed state, will always terminate in one of the allowed termination states. In other

words, routing constructs do not have to be synchronized. Choices can be made locally,

without any knowledge of the execution history.

4.2 Syntactically correct models

Models that are syntactically correct are models of processes that, when started in any al-

lowed state, will always have the possibility to terminate in one of the allowed termination

states. In other words, routing constructs have to be synchronized. Not all choices can be

made locally, instead, the execution history limits the available options. An example of

such a construct can be found in Figure 2, where the choices after functions A and B have

to be synchronized in order to allow function C or D to execute. However, at any point in

time, there is always an option to complete in a correct way. For example enabling event

e3 after doing function A requires that after function B event e4 is enabled. This can easily

be enforced by an operational system.



4.3 Incorrect models

The final class of models are the incorrect ones. These models contain syntactical errors,

such as an AND-split followed by an XOR-join or the other way around. An example of

such an incorrect model is shown in Figure 3, where functions A and B originate from an

AND-split, and are later joined by an XOR-join. As a result, function C will be carried

out twice based on the same case in event e1.

5 Verification of the reference models

The application of the verification approach presented in Section 4 is based on a basic

assumption: It assumes that the designer of a model has a good understanding of the

actual business process that was modelled, and he knows which combinations of events

may actually initiate the process in real life. Typically, reference models are used by

consultants that do indeed have a good understanding of the process under consideration.

Besides, they know under what circumstances processes can start, and which outcomes

of the execution are desired and which aren’t. Therefore, the approach seems to be well

suited for the verification of the SAP reference models.

5.1 Procurement module

As stated in Section 3 we focus on the procurement module of the ARIS for MySAP

reference model database, since it can be seen as a representative subset of all reference

models. The procurement module contains several sub-modules and we analyzed all the

models from these modules using the approach presented in Section 4. Surprisingly, al-

ready in the first model (Internal Procurement) there were structural errors. In Figure 4,

we show a screenshot of the verification tool used. It shows part of an EPC in which an

AND-split is later joined by an XOR join. Recall Figure 3, where we have shown that

this is clearly incorrectly modelled. As a result, if this model would not be repaired, pay-

ments could be made for goods that were never received. Obviously, this is not desirable.

In Figure 5 we show the repaired model, i.e. the XOR-join has been changed into an

AND-join. Now, the model is semantically correct, which means that it can be used in a

business environment without problems.

The results of our analysis of the whole procurement module are presented in Table 1,

which contains three columns. The first column shows the name of the module. The

second contains the verification result. We use “I” for incorrect models, “S” for syntac-

tically correct models, and “C” for semantically correct ones. The final column gives

the business-wise implication of the error found if this model would be translated into an

executable specification, if applicable.



5.2 Guided model selection

From the previous section it seems that we can conclude that most errors are made in the

higher level models. Using this as a guide, we tried to find problems in the reference

models. In fact, in the high level models, it is not hard to find these mistakes, by manu-

ally browsing through the Aris for MySAP Reference model databases. These high level

models are usually more complex then the lower level models (i.e. they contain more func-

tions, events and connectors). Therefore, errors are more likely to be introduced there. We

would like to mention two observations that we made during this guided model selection.

The first observation is that often, one particular initial event is applied in several (sub-

)models. Take, for example, the event “Deliveries need to be planned”. This event occurs

in 15 different models. Every time it occurs, it is joined with the event “delivery is relevant

for shipment”. However, in some models this is done via an XOR-join, and in some mod-

els via an AND-join. In Figure 6, we show these two events, used in the “Consignment

Processing” module, where they are joined by an XOR-join. However, in Figure 7, we

show the same two events in an AND-join configuration. Since these two events are al-

ways followed by something that refers to transportation, it seems that they should always

appear in an AND-join configuration. However, only a designer with deep knowledge of

the process that is modelled can decide if that is the case.

The second observation, that seems to be a common one, is the effect of re-use. Typically,

many different organizations have very similar processes. Therefore, when building refer-

Figure 4: Erroneous “Internal Procurement”



Figure 5: Repaired “Internal Procurement”

ence models, it is a good idea to use one model to create another one. The new model is

then customized in such a way that it fits the needs of the new organization better. Figure 8

shows a screenshot of the ARIS toolset, showing two models, namely “Q-notification with

Complaint Against Vendor” on top and “Internal Quality Notification” below. These two

models are exactly alike, except that in the top-model, a vendors complaint score can be

updated. Here, re-use has been applied correctly.

In Figure 9, two models are shown for which the re-use was performed incorrectly. The

model on the left hand side represents the handling of a “Service Order” and on the right

hand side it represents the handling of a “Maintenance Order”. They are very similar,

except that the latter does not make a distinction between maintenance at a customer site

and at an internal site. Both models however, contain the same mistake, which results from

re-using one reference model to create the other model. When services are to be entered,

the rightmost event called “Services are to be Entered” occurs. However, when that is the

case, due to the XOR-split in front of it, the function “Overall Completion Confirmation”

will never be able to execute. Solving this problem requires a good understanding of the

modelled situation since many correct solutions are possible. It is important to realize that

the changes made to the original model do not introduce the error. The error appears in

both models.



Figure 6: Events joined as XOR (×)

Figure 7: Events joined as AND (∧)



Table 1: Table of results for the procurement module
Module name Result Implication of the problem

Internal Procurement I Payments can be done for goods never received.

→֒ Goods Receipt C

→֒ Invoice Verification C

→֒ Purchase Requisition C

→֒ Purchasing C

→֒ Warehouse stores C

Pipeline Processing C

→֒ Invoice Verification C

→֒ Pipeline Withdrawal C

Materials and External Services S An invoice can be paid for ordered goods (not services) that

have not yet been delivered.

→֒ Goods Receipt C

→֒ Invoice Verification C

→֒ Purchase Requisition C

→֒ Purchasing C

→֒ Service Entry Sheet C

→֒ Transportation C

→֒ Warehouse/Stores C

Procurement on a Consignment basis C

→֒ Goods Receipt C

→֒ Invoice Verification C

→֒ Purchase Requisition C

→֒ Purchasing C

→֒ Warehouse/Stores C

Procurement via Subcontracting I An invoice that is received twice will be paid twice.

→֒ Goods Receipt C

→֒ Invoice Verification C

→֒ Provision of Components C

→֒ Purchase Requisition C

→֒ Purchasing C

→֒ Transportation C

→֒ Warehouse/Stores S When materials are simultaneously placed into the stock and

removed from it, erroneous behavior occurs. Operational pro-

cedures should avoid this.

Return Deliveries C

→֒ Invoice Verification C

→֒ Outbound Shipments C

→֒ Quality Notification C

→֒ Shipping C

→֒ Warehouse C

Source Administration C

→֒ Outline Purchase Agreements C Redundant objects are present.

→֒ RFQ/Quotation C

6 Conclusion and future work

Although we only looked at a small subset of the entire reference model database, we

can draw some important conclusions. First of all, it seems that problems are more easily

introduced into larger models than into smaller ones. The reason that we did not find many

problems in low level models can probably be explained by the fact that these models are

typically very small and thus easy to understand. Although this may seem trivial, it shows

that even reference models should be kept small and understandable to the designers that

use them.

When the smaller models that are usually correct, are connected by higher level models,

errors are easily introduced as well. As we saw in Section 5, these errors can lead to severe

complications, such as invoices being paid twice. Second, when the same, or similar events



are used in several modules, special care has to be taken. As we saw for the events with

respect to shipments, there was no consensus about the use of them in different modules.

Finally, the errors we found with our verification approach were all trivial to repair. There-

fore, we feel that the use of such a verification tool in the early stages of process modelling,

or reference model development would greatly improve the effectiveness and applicability

of these models in later stages.

At this moment, we see two interesting questions that we will follow up on. The first is

the question of the involvement of the designer in the verification process. In Section 4,

we have shown that the designer is involved in the verification process. However, some

decisions were made by the verification tool itself (for example which reduction rules to

use). It would be interesting to know to what extent designers want to be involved in the

verification process, maybe up to the point where they can specify their own operational

semantics for the models under consideration.

Secondly, the verification method selected relies on behavioral properties of the model un-

der consideration. We are interested in a verification method that would include structural

properties as well. Although in our analysis performance was never an issue, it could be

for larger, more complicated models.

Figure 8: Correct re-use of reference models



Figure 9: Erroneous re-use of reference models

References

[Aal99] W.M.P. van der Aalst. Formalization and Verification of Event-driven Process Chains.
Information and Software Technology, 41(10):639–650, 1999.

[Aal00] W.M.P. van der Aalst. Workflow Verification: Finding Control-Flow Errors using Petri-
net-based Techniques. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors,
Business Process Management: Models, Techniques, and Empirical Studies, volume
1806 of Lecture Notes in Computer Science, pages 161–183. Springer-Verlag, Berlin,
2000.

[ADK02] W.M.P. van der Aalst, J. Desel, and E. Kindler. On the Semantics of EPCs: A Vicious
Circle. In M. Nüttgens and F.J. Rump, editors, Proceedings of the EPK 2002: Busi-
ness Process Management using EPCs, pages 71–80, Trier, Germany, November 2002.
Gesellschaft für Informatik, Bonn.

[AH00] W.M.P. van der Aalst and A.H.M. ter Hofstede. Verification of Workflow Task Struc-
tures: A Petri-net-based Approach. Information Systems, 25(1):43–69, 2000.

[AH02] W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and
Systems. MIT press, Cambridge, MA, 2002.

[AHV02] W.M.P. van der Aalst, A. Hirnschall, and H.M.W. Verbeek. An Alternative Way to An-
alyze Workflow Graphs. In A. Banks-Pidduck, J. Mylopoulos, C.C. Woo, and M.T.
Ozsu, editors, Proceedings of the 14th International Conference on Advanced Infor-
mation Systems Engineering (CAiSE’02), volume 2348 of Lecture Notes in Computer
Science, pages 535–552. Springer-Verlag, Berlin, 2002.

[Ber] P. Bernus. GERAM: Generalised Enterprise Reference Architecture and Methodology.

[CK97] T. Curran and G. Keller. SAP R/3 Business Blueprint: Understanding the Business
Process Reference Model. Upper Saddle River, 1997.



[DA04] J. Dehnert and W.M.P. van der Aalst. Bridging the Gap Between Business Models and
Workflow Specifications. International Journal of Cooperative Information Systems,
13(3):289–332, 2004.

[DE95] J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, Cambridge, UK, 1995.

[DJV05] B.F. van Dongen and M.H. Jansen-Vullers. Verification of SAP reference models. In
Business Process Management 2005, volume 3649 of Lecture Notes in Computer Sci-
ence, pages 464–469. Springer-Verlag, Berlin, 2005.

[DMV+] B.F. van Dongen, A.K.A. de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and W.M.P.
van der Aalst. The ProM framework: A new era in process mining tool support. In
Application and Theory of Petri Nets 2005.

[DR01] J. Dehnert and P. Rittgen. Relaxed Soundness of Business Processes. In K.R. Dittrich,
A. Geppert, and M.C. Norrie, editors, Proceedings of the 13th International Conference
on Advanced Information Systems Engineering (CAiSE’01), volume 2068 of Lecture
Notes in Computer Science, pages 157–170. Springer-Verlag, Berlin, 2001.

[DVA05] B.F. van Dongen, H.M.W. Verbeek, and W.M.P. van der Aalst. Verification of EPCs:
Using reduction rules and Petri nets. In Conference on Advanced Information Systems
Engineering (CAiSE 2005), volume 3520 of Lecture Notes in Computer Science, pages
372–386. Springer-Verlag, Berlin, 2005.

[FL03] P. Fettke and P. Loos. Classification of Reference Models - a methodology and its appli-
cation. Information Systems and e-Business Management, 1(1):35–53, 2003.

[Fra99] U. Frank. Conceptual Modelling as the Core of Information Systems Discipline - Per-
spectives and Epistemological Challanges. In Proceedings of the America Conference
on Information Systems - AMCIS ’99, pages 695–698, Milwaukee, 1999.

[HSV03] K. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and Separability of Workflow
Nets in the Stepwise Refinement Approach. In W.M.P. van der Aalst and E. Best, editors,
Application and Theory of Petri Nets 2003, volume 2679 of Lecture Notes in Computer
Science, pages 335–354. Springer-Verlag, Berlin, 2003.

[Kin04] E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious Circle.
In J. Desel, B. Pernici, and M. Weske, editors, International Conference on Business
Process Management (BPM 2004), volume 3080 of Lecture Notes in Computer Science,
pages 82–97. Springer-Verlag, Berlin, 2004.

[KNS92] G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Processmodellierung auf der
Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des Instituts
für Wirtschaftsinformatik, Heft 89 (in German), University of Saarland, Saarbrücken,
1992.

[KT98] G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation. Addison-Wesley,
Reading MA, 1998.

[LR99] F. Leymann and D. Roller. Production Workflow: Concepts and Techniques. Prentice-
Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

[LSW98] P. Langner, C. Schneider, and J. Wehler. Petri Net Based Certification of Event driven
Process Chains. In J. Desel and M. Silva, editors, Application and Theory of Petri Nets
1998, volume 1420 of Lecture Notes in Computer Science, pages 286–305. Springer-
Verlag, Berlin, 1998.

[LZLC02] H. Lin, Z. Zhao, H. Li, and Z. Chen. A Novel Graph Reduction Algorithm to Identify
Structural Conflicts. In Proceedings of the Thirty-Fourth Annual Hawaii International
Conference on System Science (HICSS-35). IEEE Computer Society Press, 2002.

[Mur89] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE,
77(4):541–580, April 1989.



[RA03] M. Rosemann and W.M.P. van der Aalst. A Configurable Reference Modelling Lan-
guage. QUT Technical report, FIT-TR-2003-05, Queensland University of Technology,
Brisbane, 2003.

[Ros03] M. Rosemann. Application Reference Models and Building Blocks for Management and
Control (ERP systems), pages 595–616. Springer-Verlag, Berlin, 2003.

[RR98] W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models, volume
1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

[Sch94] A.W. Scheer. Business Process Engineering, Reference Models for Industrial Enter-
prises. Springer-Verlag, Berlin, 1994.

[Sch00] A.W. Scheer. Business Process Modelling. 3rd edition, 2000.

[Sil01a] L. Silverston. The Data Model Resource Book, Volume 1, A Library of Universal Data
Models for all Enterprises. revised edition, 2001.

[Sil01b] L. Silverston. The Data Model Resource Book, Volume 2, A Library of Data Models for
Specific Industries. revised edition, 2001.

[SO96] W. Sadiq and M.E. Orlowska. Modeling and Verification of Workflow Graphs. Tech-
nical Report No. 386, Department of Computer Science, The University of Queensland,
Australia, 1996.

[SO99] W. Sadiq and M.E. Orlowska. Applying Graph Reduction Techniques for Identifying
Structural Conflicts in Process Models. In M. Jarke and A. Oberweis, editors, Proceed-
ings of the 11th International Conference on Advanced Information Systems Engineer-
ing (CAiSE ’99), volume 1626 of Lecture Notes in Computer Science, pages 195–209.
Springer-Verlag, Berlin, 1999.

[SO00] W. Sadiq and M.E. Orlowska. Analyzing Process Models using Graph Reduction Tech-
niques. Information Systems, 25(2):117–134, 2000.

[VA00] H.M.W. Verbeek and W.M.P. van der Aalst. Woflan 2.0: A Petri-net-based Workflow
Diagnosis Tool. In M. Nielsen and D. Simpson, editors, Application and Theory of
Petri Nets 2000, volume 1825 of Lecture Notes in Computer Science, pages 475–484.
Springer-Verlag, Berlin, 2000.


