
Have Your Cake and Eat it, Too:
Data Provenance for Turing-Complete SQL Queries

Tobias Müller
(Advisor: Torsten Grust)
University of Tübingen
Tübingen, Germany

to.mueller@uni-tuebingen.de

ABSTRACT
We report on our work about the computation of data prove-
nance for feature-rich SQL. Among further constructs, our
prototype supports correlated subqueries, aggregations, re-
cursive queries and window functions. Our analysis ap-
proach completely sidesteps relational algebra and instead
requires a translation of the input query into an imperative-
style program. Provided that the target language is Turing-
complete, any SQL query can be covered. We employ a
new variant of program analysis which consists of a dy-
namic and a static part. This two-step approach enables
us to dodge limitations that a Turing-complete computation
model entails for program analyses otherwise. The derived
data provenance directly reflects the data provenance of the
original SQL query.

1. INTRODUCTION
Data provenance [3,4] is metadata — primarily about the

origin of a certain data piece. Everyday examples for de-
sirable provenance information are the From: header field
in an email or citations in academic papers. In these two
cases, the provenance is trivial and does not need any clever
algorithms for its computation (at least: should not).
However, in the context of real-world relational database

systems there is a deficiency regarding the provenance com-
putation for contemporary implementations of SQL. SQL,
being the standard of relational query languages, has sup-
port for advanced language constructs like recursive queries
or window functions. Further, nesting of queries is possi-
ble, for example, through (correlated) subqueries. These
features make writing queries convenient but also make the
data provenance of query results non-trivial in the general
case. Concrete scenarios in which data provenance for SQL
has proved being relevant are the view update/maintenance
problem [4], data warehouses [4] and debugging purposes [5].
The analysis approach we are going to describe is capable of
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computing the data provenance for any non-updating SQL
query.

1.1 Provenance Model
We adopt a basic distinction of Where- and Why-prove-

nance as originally introduced by Buneman and Tan [1]:
• Where-provenanceWhere-provenance : where has a certain data piece

originated? Exactly which table cells were copied or
transformed to yield an output cell?

• Why-provenanceWhy-provenance : why is a certain data piece in the
result? Which input table cells were inspected to de-
cide about the existence or contents of an output cell?

1.2 Basic Example
Figure 1 shows an intentionally simple SQL query and

corresponding example tables. Mouse pointer 1 represents
an inquiry for the data provenance of table cell t4: C6H12O6C6H12O6 .
According to the SQL query, two input columns are ac-

cessed: compound is used to decide if a tuple gets filtered
or not. If a tuple qualifies, its value sitting in formula is
copied over into the result table. Our provenance analy-
sis accordingly finds the result being why-dependent on tu-
ple t2: glucoseglucose and being where-dependent on t2: C6H12O6C6H12O6 .
In the following sections we revisit this example and il-

lustrate how this outcome actually is computed using our
program analysis.

1.3 Advanced Example
The provenance analysis of the query found in Figure 2(b)

is a unique feature of our approach: to the best knowledge
of the author, only our analysis approach can deal with re-
cursive SQL queries.
The query syntax-checks molecular formulae. Technically,

the finite state machine depicted in Figure 3 is executed.
The encoded FSM and input formulae can be found in Fig-
ure 2(a).
We inspect result cell O7

3-
O7

3- (mouse pointer 2 ). The
according highlights within the compounds table ( citratecitrate

compounds
compound formula

t1 citratecitrate C6H5O7
3-

C6H5O7
3-

t2 glucoseglucose C6H12O6C6H12O6
t3 hydroniumhydronium H3O

+
H3O

+

(a) Database instance.

SELECT formula
FROM compounds
WHERE compound = ’glucose’

output
formula

t4 C6H12O6C6H12O6
1

(b) Query and result.
Figure 1: Basic query example and provenance markers.



and C6H5O7
3-

C6H5O7
3- ) show the same pattern as in the basic ex-

ample of Section 1.2.

s0 s1

s2 s3

[A..Za..z]

[A..Za..z0..9]

[+-] [A..Za..z]
[0..9]

[+-]
[0..9]

Figure 3: FSM.

More interesting markers
can be found within ta-
ble fsm. The highlighted
cells inside t8 and t9 in-
dicate which state changes
were triggered while parsing
the first letters of the for-
mula.

1.4 Analysis Overview
Figure 4 provides a graphical overview of our analysis ap-

proach. The actual provenance analysis happens within the
dotted box. It requires the SQL query to be translated into
imperative program code. For our prototype, we use a hand-
crafted SQL compiler. Contemporary database systems like
HyPer [9] perform such translation internally.
The provenance analysis itself consists of two steps. At

first, a dynamic analysis takes place which includes code
instrumentation and execution. This step actually computes
the same query result as a regular query processor would
do.1 As a side effect, two light-weight execution logs are
written. They describe the execution flow during runtime
and are a key element of this approach.
In our second step, a static analysis is carried out exploit-

ing the runtime knowledge encoded within the logs. Our
static analysis does absolutely no data processing. The data
provenance is derived from program code and logs only. It
is inspired by Program Slicing [2, 10].
In Section 3, all elements of our provenance analysis will

be explained in deeper detail.

2. SQL COMPILATION
Figure 5 shows a simplified yet executable translation of

the basic SQL query in Figure 1(b). Ignore the logging state-
ments until the subsequent section.
The target language is kept minimal to just fit our needs:

it can compute query results but has no support for I/O op-
erations, for example. Due to space limitations and as the
presented code fragment consists of well-known language el-
ements we do not give a formal definition.

1As part of our future work, we seek to modify an existing
database system and let it run the dynamic analysis simul-
taneously with query execution.

SQL Query

Translate SQL

Imperative Code

LogsDynamic Analysis Static Analysis

Input Tables Output Table Data Provenance

Provenance Analysis

Figure 4: Overview of the two-step analysis.

You find the table compounds of Figure 1(a) represented as
a data structure (list of dictionaries). The algorithm iterates
over the input table (line 3) and if a tuple has qualified
(line 5), its formula is appended to the result (line 7).
Please note that we combined input data (i.e. database

instance) and the computation algorithm into one program.
In the regular case, both of them are kept separate (refer to
Figure 4).

3. PROVENANCE ANALYSIS
Before we get to the details of our approach, we shed some

light on the theoretical limits of program analysis and the
arising dilemma. The theorem of Rice is a result of compu-
tational theory. Cast informally, the theorem states that in
the Turing-complete computation model only trivial ques-
tions about the behavior of a program can be answered.
A sample trivial question would be: how many lines has
the program? However, non-trivial properties of a program
(such as data provenance) can only be adressed if the pro-
gram actually is executed.
This gives rise to the following dilemma: to embrace a

rich SQL dialect, we want to be Turing-complete (i.e., com-
pute anything). Regarding program analysis, however, we
want to avoid Turing completeness and its implications for-
mulated in the theorem of Rice. The approach illustrated
next allows us to have the cake and eat it, too. It allows us
to stay in the Turing-complete computation model during
runtime and to switch into a weaker computation model for
provenance analysis.

compounds
compound formula

t5 citratecitrate C6H5O7
3-

C6H5O7
3-

t6 glucoseglucose C6H12O6C6H12O6
t7 hydroniumhydronium H3O

+
H3O

+

fsm
source labels target final

t8 00 A..Za..zA..Za..z 11 false
t9 11 A..Za..z0..9A..Za..z0..9 11 true
t10 11 0

..
90
..
9 22 true

t11 11 +-+- 33 true
t12 22 0

..
90
..
9 22 false

t13 22 +-+- 33 false
t14 33 A..Za..zA..Za..z 11 true

(a) Database instance.

WITH RECURSIVE
run(compound, step, state, formula) AS (
SELECT compound, 0, 0, formula
FROM compounds
UNION ALL
SELECT this.compound, this.step + 1 AS step,

edge.target AS state, right(this.formula, -1) AS formula
FROM run AS this, fsm AS edge
WHERE length(this.formula) > 0
AND this.state = edge.source
AND strpos(edge.labels, left(this.formula, 1)) > 0

)
SELECT r.step, r.state, r.formula
FROM run AS r
WHERE r.compound = ’citrate’

(b) Recursive SQL query driving the FSM.

output

step state formula

00 0 C6H5O7
3-

C6H5O7
3-

11 1 6H5O7
3-

6H5O7
3-

22 1 H5O7
3-

H5O7
3-

33 1 5O7
3-

5O7
3-

44 1 O7
3-

O7
3-

55 1 7
3-

7
3-

66 1 3-3-

77 2 --

88 3

2

(c) Parsing trace.
Figure 2: Advanced query example and provenance markers.



1 data =
[{"compound": "citrate", "formula": "C6H5O7

3-"},
{"compound": "glucose", "formula": "C6H12O6"},
{"compound": "hydronium", "formula": "H3O

+"}];
2 res = [];
3 foreach row in data do

4 c = row["compound"];

5 if c == "glucose" then

6 t = {"formula": row["formula"]};

7 append(res, t)

8 else

9 skip
10 fi
11 od

12 // res: [{"formula", "C6H12O6"}]

put(logcf ,true)
put(logix ,idxOf(row, data))
put(logix ,"compound")

put(logcf ,true)

put(logix ,"formula")
put(logix ,idxOf(t, output))

put(logcf ,false)

put(logcf ,false)

Figure 5: The translated and instrumented SQL query.

3.1 Two-Step Program Analysis
To make this switch possible we run consecutive dynamic

and static analyses (compare Figure 4).
During dynamic analysis, the behavior (not: result) of cer-

tain program statements is recorded in logs. For example, an
if-statement can branch into the then- or the else-block.
We record this (binary) decision. During static analysis, this
makes the behavior of an if-statement predetermined. The
if does no longer actively contribute to the computation
and can be replaced by the according then- or else-branch.
When applying this record & replace discipline for a rele-

vant subset of a program’s statements, we get an equivalent
form of the original program computing the same result.
But now, the computation model has been simplified and
is open for running an exhaustive program analysis. In the
remainder of this section we explain the two analysis steps
in detail.

3.2 Dynamic Analysis
As motivated above, we aim to record the behavior of

program statements during runtime. The following two logs
are appended to:
• logcf (control flow): which/how often does a certain

code branch get executed by if and foreach?
• logix (indices): at which locations are elements inside

lists/dictionaries accessed?
During runtime, these properties are available and can

easily be recorded. We use the technique of code instrumen-
tation to create the two logs.
For an instrumented example, see Figure 5. The instru-

mentation instructions are placed on the righthand side of
the listing. The first argument of the put()-function is the
type of log we want to append to. Its second argument is
the actual value being logged. Figure 6 lists the according
logs. These are written (and read) sequentially and do not
need any further meta-data, keeping the logs small.
The logged data items are to be interpreted in the context

of the (uninstrumented) source code. For example, the first
entry of logcf corresponds to the first control flow decision
in the program at line 3. The foreach loop opened there
can either execute its body (another time) or terminate and
continue at the statement after line 11. We encode these

decisions using Boolean values. The first true found in the
log indicates that the body has been executed. The last
false indicates that the foreach loop has exited. Similarly,
an if-statement can decide between then (yields true) or
else (yields false).

logcf

⟨true,
false,
true,
true,
true,
false,
false ⟩

logix

⟨0,
"compound",
1,
"compound",
"formula",
0,
2,
"compound" ⟩

Figure 6: Log con-
tents.

List/dictionary element ac-
cesses get logged in logix . Note
that foreach and append im-
plicitly use numeric indices to
read/write from/into lists and
need to be included. The
idxOf() function retrieves the
ordinal position of a list ele-
ment.

3.3 Static Analysis
Our static analysis does an abstract (value-less) interpre-

tation of the uninstrumented source code. Instead of com-
puting values, all input values are replaced by unique nu-
meric identifiers. These pids are propagated during pro-
gram interpretation and successively create a variable envi-
ronment containing the data provenance information. Based
on the basic query example of Figure 1 we present a simpli-
fied subset of our provenance derivation algorithm.
Figure 8 shows provenance inference rules denoted in op-

erational semantics. The top Statements rule is the entry
point for the interpretation. It takes the first statement s out
of all statements ss to be interpreted. In general, interpre-
tation of statements is triggered by the −−⤇ symbol and leads
to an update of the current variable environment Γ. The
CF symbol represents the current data provenance for the
control flow. The idea behind this is that reaching a certain
code section depends on a number of branching decisions
carried out by if/else statements. The dependencies for
these decisions are collected in CF and propagated during
program interpretation.
The numeric ids which represent a data provenance rela-

tionship are defined in Figure 7. There are the two kinds
pide and pidy which stand for Where- and Why-provenance,
respectively. During analysis, these ids are created by the
new()-function (for an example, see the Lit-Str rule). Ini-
tially, all pids are of the Where-type because any pide rep-
resents a certain value and a location of origin. During in-
terpretation, they may be converted into Why-type using
function Υ().
The main data structure is P . It can represent any value

of any type of our programming language. Its second compo-
nent e is used for container types (i.e., lists/dictionaries) to
store contained elements. The first component c is used for
both, containers as well as atomic values (e.g., strings). It
represents the provenance for that value itself. The logs logcf
and logix are read by the inference rules. See rules If-True
and If-False, for example. The popf ()-function reads and
removes the first element of the according log.
The inference rules presented in Figure 8 are suitable to

compute the data provenance of the basic query and fi-
nally yield the environment shown in Figure 9. As the

P ∶= ⟨c, e⟩
c ∶= {pid1, ..., pidn}

pid ∈ {1e, 1y , 2e, 2y , 3e, 3y , ...}
e ∶= {l1 ↦ P1, ..., ln ↦ Pn}

l ∶= any identifier
γ(P ) ∶= c
ε(P ) ∶= e

Υ(pids) ∶= {pidy ∶ pide∣y ∈ pids}
Figure 7: Data structures used in provenance computation.



Statements
CF ; Γ ⊢ s −−⤇ Γ1 CF ; Γ1 ⊢ ss −−⤇ Γ2

CF ; Γ ⊢ s ; ss −−⤇ Γ2

PutVar
CF ; Γ ⊢ e⤇ P Γres = Γ + {v ↦ P }

CF ; Γ ⊢ v = e −−⤇ Γres

Skip

CF ; Γ ⊢ skip −−⤇ Γ

If-True
popf (logcf ) CF ; Γ ⊢ e⤇ Pe

CF if = Υ(CF ∪ γ(Pe)) CF if ; Γ ⊢ ss1 −−⤇ Γres

CF ; Γ ⊢ if e then ss1 else ss2 fi −−⤇ Γres

If-False
¬popf (logcf ) ...

2

CF ; Γ ⊢ if ... fi −−⤇ Γres

Foreach-False
¬popf (logcf )

CF ; Γ ⊢ foreach ... od −−⤇ Γ

Foreach-True
popf (logcf ) CF ; Γ ⊢ e⤇ Pe Pel = ε(Pe)[popf (logix )]

Γfor = Γ + {v ↦ ⟨γ(Pe) ∪ γ(Pel ), ε(Pel )⟩}
CF ; Γfor ⊢ ss ; foreach v in e do ss od −−⤇ Γres

CF ; Γ ⊢ foreach v in e do ss od −−⤇ Γres

Append
CF ; Γ ⊢ e⤇ Pe Pv = Γ[v]

P = ⟨γ(Pv), ε(Pv) + {popf (logix ) ↦ Pe}⟩ Γres = Γ + {v ↦ P }
CF ; Γ ⊢ append(v, e) −−⤇ Γres

GetVar
P = Γ[v] Pres = ⟨γ(P ) ∪CF , ε(P )⟩

CF ; Γ ⊢ v ⤇ Pres

Lit-Str
Pres = ⟨{new()} ∪CF,∅⟩

CF ; Γ ⊢ c⤇ Pres

GetVar-Idx
P = ε(Γ[v])[popf (logix )] CF ; Γ ⊢ e⤇ Pe

Pres = ⟨γ(P ) ∪CF ∪ γ(Γ[v]) ∪Υ(γ(Pe)), ε(P )⟩
CF ; Γ ⊢ v[e] ⤇ Pres

Lit-Dict
∣CF ; Γ ⊢ ei ⤇ Pi∣i=0...n Pres = ⟨{new()} ∪CF , {∣`i ↦ Pi∣i=0...n}⟩

CF ; Γ ⊢ {`0:e0, . . . , `n:en} ⤇ Pres

Lit-List
∣CF ; Γ ⊢ ei ⤇ Pi∣i=0...n Pres = ⟨{new()} ∪CF , {∣i↦ Pi∣i=0...n}⟩

CF ; Γ ⊢ [e0, . . . , en] ⤇ Pres

BinOp
CF ; Γ ⊢ e1 ⤇ P1 CF ; Γ ⊢ e2 ⤇ P2 Pres = ⟨γ(P1) ∪ γ(P2),∅⟩

CF ; Γ ⊢ e1 ⊛ e2 ⤇ Pres

Figure 8: Inference rules for data provenance.

main result, we find four provenance relationships located
in res[0]["formula"]. The highlighted pids 5e5e (relates
to t2: C6H12O6C6H12O6 ) and 4y4y (relates to t2: glucoseglucose ) consti-
tute the data provenance visualized in Figure 1. 6y6y and

10y10y do not correspond to table cells and may be ignored.
We already presented a visualization prototype in a recent
demo paper [8].

3.4 Related Work
The strongest group of related work builds upon prove-

nance propagation through query transformation on the al-
gebraic layer. For example, there is the Provenance Semir-
ings approach [7] as well as the PERM system [6]. In more
recent work, both of them were extended to support aggre-
gations and subqueries, respectively.

2Analogous to If-True: ss2 is interpreted.

data ∶ ⟨{ 10e10e }, {0 ↦ ⟨{3e},"compound" ↦ ⟨{1e},∅⟩,
"formula" ↦ ⟨{2e},∅⟩⟩,

1 ↦ ⟨{ 6e6e },"compound" ↦ ⟨{ 4e4e },∅⟩,
"formula" ↦ ⟨{ 5e5e },∅⟩⟩,

2 ↦ ⟨{9e},"compound" ↦ ⟨{7e},∅⟩,
"formula" ↦ ⟨{8e},∅⟩⟩}⟩

row ∶ ⟨{9e, 10e}, {"compound" ↦ ⟨{7e},∅⟩,
"formula" ↦ ⟨{8e},∅⟩}⟩

c ∶ ⟨{7e, 9e, 10y},∅⟩

t ∶ ⟨{4y , 6y , 10y}, {"formula" ↦ ⟨{5e, 4y , 6y , 10y},∅⟩}⟩

res ∶ ⟨∅,0 ↦ ⟨{4y , 6y , 10y},
{"formula" ↦ ⟨{ 5e5e , 4y4y , 6y6y , 10y10y },∅⟩}⟩⟩

Figure 9: Resulting environment Γ after static analysis.
Pids of non-input-values (> 10e∣y) got dropped.

The aforementioned algebraic approaches are all limited in
their expressiveness and extending the number of supported
algebraic operators is non-trivial.

4. CONCLUSIONS
The approach presented in this article pushes the bound-

aries of the provenance analysis for SQL queries. Our proto-
type can analyse queries with advanced but timely SQL lan-
guage features. Due to Turing-completeness, this approach
can deal with any (non-updating) query translated into im-
perative code.
It is part of our future work to run this approach in

the environment of a decent DBMS. In parallel, we pur-
sue the derivation of How -provenance [3], i.e. get each one
of the computed provenance relations associated to the SQL
clauses accountable for its existence.
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