
BISHOP – Big Data Driven Self-Learning Support for
High-performance Ontology Population

Daniel Knoell1, Martin Atzmueller2, Constantin Rieder1, and Klaus Peter Scherer1

1 Karlsruhe Institute of Technology
D-76344, Eggenstein-Leopoldshafen, Germany

firstname.lastname@kit.edu

2 University of Kassel, Research Center for Information System Design
Wilhelmshöher Allee 73, 34121 Kassel, Germany

atzmueller@cs.uni-kassel.de

Abstract. Self-learning support systems are already being successfully used to
support sophisticated processes. For the widespread industrial use, there are still
challenges in terms of accessibility with respect to the process and the scalability
in the context of large amounts of data.
This paper provides an example-driven view on the Bishop project for Big Data
driven self-learning support for high-performance ontology population. We out-
line workflows, components and use cases in the context of the project and discuss
methodological as well as implementation issues.

1 Introduction

Linked Enterprise Data requires the effective and efficient learning of ontologies. Typ-
ically, only large data sources provide the means for obtaining results with sufficient
quality. Therefore, methods that work at large-scale are necessary, e. g., using high per-
formance methods, resulting in increasing efforts concerning Big Data processing and
management. In addition, typically specialized infrastructure needs to be set-up and
configured, which is usually complicated and costly. Therefore, both accessibility and
scalability of the applied methods and techniques need to be increased.

This paper presents the Bishop project that addresses these issues in order to provide
a systematic approach towards large-scale self-learning support systems. We present an
example-driven approach on the project and discuss specific workflows, components
and use cases supported by appropriate tools. Hence, the remainder of the paper is struc-
tured as follows: We first provide provide an overview on the Bishop project, putting it
into the context of related work, and discuss exemplary workflows and components in
Section 2, before we present a set of of use cases that are elaborated in a requirements
engineering step in order to identify first measures and process forces. Overall, These
use cases are used as a reference for the different architectural variants, e. g., in the con-
text of natural language processing methods for self-learning from texts. Furthermore,
we discuss suitable tool support in that context. Finally, we conclude with a summary
and outlook on further steps in Section 3.

2 BISHOP by Example: Workflow and Components

BISHOP is part of the APOSTLE project, which is the acronym for “Accessible Perfor-
mant Ontology Supported Text Learning“. While learning ontologies from text is not a
novel approach and is e. g., used to learn the concept hierarchy out of web data [10], the
Bishop project tackles the efficient and effective self-learning of ontologies for large
data. The TELESUP Project [9], for example also deals with the automatic ontology
population by using textual data, however, it does not consider Big Data.

In a first step, a conceptual framework is derived from the requirements that captures
the decisions for integrating self learning methods into high performance environments.
For that, different Big Data frameworks like Map/Reduce (Hadoop), Spark and Flink
need to be investigated, in order to estimate the performance in the scope of the targeted
data. Then a test scenario for the comparison of the results will be defined. After the set-
up of the big data infrastructure, it will be evaluated with different persistence strategies.
In parallel, it is necessary to find an easy way for the set-up of the big data environment
and the deploying of existing Java applications. An additional parallel task is to find and
efficient way for storing and querying huge amounts of semantic structures. Here, also
intelligent mechanisms for persistence, distribution and parallelization will be devised.

By optimizing the accessibility and scalability, significant efficiency improvements
in technical services for the creation of self-learning systems, such as expert systems
and knowledge-based support systems are enabled.

2.1 Exemplary Workflows

The project consists of different parts which lead to different workflows. These work-
flows are processed in parallel and are described in the following subsections.

Calculating a Thesaurus The automatic generation of a thesaurus requires the steps,
described in Figure 1.

PDF JSON

Ontology
learning

Structure Recognition Calculating Thesaurus

Thesaurus

Fig. 1: Workflow: Calculating a Thesaurus

The data format in industry is often PDF. So in the first step the PDF files need to
be converted to a more structured format like JSON. This is an important step, which
is also necessary for other areas of the processing and is detailed in section 2.3. The
JSON files serve as input for the application which calculates the thesaurus. A possible
application for this task could be “JoBimText” [15]. A further description is given in
section 2.3. Finally, as last step, the thesaurus can be used for ontology learning.

Easy Deployment The set up of an infrastructure to fulfill necessary tasks can be
very difficult and time consuming. Furthermore it should be noted that each user has
a different work equipment. Therefore, an easy deployment of such an infrastructure
is needed to start the data processing quickly and platform independent keeping the
frustration level low by avoiding installing, configuring and setting up activities.

A modern technology facing these restrictions could be a container based ap-
proach of deployment. One possible solution considering these limitations could be
the open-source project Docker that provides suitable features by deploying applica-
tions inside software containers. The so called docker images are providing the appli-
cations which are running in the docker containers and accelerating the distribution and
deploying efforts. By deploying a ready to start configuration with a preset environment
and set of applications the expectation is a more user friendly set up process that allows
a quick start.

In addition to the prepared configurations and on the basis of the above a further
important step is to design a set of conventions to reduce the complexity of mandatory
configurations. One possible solution could be the design of an appropriate configura-
tion and set up wizard that guides the user through the complex processes. This kind of
support could be a helpful extension because it has been in use for decades (e. g. classic
installer wizards) and has proven its worth.

A second point of the easy deployment is how to get an existing Java applica-
tion running on the big data environment, see Figure 2. Here appropriate conversion
methodologies need to be developed.

Java Application Cluster
convert

Fig. 2: Workflow: deploying a single computer application on a cluster

Storing and Querying Semantic Structures According to the current state of the art,
the management of huge amounts of semantic data (ontologies) is still inefficient. For
larger amounts of data the current solution is to merely use larger amounts of main
memory. However, if the limit of the currently used memory exceeds the volume of
the semantic data, there is at the moment no effective solution. Therefore, an problem-
solving approach, which can handle the requirements of huge ontologies is necessary.
An approach is intended, which retains the advantages of current solutions as well as
possible and fixes the weaknesses in dealing with large amounts of data. For this, inno-
vative methods needs to be developed and integrated into the overall approach.

2.2 Components

In Figure 3 the components of the whole project are illustrated. Via Business Services
all components of the system are loosely connected. This also includes the Self-learning
Methods which are evaluated under the aspects of parallelizability and scalability. These
methods can either be in the field of text learning [6], for example NLP, and in the field
of learning with structured data. After the evaluation follows a review and then based
on the results an adaptation.

Various forms of parallelization are implemented and evaluated. The component
Persistence allows the permanent storage of the documents. The aim is to develop a li-
brary which offers different options how to store the documents. It detects depending on
the required scaling and the used system which persistence method is to be used. In the
the first step the documents are stored on the local file system. After that the implemen-
tation of additional storage capabilities, such as the Hadoop Distributed File System
(HDFS) or MapR-DB, is done. These can be automatically selected when storing large
amounts of data.

Therefore the scalability of the infrastructure has to be evaluated. The results of
the evaluation allow the construction (or potentially refinement) of rules for decision-
making for the storage strategy used. Parameters such as size and type the data are also
considered. The last component is the Ontology Proxy which enables the storing and
accessing of the semantic representation of the documents. Therefore various existing
solutions are evaluated and adjusted substantially or completely redeveloped. Further-
more, it is examined whether techniques from the database environment can be applied
and whether these yield performance improvements.

Interfaces
Core Classes (Corpus,

Document, Pipeline, Ontology)
 Text-learning  Interfaces

 Core Classes

 Sesame
 GraphDB

 File System
 MongoDB
 MapR-DB

Fig. 3: Components

2.3 Use Cases

This section outlines two use cases in the context of the Bishop project concerning
basic techniques for learning from texts, i. e., structure recognition and calculating a
Thesaurus. After that, we discuss options for tool support in that scope, considering
potential Big Data processing and management methods in the context of processing
unstructured, i. e., textual information.

Use Case 1: Support Structure Recognition in PDF Files A common problem in
the enterprise environment is, that important data is only available as PDF-Files. It is
easy to get content of the PDF-Files as plain text, but that is usually not that helpful,
because the structure of the documents gets lost. Without the structure, there is no way
to find out if a specific phrase in the document was a heading, a headline, a footnote or
even a caption. In the most cases this information is extremely important for the further
processing. The recognition of the structure of a PDF-File is a difficult task which is
very time consuming and only a few applications are good at it. In combination with
a huge amount of PDF-Files, like it occurs for example in the field of the technical
documentation, there is a long time waiting for results.

In order to decrease the overall processing time time, it is useful to distribute the
application for example on a High Performance Cluster. There are at least two ways for
the distribution. The first way is to process every PDF-File on a different node in the
cluster. This is expected to be a good solution if there are a lot of files, which are not
that big. If there are only a few, but huge PDF-Files it can be helpful to split the files
into many parts and distribute the parts of the files. This would be the second way. It
has to be evaluated, if the two ways perform as expected, to know which way fits to
the correlated case. The optimal behaviour of the resulting application would be, that it
picks the right way of distribution, depending on the dataset.

Use Case 2: Calculating a Thesaurus A domain-specific thesaurus can have huge
advantages on the task of ontology learning. Especially on the lower layers of the on-
tology learning layer cake [7], like terms and synonyms layer, it can be useful and
improve the results drastically. The problem is, that for the most domains, there is no
suitable domain-specific thesaurus available. Furthermore, building up a thesaurus is a
time consuming task which needs the involvement and knowledge of experts. However,
the time of the experts is typically rare and expensive. These two facts make the manual
construction of an domain- specific thesaurus difficult. An automation of this task is
also difficult and needs a lot of domain specific documents.

There are approaches like “JoBimText” [15] which can calculate a thesaurus out of
huge corpora, but do not take advantage of the structure of the documents. This could
have an enormous impact on the quality of the results. The calculation of the thesaurus
should also be distributed, because of the huge amount of documents, which need to be
processed. Otherwise it would take to much time for the industrial usage.

2.4 Tool Support

According to the four V criteria [11] (i. e., velocity, volume, variety, and veracity), big
data requires efficient methods to handle the rapidly incoming data with appropriate
response time (velocity), the large number of data points (volume), many different het-
erogeneously structured data sources (variety), and data sources with different quality
and provenance standards (veracity). In the context of unstructured and semi-structured
data, several challenges have to be addressed, such as information extraction [1] for tex-
tual data, as well as integration techniques for the comprehensive set of data sources. For
semi-structured data, e. g., rule-based methods [3] or case-based reasoning systems [5]
can often be successfully applied. According modeling and indexing techniques can be
implemented, e. g., using the Map/Reduce framework [8], see below.

Before starting with a data processing framework, different questions and require-
ments need to be clarified, e. g., according to the types, structure and accuracy of data
that is to be implemented, cf. [12]. We focus on according tools for Big Data processing,
analytics, and management in the following.

Lambda Architecture According to Marz and Warren [14], system properties of a
Big data system typically exhibit the following system properties: They should pro-
vide a general data framework that is extensible, enables ad-hoc queries with minimal
maintenance, and debugging capabilities. For data storage, this implies mechanisms
for handling the complexity of data, e. g., for preventing corruption issues and mainte-
nance issues. Further, robustness and fault-tolerance should be enforced, as well as low
latency reads and updates. This also points to scalability issues concerning horizon-
tal and vertical scalability, and the option of obtaining intermediate results and views,
according to some concept of reproducibility.

The lambda architecture incorporates these system principles and especially tackles
the concept of reproducibility of results and views for dynamic processing. Essentially,
it allows to compute arbitrary functions on arbitrary datasets in real-time [14]. The
lambda architecture is structured into several layers briefly, summarized as follows:

– Batch layer: continuously (re-)computes batch views using immutable data records.
– Serving layer: indexes query view, performs updates, and provides access to the

dataset. Only batch updates and random reads are supported, no (distributed) writes.
– Speed layer: high-latency updates; fix batch layer lag; needs fast algorithms for

incremental updates.
– Complexity isolation: random writes only need to be supported in speed layer. Re-

sults are then merged with the precomputed data from the batch layer.

Map/Reduce Map/Reduce[8] is a paradigm for scalable distributed processing of big
data, that can be utilized for implementing, e. g., the batch layer. Its core ideas are based
on the functional programming primitives map and reduce. Whereas map iterates on a
certain input sequence of key-value pairs, the reduce function collects and processes all
values for a certain key. The Map/Reduce paradigm is applicable for a computational
task, if it can be divided into independent subtasks, such that there is no required com-
munication between these. Then, large tasks can be split up into subtasks according to
a typical divide-and-conquer strategy, e. g., for local exceptionality detection [4].

Map/Reduce is a powerful paradigm for processing big data – with a prominent im-
plementation given by the Hadoop framework3 supported by the HDFS filesystem, and
big data databases such as Hive4 and HBase5. Map/Reduce tasks can also be utilized
for batch processing in the Lambda architecture discussed above, such that continuous
views are (re-)computed by the respective Map/Reduce jobs. These batch tasks can then
be complemented by tools for distributed realtime computation like the Storm frame-
work6, or the Flink7 platform. This allows a comprehensive data processing pipeline
for big data in the Lambda architecture, combining realtime together with Map/Reduce
techniques. Alternatives to Map/Reduce, especially considering in-memory computa-
tion with large datasets include, for example, the Spark8 [17] and Flink platforms.

Frontend
Big Data

Framework

Databases File Systems

MapR-DB JSON

Interface Layer

Fig. 4: Big Data Management Architecture
based on MapR-DB.

Big Data Management NoSQL
Databases (Not Only SQL) offer
high performance and high availabil-
ity [16], if no ACID (Atomic, Con-
sistent, Isolated, Durable) transactions
are needed. These databases perfectly
fit in our Big Data environment. In
our case, we use JSON files, which
should be stored in the database. A lot
of document based NoSQL databases
use this format to store the data on
the filesystem. So it is quite simple
to use a document based database like
MongoDB9, Apache CouchDB10 or
MapR-DB11. MongoDB and Apache
CouchDB have own solutions for the
distribution of the database. MapR-
DB is a In-Hadoop NoSQL database that supports JSON document models and wide
column data models and can be run in the same cluster as Apache Hadoop and Apache
Spark. This has the benefit of an easy integration in the big data environment, which will
contain Hadoop and/or Spark. The architecture is shown in Figure 4. The Databases and
the File Systems are connected to the Interface Layer, which enables the access of the
Frontend and the Big Data Framework.

3 http://hadoop.apache.org/
4 http://hive.apache.org/
5 http://hbase.apache.org/
6 http://storm.apache.org/
7 http://flink.apache.org/
8 http://spark.apache.org/
9 https://www.mongodb.com/

10 http://couchdb.apache.org/
11 https://www.mapr.com/products/mapr-db-in-hadoop-nosql

3 Conclusions

This paper presented the Bishop project that investigates methods for Big Data driven
large-scale self-learning support for high-performance ontology population. In an example-
driven approach we discussed workflows, components, use cases, and tools.

For future work, we will investigate the proposed Big Data frameworks and develop
corresponding data processing and analytics methods, also aiming at a methodology for
easy cluster set up. Other interesting future directions are given by efficient (distributed)
information extraction, e. g., [13] and refinement methods, e. g., [2], for advancing high-
performance approaches for ontology population using self-learning support systems.

Acknowledgements. The work described in this paper is funded by grant ZIM-KOOP
ZF4170601BZ5 by the German Federal Ministry of Economics and Technology (BMWI).

References
1. Adrian, B.: Information Extraction on the Semantic Web. Ph.D. thesis, DFKI (2012)
2. Atzmueller, M., Baumeister, J., Puppe, F.: Introspective Subgroup Analysis for Interactive

Knowledge Refinement. In: Proc. FLAIRS. pp. 402–407. AAAI, Palo Alto, CA, USA (2006)
3. Atzmueller, M., Kluegl, P., Puppe, F.: Rule-Based Information Extraction for Structured Data

Acquisition using TextMarker. In: Proc. LWA. University of Würzburg, Germany (2008)
4. Atzmueller, M., Mollenhauer, D., Schmidt, A.: Big Data Analytics Using Local Exceptional-

ity Detection. In: Enterprise Big Data Engineering, Analytics, and Management. IGI Global,
Hershey, PA, USA (2016)

5. Bach, K.: Knowledge Acquisition for Case-Based Reasoning Systems. Ph.D. thesis, Dr. Hut
Verlag München (2012)

6. Buitelaar, P., Cimiano, P., Magnini, B.: Ontology Learning from Text: Methods, Evaluation
and Applications. IOS Press (2005)

7. Cimiano, P.: Ontology Learning and Population from Text: Algorithms, Evaluation and Ap-
plications. Springer, New York, N.Y. and London (2006)

8. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. Com-
munications of the ACM 51(1), 107–113 (Jan 2008)

9. Furth, S., Baumeister, J.: TELESUP - Textual Self-Learning Support Systems. In: Proc. LWA
2014 (FGWM Workshop). RTWH Aachen University, Aachen, Germany (2014)

10. Karthikeyan, K., Karthikeyani, V.: Ontology Based Concept Hierarchy Extraction of Web
Data. Indian Journal of Science and Technology 8(6), 536 (2015)

11. Klein, D., Tran-Gia, P., Hartmann, M.: Big Data. Inform. Spektrum 36(3), 319–323 (2013)
12. Klöpper, B., Dix, M., Schorer, L., Ampofo, A., Atzmueller, M., Arnu, D., Klinkenberg, R.:

Defining Software Architectures for Big Data Enabled Operator Support Systems. In: Proc.
IEEE International Conference on Industrial Informatics. IEEE, Boston, MA, USA (2016)

13. Kluegl, P., Atzmueller, M., Puppe, F.: Meta-level information extraction. In: Proc. KI. LNCS,
vol. 5803, pp. 233–240. Springer, Berlin / Heidelberg, Germany (2009)

14. Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Realtime Data
Systems. Manning Publishers, Shelter Island, NY, USA, 1. edn. (2013)

15. Riedl, M., Biemann, C.: Scaling to Large Data: An Efficient and Effective Method to Com-
pute Distributional Thesauri. In: EMNLP. pp. 884–890 (2013)

16. Tudorica, B.G., Bucur, C.: A Comparison between Several NoSQL Databases with Com-
ments and Notes. In: International RoEduNet Conference. pp. 1–5. IEEE (2011)

17. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster Comput-
ing with Working Sets. In: Proc. USENIX. HotCloud, Berkeley, CA, USA (2010)

