
Quote Recommendation for Dialogs and Writings

Yeonchan Ahn*, Hanbit Lee*, Heesik Jeon**, Seungdo Ha* and Sang-goo Lee*
*School of Computer Science and Engineering, Seoul National University, Seoul, Korea

**Artificial Intelligence Team, Samsung Electronics Co., Ltd., Seoul, Korea
*{skcheon, acha21, seungtto, sglee}@europa.snu.ac.kr, **heesik.jeon@samsung.com

ABSTRACT
Citing proverbs and (famous) statements of other people can
provide support, shed new perspective, and/or add humor to one’s
arguments in writings or dialogs. Recommending quote for dialog
or writing can be done by considering the various features of the
current text called context. We present five new approaches to
quote recommendation: 1) methods to adjust the matching
granularity for better context matching, 2) random forest based
approach that utilizes word discrimination, 3) convolutional
neural network based approach that captures important local
semantic features, 4) recurrent neural network based approach that
reflects the ordering of sentences and words in the context, and 5)
rank aggregation of these algorithms for maximum performance.
We adopt as baseline state-of-the-arts in citation recommendation
and quote recommendation. Experiments show that our rank
aggregation method outperforms the best baseline by up to 46.7%.
As candidate quotes, we use famous proverbs and famous
statement of other person in dialogs and writings. The quotes and
their contexts were extracted from Twitter, Project Gutenberg, and
Web blog corpus.

CCS Concepts
 • Information systems ~ Recommender systems • Natural
language processing.

Keywords
Quote recommendation; Context matching; Random forest;
Convolutional Neural Network; Recurrent Neural Network; Rank
aggregation

1. INTRODUCTION
Citing proverbs and (famous) statements of other people is an

important part in conversation and writing. Such quotes or
quotations can provide support, shed new perspective, and/or add
humor to one’s arguments. However, it is not easy for a person to
find from a large number of quotes an appropriate one for a given
context since the words in quote are usually metaphorical.

Quote recommendation in writing has been introduced in Tan,
et al. [7]. Quote recommendation is a task of recommending a
ranked list of quotes which are relevant to the current body of text
which we call context. We separate context into pre-context and
post-context, which refer to texts that appear before and after a
quote within certain fixed length respectively. For dialogs, unlike
for writings, we only use pre-contexts because post-contexts are
usually unavailable for on-the-fly recommendation of quotes
during a conversation in real world applications. We define query
as a context for which the user desires a list of recommended
quotes. Figure 1 shows an example of quote usage in our Twitter
dataset. In this example, the block of text that appears before the
quote ‘Strike while the iron is hot’ is the pre-context.

On investigating our collected datasets, we found that various
features of context, such as keywords, topic, n-grams, latent
semantics, etc., can be exploited in the recommendation. For
example, word matching-based algorithm such as ranking with
cosine similarity between query and context of quote was able to
find the correct quote in Figure 1, since many contexts of the
same quote in training dataset mention the keywords such as
casino and luck but the others do not. Also, some of the quotes are
closely related to specific situations, topic or semantics behind
query not to only keywords.

In this paper, we present five new approaches for quote
recommendation based on observations in our datasets: 1)
methods to adjust matching granularity for better context
matching, 2) Random Forest (RF) based approach that utilizes
word discrimination, 3) convolutional neural network (CNN)
based approach that captures important local semantic features, 4)
recurrent neural network (RNN) based approach that reflects the
ordering of sentences and words in the context, and 5) rank
aggregation of these algorithms for maximum performance. As
baseline, we adopt previous works on citation recommendation [1,
3] and quote recommendation [7]. Experiments show that the
proposed approaches significantly outperform baseline methods in
real world datasets.

2. RELATED WORKS
Quote recommendation can be viewed as task of searching or

recommending short texts which are appropriate to given current
writing or dialog context. Most related works are citation
recommendation for academic articles [1, 3], which recommends
relevant reference articles for academic writing. For citation
recommendation, rich information on paper such as title, abstract,
full text and venue can be exploited. In contrast, in quote
recommendation such rich information is not available. This
makes quote recommendation more challenging. Tan, et al. [7]
present a method for recommending quote for the first time. They
apply learning-to-rank approach with several features which is
quote-context, context-context (or context-query), and quote
feature. In their experiments, they show that the algorithm heavily
depends on context-context feature. However, we argue that
enough exploration on the context-context features is not

CBRecSys 2016, September 16, 2016, Boston, MA, USA.
Copyright remains with the authors and/or original copyright holders

Figure 1 An example of quote usage in Twitter thread

conducted. For this, we focus on how to mine the semantics on
contexts of quote for recommending quote.

3. APPROCHES
In this section, we describe four approaches and our rank

aggregation method which combines the four approaches for
quote recommendation.

3.1 Matching Granularity Adjustment
In this section we discuss methods to deal with the contexts of

quotes when measuring relevance between query and a set of
contexts of quotes, which we call matching granularity adjustment.
As usage of words or words themselves in the quote are different
from that in context, the state-of-the-arts in quote/citation
recommendation [1, 3, 7] measures the relevance between query
and contexts of a quote. More specifically, all of them attempt to
examine individual context of a quote to the query. A drawback of
this approach is that it suffers from sparsity problem that words in
query do not match the individual context of the correct quote. In
order to alleviate this sparsity problem, we propose methods to
adjust the matching unit of contexts to the given query. We
believe that more semantics can be exploited if the contexts of a
quote are treated collectively.

Firstly, we propose a method called context clustering, which
group the context by context cluster which represent (latent) topic.
In the collected dataset, we observed that there exist a number of
quotes that can be used in different topic. For example, the quote
‘All work and no play makes jack a dull boy’ can be used in very
different situations such as ‘overworking in workplace’ or
‘educating children’. Thus when dealing with query about
specific topic, we need to consider the contexts related to it among
different topics of quote. In the context clustering, we first clusters
contexts of each quote. And we exploit the context clusters to
measure the relevance of a quote. For context clustering, we adopt
affinity propagation clustering algorithm, which is known to
perform better than others in short text clustering [6]. Based on
context clustering, we propose a scoring function given query ݍ:

,ݍୡ୫ୟ୶ሺ݉݅ݏ ሻݐ ൌ max	ሺ݉݅ݏሺݍ, ௧ܥܥ	
ሺ௝ሻ))

where ܥܥ௧
ሺ௝ሻ is concatenated text in ݆th context cluster of quote t

and ݉݅ݏ is cosine similarity with their TF-IDF vector
representation.

In order to solve the sparsity problem, we present another
method called context lumping to adjust the matching granularity.
In context lumping, we simply concatenate all the context of each
quote and make it a matching unit to the query. Then the lumped
context of quote is compared to query with cosine similarity with
TF-IDF vector representation. In both of context clustering and
lumping, quotes are sorted by the proposed similarities in
descending order respectively.

3.2 Random Forest
In the collected dataset, we observe that some simple rules such

as checking whether the given context contains certain words are
reliable cursors to its correct label. For example, in Twitter dataset,
given that a context contains the keywords invite, join, come over
or any of the morphemes, there is 40.2% probability that the
context is labeled with the proverb ‘the more the merrier’. From
this observation, we explore the possibility of adopting tree based
classification algorithm into the quote recommendation task.

Among various decision tree algorithms, RF [5] is an ensemble
learning method that had notable success in various fields due to

its resilience to over-fitting and tendency to exhibit low variance
and bias. RF constructs ݊௧௥௘௘ decision trees by training each tree
with samples of random subset of features. The method is able to
populate each decision tree with the most discriminating quotes at
each state and aggregate the results by voting. In the case of our
dataset, we view contexts as ‘documents’ and use bag-of-words
TF-IDF as features for each context. Then, we train the Random
Forest classifier using the vectors of TF-IDFs and their correct
labels i.e. quote. To the best of our knowledge, this is the first
time RF classification has been used for quote recommendation.

3.3 Convolutional Neural Network
Word matching-based methods such as context-aware relevance

model [1] and citation translation model [3] have difficulty in
exploiting n-gram features because of sparsity problem, so they
only use unigram-based features. But n-gram features are
important because there are many phrases which are meaningful
only when the terms in phrase stay together. For example, a
phrasal verb give up loses the meaning when it is tokenized into
give and up. Unlike matching-based methods, CNN based
approach can exploit important n-gram features in the context by
learning the parameters of fixed size filters for each n-grams.
Generally, CNN is composed of several pairs of convolution layer
and max-pooling layer which capture the local patterns from the
training example and down-sample extracted features in order to
prevent overfitting. When CNN is applied to natural language
sentences, it captures the significant local semantics, i.e., n-gram.

We adopted a single-layer CNN, mainly inspired by [4] which
reports that simple CNN model shows similar performance to
complex one with several convolutions-pooling layers in order to
capture distinguished n-gram features in contexts of quotes. Our
CNN model takes a context in the form of a list of word
embedding vectors of the words in the context. Then the input
matrix, a list of context vectors, are fed to the layer which is
composed of single convolution layer and max-pooling layer.
After that the output vector is fed to fully connected softmax layer
in order to compute the probability of candidate quotes and rank
the quotes. We use filter size of 3 and 500 hidden nodes in the
hidden layer. We also exploit dropout method to prevent
overfitting.

3.4 Recurrent Neural Network
We use RNN to tackle our quote recommendation problem in

perspective of language modeling, which means that we treat each
quote as a special token or word and compute the probability of it
given context. While none of above approaches uses order
information of words in the context, RNN based approach can
model such sequence of words recursively. We use long short-
term memory unit (LSTM) [2] which is a recurrent neural network
consists of three gates (forget, input, output) those control the
networks to learn long-term dependencies without loss of
information. The input vector of each time step passes through the
three gates and updates latent vectors which LSTM is retaining. In
our model we recurrently feed LSTM with a sequence of words in
the context in the form of list of word embedding vectors. We use
pre-trained word embedding for mapping each word to word
vector. The output vector of LSTM layer is passed to fully
connected layer and softmax layer in order to compute the
probability of target quotes to be recommended. We also use 500
dimension hidden vector in LSTM and also use dropout method.

3.5 Rank Aggregation
We observed that previously proposed algorithms show

different recommendation results according to queries (we will

discuss this in the experiment section). This suggests that instead
of relying on the single best ranking algorithm, it is better to
aggregate rank values of all of the single algorithms to produce
accurate and robust ranking, called rank aggregation (RA).

We propose two methods which can aggregate the individual
ranking results of previously proposed algorithms. Traditional
rank aggregation method Borda [8] assigns a score to candidate
quote inversely proportional to its position in a ranked list of
individual algorithm, and the scores of each quotes are added up
to the final score. We observed that Borda cannot handle the case
where one or two inaccurate rank of individual algorithms lowers
accuracy of final aggregated rank. In order to cope with this issue,
we propose a rank aggregation method called Rank Multiplication
(RM) to multiply the ranks of each quotes submitted by individual
algorithm. By using this method, we can get the effect that
maintaining case that all of the individual ranker rank consistently
high, it can give less weight to result of inaccurate ranking
algorithm. Thus final score by using RM can be defined as
follows:

,ݍோெሺݏ ሻݐ ൌ 	
1

∏ ,ݍ௜ሺݎ ሻݐ
|஺|
௜

where ݎ୧ሺݍ, ሻ is position in ranked list of ݅th individual rankingݐ
algorithm given query	ݍ and candidate quote ݐ. And ܣ is a set of
each algorithm. The quotes are ordered by this score in
descending order.

We assume that high ranks of individual ranking algorithms are
more dependable than lower ranks. From this assumption we
propose second rank aggregation method called top-k Rank
multiplication (top-k RM) that multiplies only k rank values of a
quote from each of k single algorithms for a query. Thus the final
score of the top-k RM is defined as follows:

,ݍ௢௣௄_ோெሺ்ݏ ሻݐ ൌ 	
1

∏ ,ݍ௜ሺݎ ሻݐ
|஺|
௜∈்௢௣௄

where ܶܭ݌݋ is a set of k algorithms that yield the k highest rank
positions given query q and quote t.

4. EXPERIMENTS

4.1 Data Construction

We have collected 439,655 quotes from three sources:
Wikiquote1, Oxford Concise Dictionary of Proverbs2, and Library
of Quotes3. For the context data, we searched blocks of texts that
contain these quotes from three different sets of corpus: 2 million
tweet threads from Twitter (~2015.11.15), 20GB of electronic
book from the Project Gutenberg Database 4 , and 190GB of
ICWSM spinn3r 2009 blog dataset5. In the tweet corpus, in order
to extract dialogs only, we selected threads where only two users
are involved. Next, we chose the top 400 quote set from each
corpus according to the number of contexts, in order to reflect the
characteristics of the quotes that appeared frequently in different
corpus. Finally, we generate three datasets: Twitter dataset,
Gutenberg dataset, and Blog dataset.

1 https://en.wikiquote.org/
2 Oxford University Press, 1998
3 http://www.libraryofquotes.com/
4 http://www.gutenberg.org/
5 http://icwsm.cs.umbc.edu/data/icwsm2009/

Table 1 number of contexts for each quote in datasets

Datasets Avg Std dev Max Min

Twitter 556 971 10764 15

Gutenberg 89 122 1366 14

Blog 230 543 5923 24

Table 1 shows the number of context for each quote in each
datasets, which describes average, maximum, and minimum
number of context for each quote and standard deviation of them.
From Table 1, we see that the most frequently appeared quotes
from each corpus cover large range of quotes of varying
frequencies, helping us deal with the situation recommending
quotes by using small number of contexts as well as large number
of contexts. We divide dataset to the proportion of 8:1:1, as
training set, validation set, and test set. We create test sets by
hiding the quotes which the contexts are paired with.

4.2 Evaluation Metric
We consider a plausible application that recommends only a

few number of quotes. In such application since the position of
correct quote is not important, we use Recall@k as our evaluation
metric.

Recall@k: Since there is only one correct or hidden quote for
each query in the original test set, Recall@k is the number of
cases that the gold quote is recommended in the top-k result
divided by number of total test cases. We set k as five.

4.3 Baselines and Parameter Settings

We compare our approaches with three state-of-the-art
approaches in quote or citation recommendation domain.
Learning-to-recommend quote (LRQ) [7] is an algorithm for
recommending quote for wring. Context-aware relevance model
(CRM) [1], citation translation model (CTM) [3] are algorithms
for recommending citation for scientific paper. Also popularity-
based method (Popularity), and cosine similarity-based method
(Cosine similarity) is adopted as baselines. The methods,
Popularity and Cosine similarity methods are used in order to
reveal the different levels of difficulties of the datasets. These
methods are described in detail below.

LRQ exploits an existing learning-to-rank framework for quote
recommendation with quote-based features, quote-query similarity
features, and context-query similarity features.

CRM recommends quotes according to average of the squared
cosine similarities between contexts of each quote and the query.

CTM recommends quotes according the probability that the query
context would be translated into the quote.

Popularity ranks the quotes according to their frequency in
contexts of training set.

Cosine similarity ranks the quote by examining individual
context of the quote with the given query using bag-of-words
representation.

We implement these methods and set the parameters to
optimum as specified in the respective papers of the methods.
Specifically, we truncate each half-context (pre-context or post-
context) of length longer than 150 characters for LRQ, 50 words
for CRM and one sentence for CTM respectively as the respective
authors suggested in the papers. For our approaches, we set length
of half-context to its optimal value which shows best result in

validation dataset: 1) 150 characters of pre-context and post-
context with word truncation for context clustering and context
lumping, 2) 50 words for RF, and 3) 30 words of pre-context for
CNN and RNN. As stated in the introduction, we used pre-context
and post-context as query for Gutenberg and Blog dataset and pre-
context as query for Twitter dataset. Hyper parameters of single
algorithms are set by using validation set. For rank aggregation,
we used the proposed five algorithms (context clustering, context
lumping, RF, CNN and RNN) and, top-k RM showed best results
when k=3.

4.4 Results and Discussions
Results of experiments are listed in Table 2. Recall@5 and the

improvement ratio of each algorithm over the best baseline in
each dataset are denoted. The individual algorithms (context
lumping and CNN), even without rank aggregation, outperform
baselines in all of the datasets. Surprisingly, the simple method
context lumping is the best performer in Gutenberg and Blog
dataset, which beats LRQ up to 35%. Context clustering
outperforms CRM and Cosine similarity which does not treat the
context of quote collectively. These better results of context
lumping and context clustering show the effectiveness of
adjusting context matching granularity. One can observe that
performance of the baseline Cosine similarity in Twitter dataset is
worse than ones in Gutenberg and Blog dataset. This means that
sparsity problem is more serious in Twitter where the tweet
contains more infrequent words than others. In Twitter dataset,
deep learning algorithms (CNN and RNN) outperform CTM by
up to 43%. From this result, we can see that deep learning
algorithms are able to mitigate such serious sparsity problem
because it is not based on word matching. Results of RF show that
it is competitive to CTM algorithm. In fact, in our preliminary
experiments on top 100 Twitter dataset, RF outperforms CNN.
However, in large dataset, generalization of the algorithm is not
made as expected; an area for future investigation.

Although some of our single algorithm outperform others in
specific datasets, there is no single algorithm that outperforms all
the others. Also even in a dataset, there exists a portion of queries
where each of single recommendation algorithms is exclusively
correct. See Table 3. These justify our motivation of adopting
rank aggregation, and as expected, improvement attained through
rank aggregations (RM RA and top-k RM RA) are better than the
best baseline algorithm on average 44.0% and 46.7% respectively.

Table 2 Results of Recall@5 of different methods.

 Context source
Approaches

Twitter Gutenberg Blog

Context clustering 0.190 (-30%) 0.299 (- 1 %) 0.494 (0 %)

Context lumping 0.286* (+ 5%) 0.409* (+35%) 0.521* (+ 5 %)

RF 0.244 (- 11%) 0.246 (-19 %) 0.470 (- 5 %)

CNN 0.390* (+43%) 0.326* (+ 8 %) 0.506 (+ 2 %)

RNN 0.389* (+42%) 0.294 (- 3 %) 0.473 (- 4 %)

RM RA 0.424* (+55%) 0.445* (+47%) 0.640* (+30 %)

top-k RM RA (k=3) 0.436* (+60%) 0.451* (+49%) 0.648* (+31 %)

LRQ 0.196 0.302 0.494

CRM 0.119 0.237 0.382

CTM 0.273 0.257 0.441

Popularity 0.156 0.111 0.223

Cosine similarity 0.196 0.248 0.469
(* indicates that each of our algorithms outperform the best baseline algorithm
with statistically significant increase at p < 0.01 in two-tailed t-tests)

Table 3 number of correct cases of single algorithms in
Twitter dataset

Approaches # correct case
(A)

#case exclusively correct
(B) (B) / (A)

Context lumping 6,031(0.286) 1,122 0.186

RF 5,186(0.244) 493 0.095

CNN 8,213(0.390) 935 0.114

RNN 8,191(0.389) 1023 0.125

In conclusion, although some of our single algorithms such as
context clustering or RF do not outperform the baselines, there are
cases where each single algorithm is able to exclusively answer
correctly, which we believe we were able to exploit in our
proposed rank aggregation method.

5. CONCLUSIONS
In this paper, we tackled quote recommendation by exploring

four single recommendation approaches considering different
aspects of the context. And we presented new rank aggregation
methods for maximizing performance. Over our datasets, we
showed that the proposed algorithm (top-k RM RA) outperforms
the best baseline by up to 46.7%. In the future, we plan to extend
our research to recommend common phrase which has wider
applications in the real world.

6. REFERENCES
[1] He, Q., Pei, J., Kifer, D., Mitra P., and Giles, C. L., 2010.

Context-aware citation recommendation. In Proceedings of
the 19th international conference on World wide web
(Raleigh, NC, USA, April 26 - 30). WWW '10. ACM, New
York, NY, USA, 421-430.
DOI=http://dx.doi.org/10.1145/1772690.1772734

[2] Hochreiter, S. and Schmidhuber, J. 1997. Long Short-Term
Memory. Neural Computation (Nov. 1997). 1735-1780

[3] Huang, W., Kataria, S., Caragea, C., Mitra, P., Giles, C. L.,
and Rokach, L. 2012. Recommending citations: translating
papers into references. In Proceedings of the 21st ACM
international conference on Information and knowledge
management (Maui, HI, USA, October 29 - November 02,
2012). CIKM '12. ACM, New York, NY, USA, 1910-
1914.DOI=http://dx.doi.org/10.1145/2396761.2398542

[4] Kim, Y. 2014, Convolutional Neural Networks for Sentence
Classification, In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (Doha,
Qatar, October 25-29, 2014). EMNLP '14. ACL

[5] Liaw, A. and Wiener, M. 2002. Classification and regression
by randomForest. R News (2002). 2(3):18–22

[6] Rangrej, A., Kulkarni, S., and Tendulkar, A. V. 2011.
Comparative study of clustering techniques for short text
documents. In Proceedings of the 20th international
conference companion on World wide web (Hyderabad, India,
March 28 - April 01, 2011). WWW '11. ACM, New York,
NY, USA, 111-112.
DOI=http://dx.doi.org/10.1145/1963192.1963249

[7] Tan, J., Wan, X. and Xiao, J. 2015. Learning to recommend
quotes for writing. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence (Austin Texas, January
25–30, 2015). AAAI'15. AAAI Press, USA, 2453-2459

[8] Young, H. P. 1974. An axiomatization of Borda's rule. J.
Econ. Theory 9, 1, 43-52

