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ABSTRACT
Optimal location problems identify the best sites to set up new facil-
ities for providing service to its users. Majority of the existing work
in this space assumes that the users are static and the datasets are
small. Such assumptions are too restrictive and unrealistic for real-
life services such as setting up of fuel stations, upgradation of cell-
phone base-stations, etc. The placement of such services should,
however, factor in the mobility patterns of its consumers, i.e., the
user trajectories. For example, given a budget of k locations to
set up fuel stations, the objective should be to cover the maximum
number of user trajectories. In this doctoral work, we introduce
top-k optimal location problems for large-scale trajectory-aware
services. Since these problems are NP-hard, we design scalable
techniques with bounded quality guarantees that work directly with
user trajectories over city-scale road networks. Empirical evalua-
tions show that the proposed heuristics are highly efficient, both in
terms of space overhead and running time, as well as quite effective,
with quality close to that of the optimal.

1. INTRODUCTION AND MOTIVATION
One of the most important problems in planning of services is

to identify the best locations to set up new facilities (or improve
existing facilities) with respect to a given service [4,20]. Examples
include setting up new services such as fuel stations, banking, retail
stores, etc. Such optimal location (OL) problems have also been
extensively studied as Facility Location problems [6, 9].

Majority of the existing works on OL problems assume that the
users of the service are static. Such an assumption is often too
prohibitive. For example, services such as mobile services, fuel
stations, bill boards, traffic monitoring systems, etc. are widely ac-
cessed by users while commuting. Consequently, the placement of
such facilities require taking into consideration the mobility pat-
terns (or trajectories) of the users rather than their static locations
[1–3, 19]. We refer to such services as trajectory-aware services.
A trajectory is simply a sequence of location-time coordinates that
lie on the path of a moving user. Such trajectory data are com-
monly available from GPS traces [10], CDR (Call Detail Records)
data [11] recorded through cellphones, social network check-ins
[5], etc. Due to more availability of real trajectory data, trajectory
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Figure 1: Illustration of the need of trajectory-aware querying for
optimal locations. The lines represent the trajectories of users. We
assume each trajectory belongs to a separate user.

data analytics has attracted considerable research attention in recent
years [12, 13, 18].

To illustrate the need for trajectory-aware planning of services,
consider Fig. 1. There are seven candidate locations, S1, . . . , S7,
to set up a service, out of which five are either home or office lo-
cations. There are five users commuting between home and office
locations whose trajectories are shown. Using this figure, we next
motivate three scenarios of trajectory-aware services.

Scenario 1: A company wants to open two new fuel stations. A
trajectory of a user is satisfied only if it passes through at least
one of the fuel stations. If only the static locations are considered,
i.e., any two out of the five office and residential areas are to be
selected, no combination would satisfy all the trajectories. In con-
trast, if we factor in the mobility of the users, choosing S1 and S3

as the installation locations satisfies all trajectories. Note that it is
not enough to simply look at trajectory counts in each possible in-
stallation location and then choosing the two most frequent ones.
By that strategy, a location such as S2 would be chosen along with
S1. This combination is not effective since the same trajectories
pass through both, thereby reducing each other’s utilities (a pro-
cess sometimes referred to as cannibalization in economics).

Scenario 2: Suppose a mobile service provider wants to set up two
base-stations to provide good quality of experience to the commut-
ing users. In this case, a user is satisfied if it receives good service
for a large fraction of its trajectory. The selection {S1, S2} satis-
fying 3 trajectories is the optimal choice. An alternative selection
such as {S1, S3} can offer good quality of service only in a limited
segment of the incident trajectories, thereby not satisfying even a
single trajectory.

Scenario 3: Suppose a company plans to set up two fuel stations
that minimize the maximum inconvenience, i.e. the extra distance
travelled by a user to avail a service. The optimal solution is {S1, S3}



(or {S2, S3}) with maximum inconvenience being 0. Any other so-
lution would have non-zero maximum inconvenience since at least
one user needs to travel non-zero extra distance to reach to the near-
est fuel station.

The objective of this doctoral thesis is to develop an efficient
framework for planning of large-scale trajectory-aware services such
as the scenarios described above. More specifically, given n can-
didate service locations, the proposed models enable the service
provider to identify the best k locations to set up new service or
improve existing service by factoring in the trajectories of its users.
The models allow the service providers to specify a wide range of
objectives and constraints depending on the choice of service. To
model various objectives, we associate a utility function Uj with
each trajectory Tj in the problem. This utility function captures
how well a trajectory is served by a given set of service locations.
The goal is to determine k out of n candidate locations that maxi-
mize the sum of trajectory utilities Uj over all the trajectories.

Motivated by the above three scenarios, we study three classes
of problems namely, TOPS, TUMP and TIPS, which are described
in Sec. 2, 3 and 4, respectively.

The contributions and significance of this doctoral thesis are sum-
marized as follows:
? Novelty: To the best of our knowledge, this is the first extensive
work to study efficient computation of placement of large-scale
trajectory-aware services. The proposed models are highly generic
and can be easily adapted to meet various service requirements.
? Hardness: We show that the TOPS, TUMP and TIPS problems
are NP-hard. We develop optimal algorithms for each of them and
show why they are impractical.
? Efficiency: We develop several interesting heuristics for each
of the three problems. The proposed solutions are highly efficient
both in terms of space overhead and running time.
? Effectiveness: While the proposed heuristics have theoretically
bounded quality guarantees, the empirical evaluations show that
they are quite close to the optimal.
? Extensive Benchmarking: We benchmark the proposed solu-
tions through extensive experimental evaluation over real and syn-
thetic large-scale datasets. The impact of various parameters such
as budget, coverage threshold, trajectory-length, city geometries,
etc. are thoroughly evaluated across multiple large-scale datasets.

We next describe in detail the TOPS, TUMP and TIPS problems.

2. THE TOPS PROBLEM
Referring to Scenario 1, here we consider the problem of OL

queries for services such as fuel-stations, ATMs, convenience stores,
bill boards, etc., that are typically demanded only intermittently,
and not continuously throughout the trip.

Consider a road network G = {V,E} over a geographical area
where V = {v1, . . . , vN} denotes the set of road intersections
(usually referred to as vertices or nodes), and E denotes the road
segments between two adjacent road intersections. To model the
direction of the underlying traffic that passes over a road segment,
we assume that the edges are directed. Assume a set of candidate
sites S = {s1, · · · , sn} ⊆ V where a certain service or facility
can be set up. The set S can be in addition to existing service loca-
tions. Without loss of generality, we can augment the vertices V to
include all the sites. Thus, S ⊆ V .

The set of trajectories over G is denoted by T = {T1, · · · , Tm}
where each trajectory Tj is a sequence of nodes Tj = {vj1 , · · · , vjl},
vji ∈ V . The trajectories are usually recorded as GPS traces and
may contain arbitrary spatial points on the road network. For our
purpose, each trajectory is map-matched [14] to form a sequence
of road intersections through which it passes. We assume that each

trajectory belongs to a separate user. However, the framework can
easily generalize to multiple trajectories belonging to a single user.

Suppose d(vi, vj) denotes the shortest network distance along a
directed path from node vi to vj , and dr(vi, vj) denotes the short-
est distance of a round-trip starting at node vi, visiting vj , and re-
turning to vi, i.e., dr(vi, vj) = d(vi, vj) + d(vj , vi). In general,
d(vi, vj) 6= d(vj , vi), but dr(vi, vj) = dr(vj , vi). With a slight
abuse of notation, assume that dr(Tj , si) denotes the extra dis-
tance traveled by the user on trajectory Tj to avail a service at site
si. Formally, dr(Tj , si) = min∀vk,vl∈Tj{d(vk, si) + d(si, vl) −
d(vk, vl)}.

It is convenient for a user to avail a service only if its location is
not too far off from her trajectory. Thus, beyond a distance τ , we
assume that the utility offered by a site si to a trajectory Tj is 0.
We call this user-specified distance τ as the coverage threshold.

DEFINITION 1 (COVERAGE). A site si covers a trajectory
Tj if the distance dr(Tj , si) is at most τ , where τ ≥ 0 is the cov-
erage threshold.

For all sites within the coverage threshold τ , the user also spec-
ifies a preference function ψ. The preference function ψ(Tj , si)
assigns a score (normalized to [0, 1]) for a trajectory Tj and a site
si that indicates how much si is preferred by the user on trajectory
Tj . Higher values indicate higher preferences with 0 indicating no
preference. In general, sites that are closer to the trajectory have
higher preferences than those farther away.

DEFINITION 2 (PREFERENCE FUNCTION ψ). ψ : (T ,S)→
[0, 1] is a real-valued preference function defined as follows:

ψ(Tj , si) =

{
f(dr(Tj , si)) if dr(Tj , si) ≤ τ
0 otherwise

(1)

where f is a non-increasing function of dr(Tj , si).

The goal of the TOPS query is to report a set of k sites Q ⊆
S, |Q| = k, that maximizes the preference score over the set
of trajectories. The preference score of a trajectory Tj over a set
of sites Q is defined as the utility function Uj for Tj , which is
simply the maximum score corresponding to the sites in Q, i.e.,
Uj = maxsi∈Q{ψ(Tj , si)}.

The generic TOPS query formulation is stated next.

PROBLEM 1 (TOPS). Given a set of trajectories T , a set of
candidate sites S that can host the services, the TOPS problem
with query parameters (k, τ, ψ) seeks to report the best k sites,
Q ⊆ S, |Q| = k, that maximize the sum of trajectory utilities, i.e.,
Q = arg max

∑m
j=1 Uj where Uj = maxsi∈Q{ψ(Tj , si)}.

We show that the TOPS problem is NP-hard [16]. Further, we
also prove that the sum of utilitiesU =

∑m
j=1 Uj is a non-decreasing

sub-modular function [16].

2.1 Algorithms for TOPS
We propose a greedy approximation algorithm INC-GREEDY to

solve TOPS. This is based on the principle of maximizing marginal
gain. In successive k iterations, it picks a site that offers maximal
gain in the utility U . The approximation bound of this algorithm is
max{1−1/e, k/n}. To improve the performance of this algorithm,
we use FM Sketches [7] for efficiently identifying the site offering
maximal marginal gain in the utility U . The major drawback of this
scheme is its high memory overhead of O(mn) which is infeasible
for large datasets. To address this limitation, we develop a scalable
framework NETCLUS, discussed next.

We first state one basic observation. If two sites are close, the sets
of trajectories they cover are likely to have a high overlap. Hence,



when k � n, which is typically the case, the sites chosen in the
answer set are likely to be distant from each other. The index struc-
ture, NETCLUS, is designed based on the above observation.

Clustering of sites based on similarities between set member-
ships (such as Jaccard similarity of trajectory sets covered by two
sites) will not be useful since they depend on the coverage threshold
τ which is available only at run time. Hence, we adopt distance-
based clustering. If two sites are close to each other, their utilities
as well as the sets of trajectories they cover are likely to be similar.
Hence, it is unlikely for two sites belonging to the same cluster to
be part of the answer set. Therefore, if INC-GREEDY is performed
only on the clusters instead of the sites, the answer sets returned
and their corresponding utilities are likely to be similar.

Our method follows two main phases: offline and online. In the
offline phase, clusters are built at multiple resolutions. This forms
the different index instances. A particular index instance is useful
for a particular range of query coverage thresholds. In the online
phase, when the query parameters are known, first the appropriate
index instance is chosen. The INC-GREEDY algorithm is then run
with the cluster representatives on that instance. We omit the details
in the interest of space.

Next we outline the solution at a high level. Given the raw GPS
traces of user movements, they are map-matched [14] to the cor-
responding road network. From the map-matched trajectories, in
conjunction with the road network, the NETCLUS index structure
is built. NETCLUS performs a multi-resolution clustering of the
road network following which indexed views of both the network
and the trajectories are constructed in a compressed format at var-
ious granularities. This completes the offline phase. In the online
phase, given the query parameters, the optimum clustering resolu-
tion to answer the query is identified, and the corresponding views
of the trajectories and road network are analyzed to retrieve the best
k sites for facility locations.

2.2 Summary of Experimental Results
We evaluate our heuristics on a publicly available and widely

used real dataset consisting of GPS traces of taxis from Beijing
[21, 22]. This dataset has 123, 179 trajectories, and 269, 686 sites.

To study the impact of city geographies, we also evaluate our
solutions on three synthetic datasets that emulate trajectories in the
patterns followed in New York, Atlanta and Bangalore. We use
an online traffic generator tool, MNTG (http://mntg.cs.umn.edu/tg/
index.php) to generate the traffic traces.

We observe that NETCLUS is up to 2 orders of magnitude faster
than INC-GREEDY while yielding solutions that are within 90% of
that of INC-GREEDY. The use of FM sketches for efficiently com-
puting the site offering maximal marginal utility, yields speed up
of 3-6 times. Importantly, while INC-GREEDY goes out of mem-
ory for τ ≥ 1.6 km on a 32 GB machine, NETCLUS requires less
than 3 GB memory for different values of the query parameters.
We also find that the longer trajectories are easier to serve than the
shorter trajectories, as they can be served through a larger pool of
candidate sites. In addition, NETCLUS can efficiently absorb dy-
namic updates such as change in trajectories or candidate locations.

3. THE TUMP PROBLEM
Referring to Scenario 2, here we focus on cellular services that

aim to provide good quality of experience (QoE) not just at few
discrete points, but throughout the trip.

Consider a cellular networkB = {B1, . . . ,Bn} of n base-stations
spread across a region. A trajectory Tj is represented as a sequence
of tuples of the form Φi = 〈Bi,∆i, ηi〉 that captures the user expe-
rience. The user on this trajectory was connected to the base-station

Bi ∈ B for a time interval of ∆i units and received a throughput of
ηi bytes per unit of time. Note that ηi can be any metric as long as a
greater ηi denotes better experience (e.g., throughput or packet suc-
cess rate) when associated to a respective base-station. Henceforth,
for brevity, we refer to this metric as throughput. These trajecto-
ries and Φi’s can be constructed by scanning the active transaction
records maintained by the network operator.

For ease of notation, we write Bi ∈ Tj if the base-station Bi ∈
B lies on the trajectory Tj . The length of a trajectory Tj , denoted
by |Tj |, is simply the count of base-stations that lie on it. Suppose
d denotes the maximum length of a trajectory.

For a trajectory Tj , a base-station Bi ∈ Tj is a bottleneck base-
station if it offers a degraded quality of service, e.g., an extremely
low upload/download speed, a call-drop, etc. In our model, we
assume that a base-station Bi acts as a bottleneck w.r.t. a trajec-
tory Tj if the corresponding throughput is less than a threshold,
i.e., ηi < ψ. The value of ψ is computed from a combination
of network parameters. A base-station that is a bottleneck for one
trajectory may not be a bottleneck for other trajectories since dif-
ferent users may experience different throughputs based on various
factors such as data plan, time of the day, etc.

Our goal is to maximally improve the mobile user experience
by selectively upgrading k out of n base-stations that act as bottle-
necks on some trajectories. Suppose X = {x1, . . . , xn} denotes
the boolean solution vector such that xi = 1 if and only if base-
station Bi is chosen for upgradation and 0 otherwise.

Given a trajectory Tj , we define the weight wji for each base-
station Bi ∈ Tj , that accounts for the fraction of the total time
that the user (on this trajectory) was connected to the base-station
Bi. More precisely, wji = ∆i∑

Bi∈Tj
∆i

. Suppose bji denotes a

bottleneck indicator variable that takes value 1 if the base-station
Bi ∈ Tj is a bottleneck base-station w.r.t. Tj , and 0 otherwise.

Given a trajectory Tj and solution X, we define a bottleneck
utility function Wj as follows:

Wj =
∑

Bi∈Tj ,bji=0

wji +
∑

Bi∈Tj ,bji=1

wji.xi (2)

Wj essentially captures the fraction of the total time when the user
enjoys acceptable QoE on the trajectory Tj . If all the base-stations
on Tj are non-bottleneck, then Wj = 1; otherwise, Wj < 1.
Henceforth, we consider the bottleneck utility function as the de-
fault trajectory utility function.

Based on this, we next define a class of trajectories that enjoy
satisfactory QoE after upgradation of the base-stations.

DEFINITION 3 (γ-BOTTLENECK-FREE TRAJECTORY). A tra-
jectory Tj ∈ T is γ-bottleneck-free if its utility Wj ≥ γ where Wj

is given by Eq. (2), and γ ∈ [0, 1] is the bottleneck parameter.

Our aim is to maximize the number of trajectories with high util-
ity. To do so, given the bottleneck utility function Wj , we map
it to a step utility function Uj using a threshold γ (0 ≤ γ ≤ 1),
henceforth referred to as the bottleneck parameter:

Uj =

{
1 if Wj ≥ γ
0 otherwise

(3)

We now formally state the Trajectory-Aware Macro-Cell Planning
Problem, TUMP(γ).

PROBLEM 2 (TUMP(γ)). Given a base-station network B
of size n, a budget parameter k, a bottleneck parameter γ, and a
set of m trajectories T = {T1, . . . , Tm}, each of which has an
associated utility function Wj , determine the set of k base-stations

http://mntg.cs.umn.edu/tg/index.php
http://mntg.cs.umn.edu/tg/index.php


to upgrade such that the sum of utilities
∑

Tj∈T Uj is maximized,
where Uj is given by Eq. (3).

We show that the TUMP(γ) problem is NP-hard due to a reduc-
tion from the k-Vertex Cover (k-VC) problem [15].

Our problem formulation enables the network operator to suit-
ably select the bottleneck parameter γ based on the application re-
quirements. For example, γ = 1 is suitable for real-time appli-
cations such as voice calls or video conferences whereas γ = 0.8
may suffice for video streaming since video players can mask-off
certain durations of low connectivity by buffering. Similarly, even
γ = 0.5 may be enough for elastic applications such as background
synchronization of emails.

3.1 Algorithms for TUMP
Since the TUMP(γ) problem is NP hard, we design four ap-

proximation algorithms based on linear programming, and greedy
paradigm [15]. Among the proposed schemes, the algorithm that
stands out in terms of quality and practical running times is DEC-
GREEDY. This is a greedy algorithm that works on the principle
of minimizing marginal loss. Initially, we assume that the solution
comprises of the full set of bottleneck base-stations. Given that
the budget is k, the algorithm runs for n − k iterations, where in
each iteration, it prunes away a base-station that results in minimal
loss in the utility U . The approximation bound of this algorithm is(
k
d

)
/
(
n
d

)
.

We show that DEC-GREEDY algorithm can be incrementally ap-
plied to an evolving network; i.e., as and when the operator allo-
cates additional budget, this algorithm can be applied to incremen-
tally evolve the network from one generation to another.

3.2 Summary of Experimental Results
Among the different algorithms that we design for the TUMP

problem, DEC-GREEDY provides the optimum balance between
quality and running time. On thorough empirical evaluation across
multiple datasets emulating different city topologies, it is observed
that DEC-GREEDY offers significantly higher quality than the other
algorithms, especially at low budgets and higher γ, i.e., higher QoE
requirements. For example, with an upgrade budget of k = 20%
and γ = 0.8, DEC-GREEDY returns solutions that serve 3-8 times
more number of users than an approach that uses a greedy location-
based base-station upgrade.

We also observe that the investment required to provide satis-
factory QoE to mobile users is dependent on the population dis-
tributions and their road-network. Specifically, cities with a dense
central business districts, such as New York, need less budget to
satisfy a large segment of mobile users than cities where businesses
are spread out (e.g., Atlanta).

4. THE TIPS PROBLEM
Referring to Scenario 3, the next problem is related to the TOPS

problem, which we refer to as Trajectory-aware Inconvenience-
minimizing Placement of Services (TIPS), stated as follows:

PROBLEM 3 (TIPS). Given a set of trajectories T , a set of
candidate sites S that can host the services, the TIPS problem with
query parameter k seeks to report the best k sites, Q ⊆ S, |Q| =
k, that minimizes the maximum (average) inconvenience, i.e., the
extra distance travelled by a commuting user in order to avail a
service at her nearest service location.

The maximum (average) inconvenience minimization problem is
a generalization of the k-center problem [8] (k-medoidS problem
[17]), and is thus, NP Hard. We design multiple heuristics for each

of the two versions of the problem. We are working towards a
scalable implementation of these heuristics. For evaluation, we use
the same real and synthetic datasets, as in the case of the TOPS
problem. The preliminary results show that the proposed solutions
are highly effective and efficient.

Conclusions
With expansion of cities, and growing urban population, more peo-
ple are required to commute longer distances, and thereby gener-
ating new demands for various services such as fuel stations, food
joints, mobile services, retail stores, etc. In this light, identifying
the best service-locations is highly critical to the success of these
trajectory-aware services. The large-scale road networks and high
volume of trajectories to be served, make these problems extremely
challenging. This doctoral thesis introduces three such optimal lo-
cation problems, namely TOPS, TUMP, and TIPS and develop ef-
ficient and effective frameworks to solve them.
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