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Abstract
Dataflow systems provide fault tolerance by combining checkpoint-
ing and lineage but leave it up to a data scientist to decide on
when and how to checkpoint. This leads to job plans that are in-
efficient during failure-free execution or recovery, e.g., if a data
scientist forgets to checkpoint expensive operators that need to be
re-executed after a failure. In this work, we aim to (1) increase ef-
ficiency of checkpointing transparently to the data scientist and (2)
automate placement of checkpoints and other fault tolerance mech-
anism. First, we show how to reduce checkpoint size for machine
learning algorithms using qpoints, a compressed representation of
the algorithms’ parameters. Qpoints enable the algorithms to run
faster by spending less time on checkpointing. Second, we show
how to place checkpoints optimally for a given cluster without user
intervention using smartpoints, our framework for building fault
tolerance optimizers. Smartpoints free data scientists from making
tedious decisions about fault tolerance while retaining reasonable
performance guarantees in case of failure.

1. INTRODUCTION
The interest in Big Data has advanced the development of

dataflow systems for large scale analytics such as Apache Flink and
Apache Spark. Users run these systems in either private or cloud-
based clusters that are often virtualized. Such clusters tend to be
failure prone: the commodity hardware used to build them exhibits
high failure rates when used in large quantities [11].

Another source of failures for cloud-based clusters, regardless of
their size, is preemption. Cloud providers offer certain instances of
virtual machines with large discounts to utilize otherwise idle hard-
ware [2, 15]. The downside is that the cloud can preempt (reclaim)
such an instance at any moment when it needs the resources back.
For an application, preemption looks like a failure: the preempted
instance disappears, causing the loss of the application state kept
in memory. In this paper, we use preemption as a running exam-
ple; our research project applies to other failure models as well, for
instance, classic fail-stop failures.

To handle preemption, cloud providers advise on employing roll-
back recovery [3]. This approach to fault tolerance is conceptu-
ally simple: a system periodically checkpoints the current result
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of computation to durable storage, and, in the case of preemption,
restarts the computation from the most recent checkpoint.

This scheme, while widely used, is not cost effective when it
comes to modern applications such as machine learning (ML).
We identify two problems that make cloud clients waste money.
First, checkpoints waste resources users pay for. Persisting the ap-
plication state keeps preemptible instances busy performing non-
productive work, which increases expenses users want to minimize.
Given that the state of an ML algorithm may contain tens of giga-
bytes of data [9], this may cause considerable overhead both in
terms of resources and money. Avoiding checkpoints is not an op-
tion either, because recomputing application state from scratch af-
ter each preemption delays the results. Even worse, an application
without checkpoints may fail to terminate under high preemption
rates.

The second, arguably more general, issue is that fault tolerance
requires manual tuning. For example, Apache Spark offers eleven
persistence options to tweak its lineage-based version of rollback
recovery [1]; examples include checkpointing to memory of two
cluster nodes or storing the dataset entirely on disk of a single ma-
chine. Making end users manually tune numerous fault tolerance
options - such as the placement or type of checkpoints in Spark
- is likely to be problematic because it requires understanding of
the system’s internals. In the case of Spark, a data scientist has to
decide where a lineage chain becomes too expensive to recompute
(e.g., because of too many CPU-intensive operators) and insert a
checkpoint of a suitable type. Given that many users of data ana-
lytics systems are in fact non experts in distributed systems [12],
such performance tweaking becomes ineffective [4], i.e., leads to
job plans that take more time than necessary to (re)compute. This
extra time combined with the working time of data scientists, who
tweak fault tolerance, also increases expenses of cloud clients.

In this research project, we aim to make fault tolerance for
dataflow systems more efficient and usable. We propose:

1. Qpoints, a technique for reducing checkpointing time by per-
sisting the compressed state of ML algorithms.

2. Smartpoints, a framework for building fault tolerance opti-
mizers that aims to automate decisions on when and how to
checkpoint.

2. QPOINTS
In Section 2.1, we describe the robustness of machine learning

algorithms against approximation of parameter values, a property
vital for qpoints. In Section 2.2, we employ the property to reduce
size of checkpoints for ML by compressing them into qpoints.

2.1 Approximation in Machine Learning
Many machine learning algorithms are robust against approxi-

mation, that is, they can tolerate partial loss of state or some in-
accuracy in parameter values [7]. In this research project, we will



exploit the robustness to approximate parameter values of several
practically important classes of algorithms such as deep neural net-
works and generalized linear models.

For execution speed and coding convenience, practitioners en-
code parameters such as weights in the generalized linear models
as IEEE 754 double values, but the experimental evaluation of ML
algorithms shows that parameter values tend to cluster near zero,
so the full range of a double value is rarely used [13]. Given that
large scale ML algorithms can contain billions of parameters [9],
suboptimal parameter representation can significantly increase the
memory footprint of an algorithm.

Consider the recent Adam project1 for deep learning [9]. This
system is capable of training a neural network with 36 billion con-
nections between neurons where each connection is represented
with a weight. Assuming an IEEE double representation of each
weight, this amounts to 36 ∗ 109 ∗ 8 bytes of data, so 288 gigabytes
are needed to represent only the parameters of a single model.

Machine learning practitioners recognize the need to use less
space per parameter [10, 13, 16]. Instead of the IEEE 754 floating
point format, they propose to use the Qn.m encoding (Q for quan-
tization), which can significantly reduce the memory footprint with
little loss in performance. This encoding represents a real number
with n + m + 1 bits: n bits for the integral part, m bits for the
fractional part and one bit for the sign [13]. For example, in [13]
the authors use Q2.13 encoding in the training phase to halve the
logistic regression memory consumption compared with the model
that represents parameters as floats. This saving costs only about
0.01% extra logistic loss in the testing phase.

2.2 Qpoints: Checkpoints in Qn.m Encoding
The robustness of ML to approximation hints that in many cases

checkpointing the exact in-memory state may not be needed: an
algorithm neither uses most of this memory footprint during normal
operation, nor does it need the full state to recover after preemption.

Since Qn.m encoding can save noticeable amount of memory
without sacrificing the end performance, we suggest to checkpoint
this representation of ML models parameters instead of the stan-
dard representation with doubles. We define a qpoint as a check-
point that employs Qn.m encoding to compress and persist model
parameters. For speed and convenience data scientists can still use
doubles while developing algorithms; a system should automati-
cally compress parameters while checkpointing.

Qpoints come with a cost: unlike checkpoints, qpoints are not
universally applicable. For qpoints to be beneficial, an ML algo-
rithm should (1) have large number of parameters of limited range,
(2) be able to terminate from approximate state after recovery, and
(3) lack additional consistency requirements.

The first condition means that algorithm parameters do not use
the full range of IEEE 754 double data type. This condition holds
for at least two classes of machine learning algorithms: generalized
linear models and deep neural networks [10, 13, 16]. Generalized
linear models are commonly used at scale for tasks like spam filter-
ing or predicting ad click-through rates, e.g., [5, 14]. Deep neural
networks are used for tasks such as visual object recognition where
human experts struggle to extract meaningful features from the in-
put data [9].

The second condition selects algorithms that are can reach the
desired level of performance starting from approximate state. For
both neural nets and linear models, low precision parameter repre-
sentation – about a quarter of the bits of the IEEE double format –
is sufficient for training and running models and has little effect on

1Adam is technically not a dataflow system. However, current
projects such as SparkNet [19] actively port deep learning to
dataflow systems. So these systems can be expected to run into the
problem of deep learning memory requirements in the near future.

the prediction accuracy [13, 16]. The guarantees, however, differ:
linear models and convex optimizers in general provably reach the
unique optimum from any approximation, while neural networks
may converge to different solutions due to their non-convex nature.

The third condition rules out algorithms that require approximate
state to be consistent. An example of such an algorithm is PageR-
ank. This algorithm can converge using approximate parameter
weights, but it requires the weights to form a probability distri-
bution, i.e., to sum up to one. Simply restoring the weights from a
qpoint may be insufficient because, due to rounding issues, the sum
of parameter values may deviate too far from one. Both neural nets
and linear models have no such special consistency requirements.

Despite these restrictions, qpoints bring two significant gains.
First, qpoints can reduce the checkpointing overhead transparently
to a user without sacrificing fault tolerance. The standard way
to decrease checkpointing cost is to adjust frequency of check-
points [22]. This strategy requires manual tuning from a user,
and proved problematic in real world deployments of ML algo-
rithms (e.g., [18]). Qpoints can reduce the time spent on fault toler-
ance by saving less data per checkpoint: data scientists can run their
algorithms with some default qpoint frequency and gain sufficient
fault tolerance without paying the cost of full checkpoints.

Second, qpoints enable exploring a failure model that, to our
knowledge, is not currently discussed within the database commu-
nity, namely a failure with a prior warning. Such failures corre-
spond to preemption in clouds that notify a client about the up-
coming preemption event. For instance, Google Cloud issues such
warning 30 seconds before the preemption [15]. After getting this
notification, a client would naturally want to persist the current
computation state. However, starting standard checkpointing at this
moment may fail to meet the hard time limit because of the data
volume to persist. Qpoints have more chances to meet the limit be-
cause they have less data to save. Qpoints also enable progressive
checkpointing, that is, saving coarse approximation of parameters
with as little data as possible and then gradually refining the ap-
proximation up until the preemption takes place.

3. SMARTPOINTS
In Section 3.1, we outline the randomized weighted majority, the

meta-algorithm we use to develop smartpoints. In Section 3.2, we
describe smartpoints, our framework for building fault tolerance
optimizers.

3.1 Optimal Prediction from Expert Advice
Consider the following situation: one has a pool of experts who

need to predict future events, for example, if the price of a single
stock will go up or down next day. Naturally, one would like to
select the best expert - the one who makes the least amount of mis-
takes - and follow their predictions. The problem is, it is not known
beforehand which expert will perform best on a given sequence of
future events, e.g., days. In such setting, the randomized weighted
majority algorithm (RWM) enables to perform provably close to
the best expert without any apriori knowledge.

The RWM assigns equal initial weights to all experts, each ex-
pert essentially being a function with the {0, 1} range (say, 0 means
the price will go down and 1 means it will go up). The algorithm
then proceeds in a sequence of trials. At each trial, the algorithm
chooses an expert at random, with probability proportional to the
current weight of the expert, and follows the prediction of this ex-
pert. Once the true answer is revealed (e.g., the price went down),
the algorithm punishes all experts who predicted wrongly by mul-
tiplying their weights by the penalty β, 0 ≤ β < 1; weights of the
correct experts stay intact. By doing so, the algorithm decreases



the probability of choosing a mistaken expert in the next trial. Intu-
itively, if an expert predicts wrongly, the algorithm trusts them less
in the future. The RWM can guarantee the following property [6]:

Theorem 1. On any sequence of trials, the expected number of
mistakes X made by the Randomized Weighted Majority algorithm
satisfies:

X ≤ x+ ln(y) +O(
√
x ln(y))

where x is the number of mistakes of the expert who performed
best so far, and y is the total number of experts.

So, the expected number of mistakes of the algorithm is bounded
by the number of mistakes of the expert from the pool who per-
forms best on a given sequence of trials. Intuitively, the RWM over-
all performance is close to that of the best expert in the pool. The
bound from Theorem 1 holds for the worst case of input data with-
out any probabilistic assumptions about the input or experts [17].

3.2 Smartpoints: Fault Tolerance via Ran-
domized Weighted Majority

Fault tolerance mechanisms span a large spectrum ranging from
usual checkpoints [3] to lineage [26] to less standard ideas such
as qpoints. With that variety, choosing among the mechanism be-
comes non-trivial even for expert users. Researches are well-aware
of this problem: the recent work has shown that automatically
choosing the most suitable mechanism (e.g., checkpoints) and its
placement (for instance, checkpoint each third operator) is possi-
ble and does improve performance [23, 25]. We observe, however,
that current approaches to fault tolerance optimization – such as the
ones discussed in [20, 24, 25] – share common shortcomings.

First, they require significant implementation effort, often at the
system runtime level. An example is the FTOpt optimizer [23],
which requires a system to have a special acknowledgement proto-
col to track tuples’ flow through the system; reimplementing this
protocol would greatly complicate system design and increase de-
velopment costs.

Second, current approaches tend to make assumptions that may
be difficult to fulfill. For example, optimizers proposed in [21, 23]
depend on accurate cost estimates that are hard to obtain in the
presence of user-defined functions [4].

In this research project, we propose an approach to building fault
tolerance optimizers with RWM that alleviates these problems. We
define a fault tolerance policy to be a set of decisions on where
to use which fault tolerance mechanism. Continuing our running
example of preemption, a policy can be a heuristic that advises
on checkpointing before the end of each hour. To simplify termi-
nology, we will henceforth use the term checkpoint to denote any
fault tolerance mechanism, for instance, qpoints. Smartpoints as a
framework should be capable of incorporating such mechanisms.

Intuitively, in our approach fault tolerance policies become ex-
perts who periodically vote according to the rules of RWM if a sys-
tem should checkpoint or not. For instance, the ”checkpoint noth-
ing” policy would always vote against checkpointing and rather
rely on job re-execution to provide fault tolerance. The RWM en-
sures that the most suitable policy for a given environment will
eventually retain most weight. For example, the ”checkpoint noth-
ing” policy should win under low preemption rates, because there
rare preemption events do not justify the cost of checkpointing.

Thus a dataflow system with RWM-based fault tolerance will
eventually employ the fault tolerance policy most suitable for its
particular cluster without any user involvement at the cost of few
initial mistakes. For brevity, we use the term smartpoints to refer
to the idea of using RWM to select the best fault tolerance policy.

The Algorithm 1 describes smartpoints more formally. In this al-
gorithm, fault tolerance policies effectively predict failures by their
votes. That is, the decision to checkpoint can be rephrased as ”the
next operator will fail”: if the next operator does not fail, we do
not need to checkpoint. If one of the subsequent operators (e.g.,
the second next) fails, we ideally would like to checkpoint the im-
mediate predecessor of the operator-to-fail to avoid re-executing
any successful operators. Real failures become true labels used by
RWM to penalize experts: if a policy voted to checkpoint, and a
failure did not happen during the next operator, the algorithm re-
duces the weight of this policy. For the purposes of smartpoints,
we define a RWM trial to consists of (a) an execution of a single
operator, (b) a vote among checkpoint policies if the operator out-
put should be checkpointed, and (c) observing if a failure happens
during the execution of the next operator.

This algorithm ensures three properties. First, due to the prop-
erties of RWM (see Theorem 1), for a given pool of policies Algo-
rithm 1 checkpoints in a way provably close to the policy optimal
for a given cluster. In other words, assuming a well-designed pool
of policies, smartpoints can automatically adapt to a wide range of
cluster environments. Second, the algorithm makes very few as-
sumptions: it does not require any specific knowledge about failure
distributions or cluster size or previous history of a system. In-
stead, we propose to encode this domain-specific knowledge into
fault tolerance policies unique for a particular system. Finally,
the reuse of elements common in dataflow systems (checkpoints,
blocking operators) combined with the simplicity of the algorithm
itself greatly reduces the implementation effort compared to exist-
ing fault-tolerance optimizers. For example, nothing in the algo-
rithm itself requires a special support from the runtime.

Algorithm 1 Smartpoints
1: for each policy i do
2: wi = 1
3: for each operator t do
4: Use policy i prediction with probability pi =

wi∑
j

wj

5: for each policy i do
6: if policy i made a mistake then
7: wi = β ∗ wi

4. RELATED WORK
Approximation in Machine Learning. The work of Bousquet

and Bottou [7] provided the theoretical foundation for understand-
ing this phenomenon; a series of recent papers [10, 13, 16] studied
the effect of approximating parameter values with Qn.m encoding
on the prediction accuracy of deep neural networks and general-
ized linear models. We plan to piggyback on this approximation
tolerance to decrease checkpoint size with qpoints.

Randomized Weighted Majority. Littlestone and Warmuth
proposed the original idea and later summarized it in [17]; the
follow up work [8] conducted extensive theoretical analysis and
showed how to choose the penalty parameter β to minimize the ex-
pected number of mistakes of the algorithm. The paper by Blum [6]
provides an overview of the key results in the area. We adopt these
results to develop the framework of smartpoints, which should
yield a family of fault tolerance optimizers capable of intelligently
choosing the optimal checkpoint policy at runtime.

Fault tolerance optimization for dataflows. The FTOpt opti-
mizer proposed in [23] employs geometric programming to reduce
the overhead of checkpoints. Smartpoints differ from it in three
ways. First, they do not require a cost model and cost estimates for
operators. Second, they do not require dedicated support from the
runtime (FTOpt requires an ack protocol to track tuples). And third,



smartpoints do not restrict job plans in any way besides forming a
directed acyclic graph of operators (FTOpt handles only job plans
with aggregations at the top). The more recent optimizer from [21]
probabilistically models the likelihood and impact of failures using
yet another cost model. Unlike [21], which assumes the Poisson
distribution of failures, smartpoints do note make any assumptions
about failure rates. Rather, they adjust to the actual failure rate at
runtime by selecting the checkpoint policy optimal for the rate.

5. RESEARCH PLAN
We intend to implement and evaluate qpoints and smartpoints

during the years 2016-2017. With qpoints we have to address three
key issues. First, current Qn.m encoding schemes rely either on
custom hardware [10, 16] or on algorithms hand-crafted to repre-
sent parameters with Qn.m values [13]. To keep our approach
general, we cannot assume such support and have to come up with
a software encoder.

Second, to make qpoints handle failures with a prior warning, we
have to meet hard real-time requirements of the warning. Given the
limited number of IO operations per second, considerable memory
footprint and the software Qn.m encoder, qpointing in a timely
manner requires finding a tradeoff between parameter memory us-
age and accuracy of the final model.

Third, we have to avoid numerical issues. The Qn.m parameter
representation needs (a) to have enough accuracy to represent small
parameter values or updates commonly encountered in real world
machine learning deployments and (b) to avoid introducing bias
into parameter values.

With smartpoints, we need to solve two challenges, namely (a)
we have to adjust Randomized Weighted Majority to handle the
specific case of roll-back recovery and (b) we have to preserve
RWM guarantees during this adjustment. With respect to modi-
fications, three are absolutely necessary: designing the expert pool,
adjusting the penalty rate β, and handling cases where persisting
the data is compulsory, such as when a system cannot hold data in
memory due to memory pressure.

Our baseline for both qpoints and smartpoints will be fault toler-
ance policies commonly hard-coded into modern dataflow systems
such as ”checkpoint everything” in Apache Hadoop. We will fix
the placement and frequency of checkpoints, e.g., ”checkpoint the
last operator of each third iteration”, and run jobs with such setting
to get the baseline median (out of five identical runs) wall-clock
job execution time. We will then strive to decrease this time with
qpoints and smartpoints. With qpoints, the time should reduce be-
cause jobs will spend less time persisting qpoints than checkpoints
due to the smaller qpoint size. With smartpoints, we expect reduc-
tion in the execution time because the majority of jobs will check-
point optimally for the cluster they run in, while a fixed checkpoint
policy is likely to mismatch certain environments. For instance,
jobs under low preemption rates should on average complete faster
because smartpoints will automatically select the ”checkpoint noth-
ing” policy and remove entire checkpoint overhead.
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