
6

Assessing the Impact of Untraceable Bugs on the
Quality of Software Defect Prediction Datasets
GORAN MAUŠA and TIHANA GALINAC GRBAC, University of Rijeka, Faculty of Engineering

The results of empirical case studies in Software Defect Prediction are dependent on data obtained by mining and linking separate

software repositories. These data often suffer from low quality. In order to overcome this problem, we have already investigated
all the issues that influence the data collection process, proposed a systematic data collection procedure and evaluated it. The

proposed collection procedure is implemented in the Bug-Code Analyzer tool and used on several projects from the Eclipse

open source community. In this paper, we perform additional analysis of the collected data quality. We investigate the impact
of untraceable bugs on non-fault-prone category of files, which is, to the best of our knowledge, an issue that has never been

addressed. Our results reveal this issue should not be an underestimated one and should be reported along with bugs’ linking

rate as a measure of dataset quality.

Categories and Subject Descriptors: D.2.5 [SOFTWARE ENGINEERING]: Testing and Debugging—Tracing; D.2.9 [SOFT-
WARE ENGINEERING]: Management—Software quality assurance (SQA); H.3.3 [INFORMATION STORAGE AND RE-
TRIEVAL] Information Search and Retrieval

Additional Key Words and Phrases: Data quality, untraceable bugs, fault-proneness

1. INTRODUCTION

Software Defect Prediction (SDP) is a widely investigated area in the software engineering research
community. Its goal is to find effective prediction models that are able to predict risky software parts,
in terms of fault proneness, early enough in the software development process and accordingly enable
better focusing of verification efforts. The analyses performed in the environment of large scale in-
dustrial software with high focus on reliability show that the faults are distributed within the system
according to the Pareto principle [Fenton and Ohlsson 2000; Galinac Grbac et al. 2013]. Focusing veri-
fication efforts on software modules affected by faults could bring significant costs savings. Hence, SDP
is becoming an increasingly interesting approach, even more so with the rise of software complexity.

Empirical case studies are the most important research method in software engineering because they
analyse phenomena in their natural surrounding [Runeson and Höst 2009]. The collection of data is
the most important step in an empirical case study. Data collection needs to be planned according to the
research goals and it has to be done according to a verifiable, repeatable and precise procedure [Basili
and Weiss 1984]. The collection of data for SDP requires linking of software development repositories

This work has been supported in part by Croatian Science Foundation’s funding of the project UIP-2014-09-7945 and by the
University of Rijeka Research Grant 13.09.2.2.16.
Author’s address: G. Mauša, Faculty of engineering, Vukovarska 58, 51000 Rijeka, Croatia; email: gmausa@riteh.hr; T. Galinac
Grbac, Faculty of engineering, Vukovarska 58, 51000 Rijeka, Croatia; email: tgalinac@riteh.hr.

Copyright c©by the paper’s authors. Copying permitted only for private and academic purposes.
In: Z. Budimac, Z. Horváth, T. Kozsik (eds.): Proceedings of the SQAMIA 2016: 5th Workshop of Software Quality, Analysis,
Monitoring, Improvement, and Applications, Budapest, Hungary, 29.-31.08.2016. Also published online by CEUR Workshop
Proceedings (CEUR-WS.org, ISSN 1613-0073)



6:48 • G. Mauša and T. Galinac Grbac

that do not share a formal link [D’Ambros et al. 2012]. This is not an easy task, so the majority of
researchers tend to use the publicly available datasets. In such cases, researchers rely on the integrity
of data collection procedure that yielded the datasets and focus mainly on prediction algorithms. Many
machine learning algorithms are demanding and hence they divert the attention of researchers from
the data upon which their research and results are based [Shepperd et al. 2013]. However, the datasets
and their collection procedures often suffer from various quality issues [Rodriguez et al. 2012; Hall
et al. 2012].

Our past research was focused on the development of systematic data collection procedure for the
SDP research. The following actions had been carried out:

—We analyzed all the data collection parameters that were addressed in contemporary related work,
investigated whether there are unaddressed issues in practice and evaluated their impact on the
final dataset [Mauša et al. 2015a];

—We had evaluated the weaknesses of existing techniques for linking the issue tracking repository
with the source code management repository and developed a linking technique that is based on
regular expressions to overcome others’ limitations [Mauša et al. 2014];

—We determined all the parameters that define the systematic data collection procedure and per-
formed an extensive comparative study that confirmed its importance for the research community
[Mauša et al. 2015b];

—We developed the Bug-Code Analyzer (BuCo) tool for automated execution of data collection process
that implements our systematic data collection procedure [Mauša et al. 2014].

So far, data quality was observed mainly in terms of bias that undefined or incorrectly defined data
collection parameters could impose to the final dataset. Certain data characteristics affect the quality
characteristics. For example, empty commit messages may lead to duplicated bug reports [Bachmann
and Bernstein 2010]. That is why software engineers and project managers should care about the
quality of the development process. The data collection process cannot influence these issues but it may
analyse to what extent do they influence the quality of the final datasets. For example, empty commit
messages may also be the reason why some bug reports remain unlinked. Missing links between bugs
and commit messages lead to untraceable bugs. This problem is common in the open source community
[Bachmann et al. 2010].

In this paper, we address the issue of data quality with respect to the structure of the final datasets
and the problem of untraceable bugs. This paper defines untraceable bugs as the defects that caused a
loss of functionality, that are now fixed, and for which we cannot find the bug-fixing commit, i.e. their
location in the source code. Our research questions tend to quantify the impact of untraceable bugs on
SDP datasets. Giving answer to this question may improve the assessment of SDP datasets’ quality
and it is the contribution of this paper. Hence, we propose several metrics to estimate the impact
of untraceable bugs on the fault-free category of software modules and perform a case study on 35
datasets that represent subsequent releases of 3 major Eclipse projects. The results revealed that the
untraceable bugs may impact a significant amount of software modules that are otherwise unlinked
to bugs. This confirms our doubts that the traditional approach, which pronounces the files that are
unlinked to bugs as fault-free, may be lead to incorrect data.

2. BACKGROUND

Software modules are pronounced as Fault-Prone (FP) if the number of bugs is above a certain thresh-
old. Typically, this threshold is set to zero. The software units that remained unlinked to bugs are
typically declared as Non-Fault-Prone (NFP). However, this may not be entirely correct if there exists



Assessing the Impact of Untraceable Bugs on the Quality of Software Defect Prediction Datasets • 6:49

a certain amount of untraceable bugs. This is especially the case in projects of lower maturity level. No
mater which linking technique is used in the process of data collection from open source projects, all
the bugs from the issue tracking repository are never linked. Therefore, it is important to report the
linking rate, i.e. the proportion of successfully linked bugs, to reveal the quality of the dataset. Linking
rate is usually improved with the maturity of the project, but it never reaches 100%. Instead, we can
expect to link between 20% and 40% bugs in the earlier releases and up to 80% - 90% of bugs in the
”more mature”, later releases [Mauša et al. 2015a; Mizuno et al. 2007; Gyimothy et al. 2005; Denaro
and Pezze 2002]. Moreover, an Apache developer identified that a certain amount of bugs might even
be left out from the issue tracking system [Bachmann et al. 2010].

Both of these data issues reveal that there is often a number of untraceable bugs present in the open
source projects, i.e. a serious data quality issue. So far, the problem of untraceable bugs was considered
only in studies that were developing linking techniques. For example, the ReLink tool was designed
with the goal to find the missing links between bugs and commits [Wu et al. 2011]. However, our sim-
pler linking technique based on regular expressions performed equally good or better than the ReLink
tool and it did not yield false links [Mauša et al. 2014; Mauša et al. 2015b]. The bugs that remained
unlinked could actually be present in the software units that remained unliked and, thus, disrupt the
correctness of the dataset. Thus, it may be incorrect to declare all the software units not linked to bugs
as NFP. To the best of our knowledge, this issue remained unattended so far. Nonetheless, there are
indications that lead us to believe that the correctness of SDP datasets that is deteriorated by untrace-
able bugs can be improved. Khoshgoftaar et al. collected the data for SDP from a a very large legacy
telecommunications system and found that more than 99% of the modules that were unchanged from
the prior release had no faults [Khoshgoftaar et al. 2002; Khoshgoftaar and Seliya 2004].

3. CASE STUDY METHODOLOGY

We use the GQM (Goal-Question-Metrics) approach to state the precise goals of our case study. Our
goal is to obtain high quality of data for SDP research. To achieve this goal, we have already analysed
open software development repositories, investigated existing data collection approaches, revealed is-
sues that could introduce bias if left open to interpretation and defined a systematic data collection
procedure. The data collection procedure was proven to be of high quality [Mauša et al. 2015b]. How-
ever, a certain amount of untraceable bugs is always present. If such a bug actually belongs to a soft-
ware module that is otherwise unlinked to the remaining bugs, than it would be incorrect to pronounce
such a software module as fault-free.

3.1 Research questions

Research questions that drive this paper are related to the issue of untraceable bugs and their impact
on the quality of data for SDP research. To accomplish the aforementioned goal, we need to answer the
following research questions (RQ):

(1) How many fixed bugs remain unlinked to commits?
(2) How many software modules might be affected by the untraceable bugs?
(3) How important it is to distinguish the unchanged software modules from other modules that re-

main unlinked to bugs?

The bug-commit linking is done using the Regex Search linking technique, implemented in the BuCo
tool. This technique proved to be better than other existing techniques, like the ReLink tool [Mauša
et al. 2014], and the collection procedure within the BuCo tool has shown to be more precise than
other existing procedures, like the popular SZZ approach [Mauša et al. 2015a]. Using this technique



6:50 • G. Mauša and T. Galinac Grbac

FP

Linked

Unlinked

Changed

Removed

Unchanged

Untraceable bugs

FP candidates

NFP

Fig. 1. Categories of files in a SDP dataset

we minimize the amount of bugs that are untraceable. Furthermore, BuCo tool uses the file level of
granularity and software modules are regarded as files in the remainder of the paper.

3.2 Metrics

We propose several metrics to answer our research questions. The metric for the RQ1 is the linking
rate (LR), i.e. the ratio between the number of successfully linked bugs and the total number of rele-
vant bugs from the issue tracking repository. The metrics for the RQ2 and RQ3 are defined using the
following categories of software modules:

—FP – files linked with at least one bug
—Unlinked – files not linked to bugs
—Changed – files for which at least one of 50 product metrics is changed between two consecutive

releases n+1 and n
—Removed – files that are present in release n, and do not exist in release n+1
—FP Candidates – Unlinked files that are Changed or Removed
—NFP – Unlinked files that are not Changed nor Removed

The relationship between these categories of files are presented in Figure 1. No previously pub-
lished related research investigated the category of Non-Fault-Prone (NFP) files. It is reasonable to
assume they categorized the Unlinked category as NFP. However, the linking rate that is below 100%
reveals that there is a certain amount of untraceable bugs and we know that a file might be changed
due to an enhancement requirement and\or a bug. Hence, we conclude that some of the Unlinked
files that are Changed or Removed might be linked to these untraceable bugs, and categorize them as
FP Candidates. The Unlinked files that are not Changed are the ones for which we are more cer-
tain that they are indeed Non-Fault-Prone. Thus, we categorize only these files as NFP. This approach
is motivated by Khoshgoftaar et al. [Khoshgoftaar et al. 2002; Khoshgoftaar and Seliya 2004] as ex-
plained in section 2. Using the previously defined categories of files, we define the following metrics:

C U = FP Candidates/Unlinked (1)

The FP Candidates in Unlinked (C U) metric reveals the structure of Unlinked files, i.e. what per-
centage of Unlinked files is potentially affected by untraceable bugs. This metric enables us give an
estimation for our RQ2.

FpB = FP/Linked bugs (2)



Assessing the Impact of Untraceable Bugs on the Quality of Software Defect Prediction Datasets • 6:51

The Files per Bug (FpB) metric reveals the average number of different files that are affected by one
bug. It should be noted that the bug-file cardinality is many-to-many, meaning that one bug may be
linked to more than one file and one file may be linked to more than one bug. Hence, the untraceable
bugs could be linked to files that are already FP, but we want to know how many of the Unlinked
files they might affect. Therefore, we divide the total number of FP files (neglecting the number of
established links per file) with the total number of linked bugs.

Ub U = FpB ∗ Untraceable bugs/Unlinked (3)

The Untraceable bugs in Unlinked (Ub U) metric estimates the proportion of Unlinked files that are
likely to be linked to untraceable bugs, assuming that all the bugs behave according to the FpB metric.
This metric enables us give another estimation for our RQ2. It estimates how wrong would it be to
pronounce all the Unlinked files as NFP. The greater is the value of metric Ub U, the more wrong is
that traditional approach. We must point out that there are also bugs that are not even entered into
the BT repository. However, the influence of this category of untraceable bugs cannot be estimated, but
it could only increase the value of Ub U.

Ub C = FpB ∗ Untraceable bugs/FP Candidates (4)

The Untraceable bugs in FP Candidates (Ub C) metric estimates the percentage of FP Candidates
that are likely to be linked to untraceable bugs (Ub U/C U), assuming that all the bugs behave ac-
cording to the FpB measure. This metric enables us give an estimation for our RQ3. It estimates how
wrong it would be to pronounce all the FP Candidates as NFP. The closer is the value of this metric to
1, the more precisely would it be not to pronounce the FP Candidates as NFP. In other words, the Ub C
metric calculates the percentage of files that are likely to be FP among the FP Candidates (Ub U/C U).

3.3 Data

The source of data are three major and long lasting open source projects from the Eclipse community:
JDT, PDE and BIRT. The bugs that satisfy following criteria are collected from the Bugzilla repository:
status - closed, resolution - fixed, severity - minor or above. The whole source code management repos-
itories are collected from the GIT system. Bugs are linked to commits using the BuCo Regex linking
technique and afterwards the commits are to files that were changed. The cardinality of the link be-
tween bugs and commits is many-to-many, and the duplicated links between bugs and files are counted
only once. The file level of granularity is used, test and example files are excluded from final datasets,
and the main public class is analyzed in each file. A list of 50 software product metrics is calculated for
each file using the LOC Metrics1 and JHawk2 tools.

4. RESULTS

Table I shows the total number of releases and files we collected; FP, NFP, Changed and Removed
files we identified; the total number of relevant bugs from the issue tracking repository; the linking
rate obtained by BuCo Regex linking technique; and the total number of commits in the source code
management repository. The results of our linking technique are analysed for each project release and
presented in Table II. The LR exhibits a rising trend in each following release and reaches stable and
high values (80% - 90%) in the ”middle” releases. A slight drop in LR is possible in the latest releases.

1http://www.locmetrics.com/
2http://www.virtualmachinery.com/



6:52 • G. Mauša and T. Galinac Grbac

JDT PDE BIRT

Releases analyzed 12 12 6

Files analyzed 52,033 23,088 31,110
FP 4,891 5,307 5,480

NFP 27,891 12,059 14,760
Changed 13,443 4,208 10,803
Removed 917 1,930 67

Bugs collected 18,404 6,698 8,000
Bugs linked 13,193 4,189 4,761

Commits 151,408 23,427 75,216

Table I. Raw Data Analysis

JDT PDE BIRT
Release Overall Linked Bugs Overall Linked Bugs Overall Linked Bugs

1 4276 2068 48.4% 561 125 22.3% 2034 887 43.6%
2 1875 1208 64.4% 427 117 27.4% 596 314 52.7%
3 3385 2401 70.9% 1041 350 33.6% 2630 1590 60.5%
4 2653 2137 80.6% 769 397 51.6% 1761 1201 68.2%
5 1879 1595 84.9% 546 378 69.2% 807 649 80.4%
6 1341 1189 88.7% 727 620 85.3% 172 120 69.8%
7 989 890 90.0% 963 779 80.9% 25 8 32.0%
8 595 546 91.8% 879 764 86.9% 28 5 17.9%
9 492 436 88.6% 454 391 86.1% 51 16 31.4%

10 549 399 72.7% 204 174 85.3%
11 329 288 87.5% 62 48 77.4%
12 41 36 87.8% 65 46 70.8%
13 348 312 89.7% 131 125 95.4%

Table II. Bug Linking Analysis

However, observing the absolute value of bugs in those releases, we notice the difference is less severe.
As these releases are still under development, new bugs are being fixed and new commits still arrive so
this rates are expected to change. These results show that a considerable amount of bugs is untraceable
and indicate that their influence may not be insignificant.

The distributions of four file categories are computed for each release of every project and presented
in stacked column representations in Figures 2, 3 and 4. We confirm that the problem of class imbal-
ance between FP and Unlinked files (Changed, Removed and NFP) is present in all the releases. The
percentage of FP files is usually below 20%, on rare occasions it rises up to 40% and in worst case
scenarios it drops even below 5%. The trend of FP files is dropping as the project becomes more mature
in the later releases. The NFP files are rare in the earlier releases of the projects showing that the
projects are evidently rather unstable then. Their percentage is rising with almost every subsequent
release and it rises to rates comparable to the FP category in the ”middle” releases. The Removed files
are a rather insignificant category of files. The Changed files are present in every release and they
exhibit a more stable rate than the other categories.

Tables III, IV and V present the evaluation metrics which we proposed in section 3.2. Metric C U
reveals the relative amount of files that are not linked to bugs, but have been changed in the follow-
ing release. Because of the untraceable bugs, we cannot be certain about their fault proneness. We



Assessing the Impact of Untraceable Bugs on the Quality of Software Defect Prediction Datasets • 6:53

0% 
10% 
20% 
30% 
40% 
50% 
60% 
70% 
80% 
90% 

100% 

2.0 2.1 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 4.2 

Subsequent releases 

Removed 

Changed 

NFP 

FP 

Fig. 2. Distribution of files in JDT releases

Release C U FpB Ub U Ub C
2.0 99.2% 0.54 91.5% 92.2%
2.1 61.9% 0.73 25.9% 41.8%
3.0 57.2% 0.55 25.7% 45.0%
3.1 72.3% 0.60 11.8% 16.3%
3.2 63.8% 0.89 8.1% 12.6%
3.3 36.5% 0.97 4.0% 10.9%
3.4 34.4% 1.03 2.5% 7.4%
3.5 14.0% 0.90 1.0% 6.9%
3.6 39.9% 0.99 1.2% 3.0%
3.7 25.4% 1.07 3.5% 13.7%
3.8 0.0% 1.14 1.0% 2334.7%
4.2 9.0% 1.03 0.1% 1.1%

Table III. Evaluation Metrics for JDT

0% 
10% 
20% 
30% 
40% 
50% 
60% 
70% 
80% 
90% 

100% 

1 2 3 4 5 6 7 8 9 10 11 12 

Subsequent releases 

Removed 

Changed 

NFP 

FP 

Fig. 3. Distribution of files in PDE releases

Release C U FpB Ub U Ub C
2.0 100.0% 0.92 83.4% 83.4%
2.1 86.0% 1.20 57.5% 66.8%
3.0 69.1% 0.83 91.0% 131.8%
3.1 69.2% 0.90 42.8% 61.8%
3.2 46.9% 1.66 37.4% 79.7%
3.3 73.4% 1.22 13.1% 17.8%
3.4 48.7% 0.79 9.2% 18.9%
3.5 14.2% 0.98 7.1% 49.7%
3.6 7.9% 1.07 3.3% 42.0%
3.7 10.5% 3.83 6.5% 61.8%
3.8 1.1% 1.21 0.5% 43.4%
4.2 48.4% 2.30 1.3% 2.6%

Table IV. Evaluation Metrics for PDE

0% 
10% 
20% 
30% 
40% 
50% 
60% 
70% 
80% 
90% 

100% 

1 2 3 4 5 6 

Subsequent releases 

Removed 

Changed 

NFP 

FP 

Fig. 4. Distribution of files in BIRT releases

Release C U FpB Ub U Ub C
2.0.0 35.7% 0.92 62.2% 174.3%
2.1.0 50.2% 1.33 12.7% 25.2%
2.2.0 25.4% 1.09 32.2% 126.8%
2.3.0 39.1% 1.19 14.3% 36.6%
2.5.0 23.7% 1.41 3.8% 16.2%
2.6.0 66.9% 1.40 1.0% 1.6%

Table V. Evaluation Metrics for BIRT



6:54 • G. Mauša and T. Galinac Grbac

notice a significant amount of such data. Metric FpB reveals the average number of distinct files that
are changed per bug. The metric is based upon the number of bugs that were successfully linked to
commits. Considering that multiple bugs may affect the same files, it is not unusual that one bug on
average affects less than 1 distinct file. Later releases have less bugs in total, there is less chance that
they affect the same files and there is a slight increase in the value of FpB. The FpB metric is used to
estimate the amount of files prone to bugs that were untraceable from the bug tracking repository, ex-
pressed in the metric Ub U. The Ub U metric varies between releases, from very significant in earlier
releases to rather insignificant in the later releases. The Ub C metric reveals how important would
it be to distinguish Changed and Removed files from the NFP files. With its values close to 0%, we
expect little bias in the category of NFP files. However, with its greater value, the bias is expected
to rise and the necessity to make such a distinction is becoming greater. In several cases, its value
exceeds 100%. This only shows that the impact of untraceable bugs is assessed to be even greater than
affecting just the FP Candidates. In the case of JDT 3.8 its value is extremely high because this re-
lease contains almost none FP Candidates. This metric was developed on our own so we cannot define
a significance threshold. Nevertheless, we notice this value to be more emphasized in earlier releases
that we described as immature and in later releases that are still under development.

4.1 Discussion

Linking rate (LR) enables us to answer our RQ1. We noticed that the LR is very low in the earliest
releases of analyzed projects (below 50%). After a couple of releases, the LR can be expected to be
between 80% and 90%. We also observe that the distribution of FP files exhibits a decreasing trend as
the product evolves through releases. That is why we believe that developer are maturing along with
the project and, with time, they become less prone to faults and more consistent in reporting the Bug
IDs in the commit titles when fixing bugs. The latest releases are still under development and exhibit
extreme levels of data imbalance, with below 1% of FP files. Therefore, these datasets might not be the
proper choice for training the predictive models in SDP.

Our results enable us to give an estimate for the RQ2. The Unlinked files contain a rather significant
ratio of files that are FP candidates, spanning from 10% up to 50% for the JDT and BIRT projects and
above 50% in several releases of the PDE project. Among the FP candidates, we expect to have a more
significant amount of files that are FP due to the untraceable bugs in earlier releases because of low
LR. According to the Ub C metric, we may expect that the majority of FP Candidates actually belong
to the FP category in the earliest releases. According to the Ub U metric, the untraceable bugs affect
a rather insignificant percentage of all the Unlinked files after a couple of releases.

The metrics we proposed in this paper enable us to answer our RQ3. The difference between the
Ub U and Ub C values confirm the importance of classifying the Unlinked files into Changed, Removed
and NFP. In the case of high Ub C values (above 80%) it may be prudent to categorize FP Candidates
as FP and in the case where Ub C is between 20% and 80% it may be prudent to be cautious and not
to use the FP Candidates at all. In the case of high difference between the Ub U and Ub C metrics,
we may expect to have enough of NFP files in the whole dataset even if we discard the FP Candidates.
This is confirmed in the distribution of NFP files which displays an increasing trend which becomes
dominant and rather stable in the ”middle” releases.

The process of data collection and analysis is fully repeatable and verifiable but there are some
threats to validity of our exploratory case study. The construction validity is threatened because the
data do not come from industry and the external validity is threatened because only one projects come
from only one community. However, the chosen projects are large and long lasting ones and provide a
good approximation of the projects from the industrial setting and they are widely analyzed in related



Assessing the Impact of Untraceable Bugs on the Quality of Software Defect Prediction Datasets • 6:55

research. Internal validity is threatened by assumptions that all the bugs affect the same quantity of
different files and that Unchanged files are surely NFP.

5. CONCLUSION

The importance of having accurate data is the initial and essential step in any research. This paper is
yet another step in achieving that goal in the software engineering area of SDP. We noticed that un-
traceable bugs are inevitable in data collection from open source projects and that this issue remained
unattended by the researchers so far. This exploratory case study revealed that it may be possible to
evaluate the impact of untraceable bugs on the files that are unlinked to bugs. The results show that
the earliest and the latest releases might not be a good source of data for building predictive mod-
els. The earliest releases are more prone to faults (containing higher number of reported bugs), radical
changes (containing almost no unchanged files) and suffer from low quality of data (lower linking rate).
On the other hand, the latest releases suffer from no previously mentioned issues, but are evidently
still under development and the data are not stable.

The future work plans to investigate the impact of the explored issues and the proposed solutions to
the problem of untraceable bugs on the performance of predictive models. Moreover, we plan to expand
this study to other communities using our BuCo Analyzer tool.

REFERENCES

A. Bachmann and A. Bernstein. 2010. When process data quality affects the number of bugs: Correlations in soft-
ware engineering datasets. In 2010 7th IEEE Working Conference on Mining Software Repositories (MSR 2010). 62–71.
DOI:http://dx.doi.org/10.1109/MSR.2010.5463286

Adrian Bachmann, Christian Bird, Foyzur Rahman, Premkumar Devanbu, and Abraham Bernstein. 2010. The Missing Links:
Bugs and Bug-fix Commits. In Proceedings of the Eighteenth ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE ’10). ACM, New York, NY, USA, 97–106. DOI:http://dx.doi.org/10.1145/1882291.1882308

Victor R. Basili and David Weiss. 1984. A methodology for collecting valid software engineering data. IEEE Computer Society
Trans. Software Engineering 10, 6 (1984), 728–738.

Marco D’Ambros, Michele Lanza, and Romain Robbes. 2012. Evaluating Defect Prediction Approaches: A Benchmark and an
Extensive Comparison. Empirical Softw. Engg. 17, 4-5 (2012), 531–577.

Giovanni Denaro and Mauro Pezze. 2002. An empirical evaluation of fault-proneness models. In Proceedings of the Int’l Conf. on
Software Engineering. 241–251.

Norman E. Fenton and Niclas Ohlsson. 2000. Quantitative Analysis of Faults and Failures in a Complex Software System. IEEE
Trans. Softw. Eng. 26, 8 (2000), 797–814.

Tihana Galinac Grbac, Per Runeson, and Darko Huljenić. 2013. A Second Replicated Quantitative Analysis of Fault Distribu-
tions in Complex Software Systems. IEEE Trans. Softw. Eng. 39, 4 (April 2013), 462–476.

Tibor Gyimothy, Rudolf Ferenc, and Istvan Siket. 2005. Empirical Validation of Object-Oriented Metrics on Open Source Soft-
ware for Fault Prediction. IEEE Trans. Softw. Eng. 31, 10 (Oct. 2005), 897–910.

Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell. 2012. A Systematic Literature Review on Fault
Prediction Performance in Software Engineering. IEEE Trans. Softw. Eng. 38, 6 (2012), 1276–1304.

Taghi M. Khoshgoftaar and Naeem Seliya. 2004. Comparative Assessment of Software Quality Classification Techniques: An
Empirical Case Study. Empirical Software Engineering 9, 3 (2004), 229–257.

Taghi M. Khoshgoftaar, Xiaojing Yuan, Edward B. Allen, Wendell D. Jones, and John P. Hudepohl. 2002. Uncertain Classification
of Fault-Prone Software Modules. Empirical Software Engineering 7, 4 (2002), 295–295.

Goran Mauša, Tihana Galinac Grbac, and Bojana Dalbelo Bašić. 2014. Software Defect Prediction with Bug-Code Analyzer - a
Data Collection Tool Demo. In Proc. of SoftCOM ’14.

Goran Mauša, Tihana Galinac Grbac, and Bojana Dalbelo Bašić. 2015a. Data Collection for Software Defect Prediction an
Exploratory Case Study of Open Source Software Projects. In Proceedings of MIPRO ’14. Opatija, Croatia, 513–519.

Goran Mauša, Tihana Galinac Grbac, and Bojana Dalbelo Bašić. 2015b. A Systemathic Data Collection Procedure for Software
Defect Prediction. 12, 4 (2015), to be published.

Goran Mauša, Paolo Perković, Tihana Galinac Grbac, and Ivan Štajduhar. 2014. Techniques for Bug-Code Linking. In Proc. of
SQAMIA ’14. 47–55.



6:56 • G. Mauša and T. Galinac Grbac

Osamu Mizuno, Shiro Ikami, Shuya Nakaichi, and Tohru Kikuno. 2007. Spam Filter Based Approach for Finding Fault-Prone
Software Modules.. In MSR. 4.

D. Rodriguez, I. Herraiz, and R. Harrison. 2012. On software engineering repositories and their open problems. In Proceedings
of RAISE ’12. 52–56. DOI:http://dx.doi.org/10.1109/RAISE.2012.6227971

Per Runeson and Martin Höst. 2009. Guidelines for Conducting and Reporting Case Study Research in Software Engineering.
Empirical Softw. Engg. 14, 2 (April 2009), 131–164. DOI:http://dx.doi.org/10.1007/s10664-008-9102-8

Martin J. Shepperd, Qinbao Song, Zhongbin Sun, and Carolyn Mair. 2013. Data Quality: Some Comments on the NASA Software
Defect Datasets. IEEE Trans. Software Eng. 39, 9 (2013), 1208–1215.

Rongxin Wu, Hongyu Zhang, Sunghun Kim, and Shing-Chi Cheung. 2011. ReLink: Recovering Links Between Bugs and
Changes. In Proceedings of ESEC/FSE ’11. ACM, New York, NY, USA, 15–25.


