
Distributed Moving Objects Database Based on
Key–Value Stores

Hong Van Le
Supervised by Atsuhiro Takasu, takasu@nii.ac.jp

SOKENDAI (The Graduate University for Advanced Studies), Japan

l-van@nii.ac.jp

ABSTRACT
Moving objects databases (MOD) have been studied inten-
sively and extensively in the database field. Recently, the
emerging Big Data trend, which refers to a collection of
large, complex, and rapidly growing geographical data col-
lected from sensors and GPS-enabled devices, has posed new
requirements for MOD: the ability to manage massive vol-
ume of data, the support for low-latency spatio-temporal
queries and the need for high insertion throughput rate. Al-
though key–value stores handle large-scale data efficiently,
they are not equipped with effective functions for supporting
spatio-temporal data. In this project, we aim to build a dis-
tributed MOD which fulfills all these requirements. We fo-
cus on the design of an efficient distributed spatio-temporal
index that can support indexing and querying moving object
data in key–value stores.

1. INTRODUCTION
Recent rapid improvements in positioning technologies such

as satellites, the Global Positioning System (GPS), sensors,
and wireless networks has resulted in an explosion of data
generated by moving objects. For instance, traffic manage-
ment systems in busy cities such as Tokyo have been collect-
ing large numbers of location updates from probe cars such
as taxis, buses and GPS-enabled devices at a rate of mul-
tiple updates per minute from each vehicle. The collected
data often include location data (longitude and latitude) and
time data (a timestamp).

Many systems, in both scientific research and daily life,
have taken advantage of the data collected from moving ob-
jects. For example, intelligent transportation systems are
exploiting the massive volume of sensor data from probe cars
and GPS-enabled devices to provide efficient route planning
and traffic balancing based on the current traffic situation.
People can take advantage of these systems by continuously
sending data about their current location and time, then
receiving relevant real-time analyses of their traffic situa-
tion. Such systems require a MOD; that can store massive

Proceedings of the VLDB 2016 PhD Workshop, September 9, 2016. New
Delhi, India.
Copyright (c) 2016 for this paper by its authors. Copying permitted for
private and academic purposes.

volumes of data, support high insertion throughputs, and
respond to queries in real-time.

There are three main challenges for a MOD to be useful for
these systems. The Volume Challenge. The database should
have high scalability, fault-tolerance and availability while
dealing with large volumes of collected data. The High Com-
putational Complexity Challenge. Many queries will involve
geometric computations, such as very expensive logical oper-
ations on spatial relationships, that are continuously chang-
ing. The Real-time Processing Challenge. Because many
agents keep registering their location updates continuously,
the database must have high insertion throughput to han-
dle the volume of data. It must also guarantee satisfactory
performance on queries, but as the dataset become bigger,
query time can increase dramatically.

Some systems have been proposed, such as SpatialHadoop
[6] and Hadoop-GIS [1], that are based on MapReduce, a
parallel, distributed and scalable framework for processing
large volumes of data. These systems support high-perfor-
mance spatial queries, but so far have not provided support
for temporal constraints with spatial data. Moreover, such
systems are suitable for batch processing; they still have a
high latency compared with the requirements of a real-time
system. Key–value stores (KVS) such as HBase1, with their
scalability, fault tolerance, availability and random real-time
read/write capability, have shown promise. However, they
do not have native support for spatial and spatio-temporal
queries.

Spatial support has been extended to KVS. For instance,
MD-HBase [11] layers a multidimensional index over the
KVS by using Z-order and multidimensional index struc-
tures. However, it does not support spatial queries con-
cerned with evolution, in which spatial relationships change
over time. GeoMesa [7] introduces a spatio-temporal index
structure based on Geohash2 on top of Apache Accumulo3.
It interleaves Geohash and timestamps into the design in-
dex and achieves acceptable results when storing data using
35-bit Geohash strings. Nonetheless, the performance of its
proposed spatio-temporal index depends significantly on the
number of Geohash characters in the rowkey and on the res-
olution level; hence, further study of their impact on queries
and dataset is required.

The goal of our work is to build a complete MOD based
on KVS that overcomes the above challenges. We first pro-
posed a novel two-tier index structure to handle spatial data

1https://hbase.apache.org
2http://geohash.org
3http://accumulo.apache.org



in HBase. Our experimental results indicate that queries
using the proposed index outperformed queries with other
indexes and queries in a MapReduce-based system. Then
we indexed moving objects data by presenting a lightweight
spatio-temporal index structure based on STCode [9], an en-
coding algorithm that treats time in the same way as spatial
information. However, time is not just another dimension
but a special one beside the two spatial dimensions, so it is
necessary to explore new methods for incorporating tempo-
ral information into spatial indexes. We discuss this further
in Section 3 and briefly describe our research plan in Sec-
tion 4.

2. KEY–VALUE STORES
In our project, we build the database based on the ar-

chitecture of KVS. This is modeled after Google’s BigTable
[3] such as Cassandra, Accumulo, HBase. These KVS share
some important characteristics inherited from BigTable. In
this section, we describe these characteristics of HBase, as
we use it in our experiments.

HBase is a distributed scalable database that takes ad-
vantage of the HDFS. Tables in HBase include rows and
columns like other databases, but they can scale to large
numbers of rows and columns. To store such large tables
in a distributed cluster, tables are split into a number of
smaller chunks called regions, which are stored in servers
called RegionServers.

HBase is also a KVS since its data model is organized as a
KVS. Within a table, data are stored as a sorted list of key-
value pairs according to rows that are uniquely identified by
their rowkeys, which therefore play an important role when
searching or scanning. Rowkey design is one of the most
important aspects of HBase schema as well as other KVS.

The physical data model in HBase is column-oriented,
making it a column-oriented database. Rows in HBase are
composed of columns and columns are grouped into column
families. Columns in a family are stored together in a low-
level storage file called an HFile. The column family forms
the basic unit of physical storage to which HBase features
such as compression can be applied. Hence, proper design of
column families is also essential when storing and processing
data on HBase.

3. COMPLETED AND ON-GOING WORK

3.1 Spatial Index

3.1.1 Two-tier index structure
Data stored in HBase are accessed by a single rowkey.

However, spatial data are represented by two coordinates
(longitude and latitude), which are equally important in
defining a location. Geohash provides a solution to trans-
form longitude/latitude coordinates into unique codes. Fig-
ure 1 shows how to generate a Geohash code for a spatial
point. Geohash recursively performs binary partitioning to
divide the range into two equal parts, and then assign bit 0
if the location is in the left part and bit 1 if it is the right
part, respectively. Then it interleaves bits from the two di-
mensions and uses base 32 to encode the bit sequence into
a hash code.

There are some advantages of using Geohash to store spa-
tial data into KVS. Points that share the same Geohash

Figure 1: Geohash generation

prefix will be close to each other geographically. If we store
objects in lexicographical order of row keys in the KVS, ob-
jects that are close to each other spatially will also be close to
each other in the database and we can scan relevant objects
efficiently by using prefix filters. However, using Geohash
alone does not guarantee efficient spatial query processing.
For instance, a prefix filter may give insufficient results when
finding k nearest neighbors of a point that is near the rect-
angle border of the prefix. Geohash uses Z-order to order
the rectangles, as shown in Figure 2, so when the system
scans all points ranging from rectangles with Geohash 1 to
4, it will scan the unrelated rectangles 2 and 3. To obtain
accurate query results and prune unnecessary scanning, we
utilized the R-Tree, a multidimensional index structure for
geographical data, as the secondary index tier.

Figure 2: Z-order of 1-character Geohash codes

To bridge the two tiers Geohash and R-Tree, we propose a
novel data structure, the binary Geohash rectangle-partition
tree (BGRP Tree) [10]. We first partition regions into rect-
angles using the longest common prefix. Because overlap
between these rectangles would lead to redundant scans if
we insert them directly into the R-Tree, we use the BGRP
Tree for further partitioning of rectangles into subrectangles,
until there is no overlap between them. Finally, we insert
all subrectangles into the R-Tree. When processing spatial
queries, the system finds the rectangles in the R-Tree that
may contain query results. Then scan process is conducted
on the rectangles found, allowing us to prune the scanning
on unrelated regions.

3.1.2 Experimental results
We built a cluster with 64 nodes. Each node had a virtual

core, 8 GB memory and a 64 GB hard drive. The operating
system for the nodes was CentOS 7.0 (64-bit). We set up one
HMaster, 60 Region Servers and three Zookeeper Quorums
using Apache HBase 0.98.7 with Apache Hadoop 2.4.1 and
Zookeeper 3.4.6. Replication was set to two. To conduct
queries on SpatialHadoop, we installed SpatialHadoop v2.1,



which shipped with Apache Hadoop 1.2.1, and configured
one master and 64 slaves.

We evaluated the insert performance using Yahoo! Cloud
System Benchmark. The number of workloads was varied
from one to 64. Because real spatial data are often skewed,
we chose a Zipfian distribution to generate longitude and
latitude of each input point. We observed that the system
could sustain a peak throughput of 600 K inserts per second
when there were eight workloads generating data. However,
when the number of workloads was increased to 32 or 64,
we observed a drop in performance. This was because of the
cost of splitting regions when a region becomes a hot spot.
Moving objects data are naturally skewed but as shown in
Figure 2, Geohash divides the space into equal buckets, so
some prefixes in dense areas (e.g., u, s, w) are used more
frequently than the prefixes in sparse areas (e.g., 0, 1, 2, 3 ),
and regions of the prefixes in dense area can easily become
hot spots.

Figure 3: KNN queries with T-Drive dataset

We executed k nearest neighbours (kNN) queries using the
two real datasets, T-Drive [13] and OpenStreetMap (OSM)4.
Figure 3 shows the performance of kNN queries for the T-
Drive dataset, which is more than 700 MB with 17,762,390
records. With both datasets, we observed that parallel kNN
using a two-tier index outperformed all other kNN queries
with Geohash only. Note that our index design operates
about 60 to 90 times faster than SpatialHadoop. This is
because HBase does not require the startup, cleanup, shuf-
fling and sorting tasks of MapReduce. Another reason is
that we store kNN procedures in every region server before-
hand, thereby needing only to invoke that procedure locally
on each server. In contrast, MapReduce sends a procedure
to slave servers for every query, thereby requiring more time
for network communication.

3.2 Spatio-Temporal Index
A spatial index is important in indexing moving objects,

but we cannot apply it directly to create a moving-objects
index because of the evolution of objects over time. In our
current approach, temporal information is simply treated as
an extra dimension on top of the spatial hash. For instance,
STCode [9] is an algorithm that encodes spatial information
(longitude, latitude), and temporal information into unique
codes. Latitude is λ ∈ (0, 180) and longitude is ϕ ∈ (0,
360). Temporal information is represented in minutes within
1 year m ∈ (0, 527,040). The minute values (527,040 =
366 × 24 × 60) cover the whole year, even in a leap year.
STCode is generated by applying the rule used with Geohash

4http://www.openstreetmap.org

to divide the range of each dimension into two equal parts
and interleave bits from the three dimensions, then finally
using base 64 instead of base 32 to encode the bit sequence.
Figure 4 shows an example of generating an STCode of two
characters for a point.

Figure 4: STCode generation

Because KVS keeps rowkeys in lexicographical order, we
can exploit STCode as a rowkey on HBase. Since STCode
cannot encode the year information, we achieve the same
STCode for points that are in the same place and time but in
different years. To handle this limitation, we stored the year
information as a column family in HBase. The reason we
chose a column family is that it is the secondary information
to identify a row beside the rowkey, and the basic unit of
physical storage in HBase. By using year information as a
column family, we can distinguish data for different years
and store or compress all data for a year in the same or
nearby physical storage, thus improve the performance when
searching for close points in the database.

4. RESEARCH PLAN
In this section, we describe the key future directions to

meet the requirements of a MOD and to overcome some
limitations of our previous work as discussed in Section 3.

Space-filling curves: Transforming from two-dimensional
spatial data into one-dimensional data is essential to store
moving objects data into KVS. In previous work, we have
used Z-order because of its simplicity for both encoding
and decoding, so it could support high insertion through-
put. However, the quality measures for space-filling curves
in [8] indicate that Z-order performs worst. Therefore, we
would like to study the performance of other space-filling
curves including Hilbert order, βΩ order, and AR2W 2 order
in the context of indexing spatial data in KVS, and analyze
the relationship between quality measures of the curves and
query performance in databases.

Indexing current and near future movement: Tem-
poral information has a special feature—monotonicity. For
example, if the evolution of an object is represented by a
set of records (oi, si, ti) where si is the location of object
oi at the timestamp ti, for each two consecutive records of
an object oi (oi, si, ti) and (oi, si+1, ti+1), we always have
ti+1 > ti. Because of this feature, some moving objects
data could be considered as obsolete if their timestamps are
smaller than a predefined threshold. To handle these obso-
lete entries, pack and purge operations could be employed to
save index and storage space. Purging obsolete entries and
reorganizing after purge operations must be considered while
designing index structures. Separately maintaining tempo-
ral and spatial information influences purge operations less
than other queries, which are often related to recent data.



Therefore, instead of indexing temporal information as an-
other dimension, which occurs in STCode, incorporating it
as a special dimension is a potential and challenging ap-
proach in our research.

Density based partition: While Z-order as well as
some other space-filling curves divide the surface into equal
buckets, moving objects data are naturally skewed. This
leads to some problems in handling spatial queries. First,
as mentioned in Section 3.1, the load imbalance of data in-
sertion into distributed storage could reduce the insertion
throughput. Second, it also causes many false positive scans
if the scanning bucket is bigger than the query range. On
the other hand, if we divide the query range into a large
number of small buckets to scan, the I/O increment would
cause significant performance deterioration. To overcome
these problems, we should partition the space according to
the density of the data.

5. RELATED WORK
Storing and querying geospatial data have been supported

by some NoSQL databases such as document-oriented data-
bases (CouchDB, MongoDB) or network-oriented (Neo4j).
[4] provides an intensive survey of NoSQL Geographic Data-
bases. Although MongoDB supported 2D and 2Dsphere in-
dexes for spatial data, it deals only with point vectors and
its input and output are limited to GeoJSON. GeoCouch,
the spatial extension of CouchDB, cannot filter based on
both spatial and nonspatial criteria in a query. The spatial
library of Neo4j, Neo4j Spatial, supports many types of spa-
tial data and almost fully supports spatial functions but still
requires several improvements to index and query temporal
information with spatial information.

With the development of large main memories, many re-
searchers have proposed main-memory indexes to deal with
the challenge of trading off between high update rates and
low-latency location-based queries. TwinGrid [12] and MOV-
IES [5] maintain two separate index structures, the update
and query indexes. The update index stores all arriving up-
dates during a time period. The query index is a read-only
index to answer queries. TwinGrid replaces the query index
by the update index periodically while MOVIES accumu-
lates the update index and rebuild the query index from the
accumulated update index. These systems can support high
update rates but suffer from the staleness of query results.
ToSS-it [2] used Voronoi diagrams to index spatial data and
a distribute-first build-later approach to distribute data to
servers. It provides high query throughput and scalability
but when data are skewed, it takes time to update the in-
dex.

6. CONCLUSION
This paper discusses the challenges of building MOD that

can support large volumes of data and provide both low-
latency queries and high insertion throughput. We have
proposed an index structure to support spatial data on KVS
and observed improved query performance compared with
other index structures and with the state-of-the-art frame-
work based on MapReduce. We are in the early stages of in-
tegrating temporal information into spatial index structures
to support moving objects data. We described the problems
left to solve and the approaches and plans to achieve the
goal of this PhD project.

7. REFERENCES
[1] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and

J. Saltz. Hadoop gis: a high performance spatial data
warehousing system over mapreduce. Proceedings of
the VLDB Endowment, 6(11):1009–1020, 2013.

[2] A. Akdogan, C. Shahabi, and U. Demiryurek. Toss-it:
A cloud-based throwaway spatial index structure for
dynamic location data. In Mobile Data Management
(MDM), 2014 IEEE 15th International Conference on,
volume 1, pages 249–258. IEEE, 2014.

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. E. Gruber. Bigtable: A distributed storage system
for structured data. ACM Transactions on Computer
Systems (TOCS), 26(2):4, 2008.

[4] C. de Souza Baptista, C. E. S. Pires, D. F. B. Leite,
and M. G. de Oliveiraa. Nosql geographic databases:
an overview. Geographical Information Systems:
Trends and Technologies, 73, 2014.

[5] J. Dittrich, L. Blunschi, and M. A. V. Salles. Movies:
indexing moving objects by shooting index images.
GeoInformatica, 15(4):727–767, 2011.

[6] A. Eldawy and M. F. Mokbel. A demonstration of
spatialhadoop: an efficient mapreduce framework for
spatial data. Proceedings of the VLDB Endowment,
6(12):1230–1233, 2013.

[7] A. Fox, C. Eichelberger, J. Hughes, and S. Lyon.
Spatio-temporal indexing in non-relational distributed
databases. In Big Data, 2013 IEEE International
Conference on, pages 291–299. IEEE, 2013.

[8] H. Haverkort and F. van Walderveen. Locality and
bounding-box quality of two-dimensional space-filling
curves. Computational Geometry, 43(2):131–147, 2010.

[9] J. Ježek and I. Kolingerová. Stcode: The text
encoding algorithm for latitude/longitude/time. In
Connecting a Digital Europe Through Location and
Place, pages 163–177. Springer, 2014.

[10] B. Le Hong Van and A. Takasu. An efficient
distributed index for geospatial databases. In Database
and Expert Systems Applications: 26th International
Conference, DEXA 2015, Valencia, Spain, September
1-4, 2015, Proceedings, volume 9261, page 28.
Springer, 2015.

[11] S. Nishimura, S. Das, D. Agrawal, and A. E. Abbadi.
Md-hbase: A scalable multi-dimensional data
infrastructure for location aware services. In Mobile
Data Management (MDM), 2011 12th IEEE
International Conference on, volume 1, pages 7–16.
IEEE, 2011.

[12] D. Šidlauskas, K. A. Ross, C. S. Jensen, and
S. Šaltenis. Thread-level parallel indexing of update
intensive moving-object workloads. In Advances in
Spatial and Temporal Databases, pages 186–204.
Springer, 2011.

[13] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun,
and Y. Huang. T-drive: driving directions based on
taxi trajectories. In Proceedings of the 18th
SIGSPATIAL International conference on advances in
geographic information systems, pages 99–108. ACM,
2010.


