
Heterogeneity-Aware Query Optimization

Tomas Karnagel
Supervised by Wolfgang Lehner

Database Technology Group
Technische Universität Dresden, Germany

tomas.karnagel@tu-dresden.de

ABSTRACT
The hardware landscape is changing from homogeneous sys-
tems towards multiple heterogeneous computing units within
one system. For database systems, this is an opportunity to
accelerate query processing if the heterogeneous resources
can be utilized efficiently. For this goal, we investigate novel
query optimization concepts for heterogeneous resources like
placement granularity, execution estimation, optimization
granularity, and data handling. In the end, we combine
these concepts in a specialized optimization stage during
query optimization together with a unique way of evaluat-
ing our optimizations in existing database systems.

1. INTRODUCTION
In the recent past, the database system’s performance has

mainly been bound by disk accesses. With increasing main
memory sizes, the bottleneck shifts towards computation as
more and more data can be kept close to the processor.
To increase the computational performance in homogeneous
environments, parallel execution on multiple cores has been
studied. However, recent systems are becoming more and
more heterogeneous, including different types of computing
units (CUs) to improve efficiency and energy consumption,
ideally preventing dark silicon [2].

The main challenge for database systems is to adapt to
the new heterogeneous hardware environment with its differ-
ences in computing unit architectures, memory hierarchies,
and connections to the main memory.

Previous research has been mainly about porting oper-
ators to new hardware platforms like GPUs and FPGAs.
While this is important, single operators do not represent
full database systems with complex architectures and a vari-
ety of workloads. In recent work, full database systems with
GPU support have been proposed [1, 3, 4, 9]. These sys-
tems allow detailed evaluation of heterogeneous execution,
however, most of them do not understand the underlying
hardware but merely execute a query on a predefined CU .

In our work, we want to investigate dedicated query op-
timization for heterogeneous computing resources. For this,
the system needs to, first, understand the underlying hard-
ware environment and to, second, utilize it automatically in
the best possible way during query processing. We motivate
our direction of research with a single-operator case study

Proceedings of the VLDB 2016 PhD Workshop, September 9, 2016. New
Delhi, India.
Copyright (c) 2016 for this paper by its authors. Copying permitted for
private and academic purposes.

and define optimization concepts before proposing an ideal
system setup. We are currently in the implementation and
evaluation phase where we apply our optimizations within
multiple open-source database systems.

2. MOTIVATION AND DIRECTION
As a starting point, we would like to present a single op-

erator case-study to motivate the direction of our research.

2.1 Case Study: Group-By Operator
For our case study, we use a hash-based group-by opera-

tor on different CUs, implemented in OpenCL. The applied
hash-table uses FNV1a as hash function and a fill factor of
0.5, assuming the amount of groups is known from the opti-
mizer. We implement the operator to scan only one column
while storing the group name and a count value, as it would
be used for the following SQL query:

SELECT num, count(*) FROM numbers GROUP BY num;

The input values (64 MB, 16.7 mio values) are in a range of
[0,#group) while being randomly distributed within the in-
put column. We store the input column in the system’s main
memory (RAM) and evaluate the full execution runtime in-
cluding zero-copy accesses, where the data is streamed to
the CU on demand. When executing the operator, we see
several effects leading to partly severe performance issues
(Figure 1). In previous work [8], we explained the effects for
a Nvidia GPU in detail:

1. The spikes are created by high hashing contention that
mainly occurs using FNV1a with certain hash-table
sizes and data distributions.

2. For #groups <100, we see problems with atomic ac-
cesses because many threads try to update a small
number of hash-table buckets simultaneously.

3. For hash-tables >1.5 MB, the hash-table does not fit
in the GPU’s L2 cache for fast execution.

4. For hash-tables >2 GB, the execution experiences a
great slow-down through TLB cache problems.

Out of all effects, the spikes are the only ones that can
be seen on all CUs, since they are software-based issues.
For all CUs, they are occurring repeatably at exactly the
same positions, however, the height of the spikes depend on
the CU . The other effects and the overall performance dif-
fer greatly, which is caused by different cache sizes, different
connection to the system (e.g., PCIe2 or 3), or entirely dif-
ferent architectures. Comparing all 3 executions, no single
CU is superior to the others. For our experiment, we tested
more than 7000 different group sizes, where the Nvidia GPU



(a) Nvidia K80 GPU (PCIe3) (b) AMD HD7950 GPU (PCIe2) (c) Intel Xeon Phi 7120 (PCIe2)

Figure 1: Group-by operator on three different CUs.

was the fastest in 71.4% of all cases, followed by the AMD
GPU with 22.5%, and the Intel Xeon Phi with 6.1%. The
Xeon Phi will become more important for larger hash-tables
(>2GB) since the runtime is scaling much better.

2.2 Implementation Approaches for
Heterogeneity-aware Database Systems

Based on the performance differences and the effects in our
case study, we see two directions to implement a database
system using heterogeneous computing resources.

The first approach would be, to choose a single CU , e.g.,
the Nvidia GPU, and optimize the operator for ideal ex-
ecution on this particular CU . Previously, we did this for
the group-by operator [8] by adjusting execution parame-
ters and implementing algorithmic changes together with
an integrated optimizer to define the ideal configuration.
For a full system approach, these adjustments need to be
done for every operator in consideration of data sizes and
data distribution, resulting in a high number of fine-grained
optimizations. Once this huge effort is made, it probably re-
sults in the best possible performance for the supported CU ,
however, it is not portable. To support a different hardware
setup, the optimization effort for each database operator has
to be revisited, adjusted, and fine-tuned. This can only be
done by large development teams, while limiting the support
to only a few selected CUs.

The second approach, which is explored in this work, is
more adaptive. Instead of understanding and optimizing ev-
ery single effect of each operator on each CU , we propose to
support as many CUs as possible, while dynamically defin-
ing the execution location (operator placement) depending
on the best runtime. Having multiple CUs to choose from
gives us the opportunity to execute on the ideal CU for a
given operator and workload. For the few CUs supported by
the first approach, the performance will be lower, because
the operator implementations are less optimized. However,
it will provide the best possible performance for any given
setup of operators and CUs, without the huge effort of fine-
tuning. Additionally, it is highly portable since there are no
hard-coded hardware-specific optimizations.

2.3 Distinction
Following the adaptive approach, we focus on query op-

timization for heterogeneous computing resources, instead
of building an entirely new database system. Furthermore,
there are several related topics that we specifically exclude
at this point of time:

Specific operator implementations. Operator imple-
mentations are important but have been researched exten-
sively over the past 10 years. Different implementations lead

to performance differences, however, they are not affecting
the design of the heterogeneity-aware query optimizer.

Memory heterogeneity. At this point, we are not look-
ing at different memory types such as non-volatile memory
vs. volatile memory or SSD vs. HDD. Memory types are im-
portant for persistence and recovery consideration, however,
we are focusing our research on compute heterogeneity.

Distributed systems and network heterogeneity.
At the moment we are looking at single node systems with
a scale up approach by adding more CUs. However, our
findings can be easily reused in a distributed environment,
where we can map transfer costs between CUs to transfer
costs between nodes and a node can consist of multiple CUs.

3. OPTIMIZATION CONCEPTS
The main part of this thesis is identifying and investi-

gating optimizer design choices to make database systems
heterogeneity-aware. As starting point, we assume a column
based database system with a column-at-a-time approach
since we mainly want to focus on large OLAP queries. In
the following, we want to present multiple design choices and
brief discussions on the most promising directions. Please
refer to the cited papers for more details.

3.1 Placement Granularity
As a main idea, we want to place parts of a database query

on CUs, where they show the best execution time in con-
sideration of data transfer costs. However, the granularity
of work, which is actually placed, needs to be defined. In
query processing, we see three possible granularities.

Query Granularity. One single placement decision is
made for a whole query, which is then executed on one
CU . This can be beneficial when there are many concur-
rent queries that need to be executed, so that all CUs can
be used concurrently.

Database Operator Granularity. One placement de-
cision is made for each database operator, leading to a het-
erogeneous execution within a single query.

Sub-Operator Granularity. Sub-operators are reusable
execution functions of an operator, e.g., a hash join may
consist of a hash-table creation and a hash-table probe, and
therefore it has two sub-operators. The same hash-table cre-
ation step can be part of a hash based group-by implementa-
tion. This granularity allows a fine-grained match between
execution behavior and CU .

We choose the sub-operator granularity as the most promis-
ing approach with its fine grained decisions. In the remain-
der of this paper, we will use the term operator, for the
placement object to show the general applicability of the
proposed approaches.



3.2 Estimation Model
Before optimizing query processing on heterogeneous com-

puting resources, the database system needs to know the
execution time of operators. Traditionally, cardinality esti-
mation was used in order to find the best query plan. With
different heterogeneous CUs, additional runtime-based esti-
mation is needed, because even same cardinalities can lead
to different runtimes on different CUs. For this estimation,
we proposed the Heterogeneity-aware Operator Placement
Model (HOP)[6], which is based on unassisted learning of
execution time, using interpolation between known execu-
tions. Additionally, data transfers and scenarios with yet
unknown execution times are considered.

3.3 Optimization Granularity
The optimization granularity defines how much knowledge

is needed for the optimization.
A local strategy would decide the placement solely for

one operator at a time. The chosen placement combines the
best combination of input data transfers and actual execu-
tion. For example, assuming the data lies in main memory,
a GPU is only used if data transfer and execution is faster
than the execution on the CPU, where data does not need
to be transfered.

A global strategy would look beyond one operator at the
whole query plan. There, transfer costs between different
operators can be included in the optimization, leading to
globally optimized executions and transfers, while the local
strategy does not optimize beyond one operator execution.
To apply global optimization, the system has to consider all
operators of a query (#op) and all CUs of the system (#cu),
leading to a search space of #cu#op (for example 14 mio.
different placements for 15 operators and 3 CUs). To cope
with this huge search space, we developed ways to reduce the
number of considered operators together with a light-weight
greedy algorithm for efficient placement optimization [5].

We implemented both strategies in an OpenCL-based data-
base system and compared the performance [5]. While the
placements of both strategies are different, the execution
times do not differ much, because long-running influential
operators are placed on the same CUs for both strategies.
However, we showed that global optimization is more ro-
bust for inconclusive decisions where multiple operators can
benefit from each others’ placement.

3.4 Data Handling
Normally, data handling involves transferring data to the

CU where it is needed if the data is not there already.
To enhance this naive approach, we propose to improve

the data movement dependent on an operator’s data access
type. This can be achieved by allowing replicas of memory
objects on different CUs, as long as data is only read. Then,
different operators can access replicas of data on different
CUs, allowing parallel execution and more freedom to find
the ideal operator placement without being limited by high
transfer costs. However, when an operator is updating a
memory object, every replica, that is not updated, has to
be deleted to remain consistent.

4. IDEAL SYSTEM SETUP
Having investigated the possible optimization concepts for

heterogeneous computing resources, we now want to define

an ideal system setup with heterogeneous resource optimiza-
tion to utilize these resources in the best possible way.

4.1 System Integration
The first question is the integration aspect of heteroge-

neous resource optimization within traditional query opti-
mizations.

Execution Engine. The presented optimizations can
be implemented in the database’s execution engine, being
applied directly before an operator’s execution. We im-
plemented and evaluated such a system [7]. However, for
this approach, global optimization is not possible due to the
missing global view.

Integrated. The optimizations could be deeply inte-
grated within the database optimizer. The optimizer has all
the global information for hardware optimization but it also
has a sophisticated optimization framework and strategies,
where adding heterogeneous resource optimizations would
increase the optimization complexity significantly.

Separate Optimization Stage. We propose a middle
path: an additional stage of query optimization. As it is
usually the case, the database system first optimizes the
query plan logically using query rewriting techniques. Then
the physical query operators are defined in the physical op-
timization. Afterwards, the physically optimized plan is fur-
ther optimized for the heterogeneous resources in a separate
stage. The main motivation for this approach is the sep-
aration of concerns, that each stage can optimize indepen-
dently, allowing simpler architectures, better maintenance,
and reduced search spaces.

4.2 Heterogeneous Resource Optimization
Within the separated optimization stage for heterogeneous

resources, we are applying our concepts in several steps. We
assume to get a fully logically and physically optimized plan
from the prior optimization stages. Then, we apply the fol-
lowing steps, which are illustrated in Figure 2:

1. Split up the database operators into sub-operators (as
explained in Section 3.1).

2. Apply data access information (as in Sec. 3.4). Multi-
ple sub-operators accessing the same data can choose
between replicas to potentially avoid data transfers
and read-only operators can be executed independently,
therefore dependencies can be reordered (Fig. 2 (2)).
A writer has to wait until previous readers have fin-
ished before updating one replica and deleting others.

3. Estimate both the possible execution time for each
sub-operator on each CU and the transfer costs be-
tween CUs. These estimations are done locally for
one sub-operator or transfer at a time using our model
presented in Section 3.2. For Example, Figure 2 (3)
shows only the sub-operators’ execution times.

4. Finally, having all the estimated runtimes and transfer
times, we apply global optimization (as in Section 3.3)
to find the placement with the overall best runtime.

After applying these four steps, the heterogeneous optimizer
can pass an enhanced sub-operator-based query plan with
assigned placement decisions to the execution engine for het-
erogeneous execution.

4.3 Evaluation (current progress)
To evaluate our optimization approach, we thought about

rewriting the database optimizer of heterogeneity-supporting



Figure 2: Query Optimization Steps during Heterogeneous Resource Optimization

DBMS like Ocelot [4] and gpuDB [9]. However, this would
only be an isolated system-specific analysis. To broaden the
scope of our evaluation, we decided to reuse the basic tech-
nology many of these DBMS use to support heterogeneous
hardware: OpenCL. We can intercept the OpenCL commu-
nication of these systems to the OpenCL driver, optimize
the given query, and execute the work heterogeneously, de-
pending on the available CUs. Technically, we do this by
implementing our own OpenCL driver that is loaded by the
database system. Using the driver approach, the database
code does not need to be adjusted to support our optimiza-
tions. However, implementing our optimization stage into
an industry-size database system is left for future work.

5. CONTRIBUTIONS
In this section, we would like to highlight the contributions

of this thesis and differentiate them from related work.
We base our work on many previous publications includ-

ing full system approaches like Ocelot [4] and gpuDB [9].
These systems currently rely on a manually-specified input
to define the CU , on which the whole query is executed.
With our optimizer approach, we can make these systems
heterogeneity-aware and of better performance without the
need of manual inputs. Our contributions are in detail:

1. Providing an overall investigation for hetero-
geneity-aware query optimization. Related work in-
cludes the heterogeneity-aware database systems CoGaDB[1]
and gpuQP [3]. Both are no explicit query optimizers but
actual database systems. Both systems define the placement
of database operators, where the focus is more on the sys-
tem design and the runtime estimation model, than on the
actual query optimization.

2. Proposing a novel decision model for runtime
based cost estimation. gpuQP [3] uses a cost per tuple
computation, which is fine tuned in a startup phase by micro
benchmarks. CoGaDB is using a learning-based approach
with spline interpolation to compute runtime estimations.
However, only our model, using learning-based estimation
on learned data points, is able to represent fine-grained be-
havior as we have seen in Section 2.1.

3. Investigating global optimization together with
proposing a search space reduction approach and a
well performing greedy algorithm. To our knowledge,
there is no related work on global query optimization for het-
erogeneous computing units. The problem does not apply
for well-known query optimizations, because every operator
can be placed independently without allowing any pruning
of possible solutions.

4. Discussing approaches for placement granu-
larity, optimization granularity, and system integra-

tion. Placement granularity was discussed for gpuQP [3],
where placement is done on primitives, which then build
larger query operators. This approach is similar to our sub-
operator granularity. Ocelot [4] and gpuDB [9] work on
query-granularity, where the CU is set manually for each
query. We do not have any detailed information about the
optimization granularity or the exact integration level of op-
timization for these database systems.

6. CONCLUSION
In this thesis, we investigated heterogeneity-aware query

optimization within database systems. We strongly moti-
vate our direction of query operator placement with a case
study using one operator and multiple CUs. For operator
placement, we investigated several concepts of optimization,
explained possible options, and defined our approach. Fi-
nally, we propose an ideal system setup by defining an inte-
gration approach and the specific steps of the optimization
stage. Our approach is implemented using existing database
systems and an OpenCL based extension approach.

7. ACKNOWLEDGMENTS
This work is funded by the German Research Foundation

(DFG) within the Cluster of Excellence “Center for Advanc-
ing Electronics Dresden”. Parts of the hardware were gen-
erously provided by Dresden GPU Center of Excellence.

8. REFERENCES
[1] S. Breß. The Design and Implementation of CoGaDB: A

Column-oriented GPU-accelerated DBMS. Datenbank-Spektrum,
2014.

[2] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam,
and D. Burger. Dark silicon and the end of multicore scaling.
ISCA 2011. ACM.

[3] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo,
and P. V. Sander. Relational Query Coprocessing on Graphics
Processors. ACM Trans. Database Syst., 2009.

[4] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and V. Markl.
Hardware-Oblivious Parallelism for In-Memory Column-Stores.
PVLDB, 2013.

[5] T. Karnagel, D. Habich, and W. Lehner. Local vs. Global
Optimization: Operator Placement Strategies in Heterogeneous
Environments. In Proceedings of the Workshops of the
EDBT/ICDT, 2015.

[6] T. Karnagel, D. Habich, B. Schlegel, and W. Lehner.
Heterogeneity-aware Operator Placement in Column-Store
DBMS. Datenbank-Spektrum, 2014.

[7] T. Karnagel, M. Hille, M. Ludwig, D. Habich, W. Lehner,
M. Heimel, and V. Markl. Demonstrating efficient query
processing in heterogeneous environments. In Proceedings of the
2014 ACM SIGMOD, New York, NY, USA. ACM.

[8] T. Karnagel, R. Müller, and G. M. Lohman. Optimizing
GPU-accelerated Group-By and Aggregation. In ADMS’15.

[9] Y. Yuan, R. Lee, and X. Zhang. The Yin and Yang of Processing
Data Warehousing Queries on GPU Devices. Proc. VLDB
Endow., 2013.


	Introduction
	Motivation and Direction
	Case Study: Group-By Operator
	Implementation Approaches for Heterogeneity-aware Database Systems
	Distinction

	Optimization Concepts
	Placement Granularity
	Estimation Model
	Optimization Granularity
	Data Handling

	Ideal System Setup
	System Integration
	Heterogeneous Resource Optimization
	Evaluation (current progress)

	Contributions
	Conclusion
	Acknowledgments
	References

