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Abstract

Computer-based simulation of pedestrian dynamics
is a consolidated application of agent-based models
but it still presents open challenges. The wayfind-
ing of pedestrians is a fundamental aspect to allow
the application of such models on complex envi-
ronments. Several novel approaches have recently
been proposed in the literature, yet the lack of em-
pirical knowledge still limits the reliability of the
heuristics used in the models. In this paper, a novel
model for the simulation of pedestrian wayfind-
ing is discussed and the aim is to provide general
mechanisms that can be calibrated for the repro-
duction of empirical evidences. The model is, in
fact, inspired by the behaviors observed in a exper-
iment performed with human volunteers in Novem-
ber 2015, which were put into a trade off sce-
nario, since different paths were available but the
shortest one was quickly congested. We observed
that several pedestrians choose longer trajectories
to preserve high walking speed, and often do so
following a first emerging leader. The proposed
model encompasses both a proxemic tendency to
avoid congestion, as well as an imitation mecha-
nism: these conflicting tendencies can be calibrated
according to empirical evidences. A demonstration
of the simulated dynamics on a larger scenario will
be illustrated in the paper.

1 Introduction

The simulation of the movement of pedestrians and crowds
in spatial structures is a consolidated research and application
context that still presents challenges for researchers in differ-
ent fields and disciplines: both the automated analysis and
the synthesis of pedestrian and crowd behaviour, as well as
attempts to integrate these complementary and activities [Viz-
zari and Bandini, 2013], present open issues and potential
developments in a smart environment perspective [Sassi et
al., 2015]. Although the currently available commercial
tools are used on a day-to-day basis by designers and plan-

ners1, according to a report commissioned by the Cabinet
Office [Challenger et al., 2009] there is still room for inno-
vations in models, to improve their effectiveness in modeling
pedestrians and crowd phenomena, their expressiveness (i.e.
simplifying the modeling activity or introducing the possibil-
ity of representing phenomena that were still not considered
by existing approaches) and efficiency.

Even if we only consider choices and actions related to
walking, modeling human decision making activities and ac-
tions is a complicated task: different types of decisions are
taken at different levels of abstraction, from path planning to
the regulation of distance from other pedestrians and obsta-
cles present in the environment. Moreover, the measure of
success and validity of a model is definitely not the optimal-
ity with respect to some cost function, as (for instance) in
robotics, but the plausibility, the adherence of the simulation
results to data that can be acquired by means of observations
or experiments.

The present research effort is aimed at producing insights
on this aspect: an experiment involving pedestrians has been
set up to investigate to which extent pedestrians facing a rel-
atively simple choice (i.e. choose one of two available gate-
ways leading to the same target area) in which, however, they
can face a trade-off situation between length of the trajectory
to be covered and estimated travel time. The closest gateway,
in fact, is initially selected by most pedestrians but it is too
narrow to allow a smooth passage of so many pedestrians, and
it quickly becomes congested. The other choice can therefore
become much more reasonable, allowing a higher average
walking speed and comparable (if not even lower) travel time.
We observed that several pedestrians choose longer paths to
preserve high walking speed, and often do so following a first
emerging leader. Modeling this kind of choices with current
approaches can be problematic.

The present work represents a step in the direction of pro-
ducing a general model fitting this kind of evidences. The
proposed model encompasses both a proxemic tendency to
avoid congestion, as well as an imitation mechanism: these
conflicting tendencies can be calibrated according to empiri-
cal evidences. After a discussion of relevant related works, an
analysis of different alternatives for modeling and simulating

1See http://www.evacmod.net/?q=node/5 for a large list of
pedestrian simulation tools).



this kind of scenario will be illustrated in Section 3. Results
of the application of the proposed model in a real world sce-
nario, initially described in [Wagoum et al., 2012], will then
be described, with reference to their plausibility. Conclusions
and future works will end the paper.

2 Related Works
The inclusion in simulation models of decisions related to
trade off scenarios, such as the one between overall trajectory
length and presumed travel time (considering congestion in
perceived alternative gateways), represent an issue in current
modeling approaches.

Commercial instruments, for instance, mostly provide ba-
sic tools to the modelers, that are enabled and required to
specify how the population of pedestrians will behave: this
implies that the operator constructing the simulation model
needs to specify how the pedestrians will generally choose
their route (generally selecting among different alternatives
defined by means of annotation of the actual spatial struc-
ture of the simulated environment through landmarks repre-
senting intermediate or final destinations [Kretz et al., 2014]),
as well the conditions generating exceptions to the so called
“least effort principle”, suggesting that pedestrians generally
try to follow the (spatially) shortest path toward their desti-
nation. Space, in fact, represents just one of the relevant as-
pects in this kind of choice: since most pedestrians will gen-
erally try to follow these “best paths” congestion can arise
and pedestrians can be pushed to make choices that would be
sub–optimal, from the perspective of traveled distance.

Recent works in the area of pedestrian and crowd simu-
lation started to investigate this aspect. In particular, [Guo
and Huang, 2011] proposed the modification of the floor-field
Cellular Automata [Burstedde et al., 2001] approach for con-
sidering pedestrian choices not based on the shortest distance
criterion but considering the impact of congestion on travel
time. [Wagoum et al., 2012] explored the implications of four
different strategies for the management of route choice oper-
ations, through the combination of applying the shortest or
quickest path, with a local (i.e., minimize time to vacate the
room) or global (i.e., minimize overall travel time) strategies.

Iterative approaches, borrowing models and even tools
from vehicular transportation simulation, propose to adopt a
more coarse grained representation of the environment, i.e. a
graph in which nodes are associated to intersections among
road sections, but the process can be also adopted in build-
ings [Kretz et al., 2014]. In this kind of scenario, pedes-
trians can start by adopting shortest paths on a first round
of simulation: as suggested before, the fact that all pedes-
trians take the best path generally leads to congestion and
sub-optimal travel times. Some selected pedestrians, espe-
cially those whose actual travel time differs significantly from
the planned one, will change their planned path and a new
simulation round will take place. The iteration of this pro-
cess will lead to an equilibrium or even to system optimum,
according to the adopted travel cost function [Lämmel et
al., 2009]. This iterative scheme has also been employed
in multi-scale modeling approaches [Lämmel et al., 2014;
Crociani et al., 2016].

The above approach naturally leads to consider that this
kind of problem has been paid considerable attention in
the field of Artificial Intelligence, in particular by the plan-
ning community. Hierarchical planning [Sacerdoti, 1974]
approaches, in particular, provide an elegant and effective
framework in which high level abstract tasks can be decom-
posed into low level activities. Despite the fact that the formu-
lation of the approach date to the seventies, it is still widely
considered and employed in the close area of computer graph-
ics [Kapadia et al., 2013], in which actions of virtual pedes-
trians are planned with the aim of being visually plausible
and decided within real-time constraints. Within this frame-
work, also issues related to the reconsideration of choices and
plans were analyzed, mostly within the robotics area [Levihn
et al., 2013]. In the pedestrian simulation context, one could
consider that microscopic decisions on the steps to be taken
can follow a high-level definition of a sequence of intermedi-
ate destinations to be reached by the pedestrian. This kind of
approach, which we experimentally investigated in [Crociani
et al., 2015], also allows exploiting already existing models
dealing with low level aspects of pedestrian actions and per-
ceptions.

The main issues in transferring AI planning results within
this context of application, and more generally producing
generally applicable contributions to the field, are partly due
to the above suggested fundamental difference between the
measures of success between simulation and control applica-
tions. Whereas the latter are targeted at optimal solutions,
the former have to deal with the notions of plausibility and
validity. Moreover, we are specifically dealing with a com-
plex system, in which different and conflicting mechanisms
are active at the same time (e.g. proxemics [Hall, 1966] and
imitative behaviors [Helbing et al., 1997]). Finally, whereas
recent extensive observations and analyses (see, e.g., [Boltes
and Seyfried, 2013]) produced extensive data that can be used
to validate simulations within relatively simple scenarios (in
which decisions are limited to basic choices on the regulation
of mutual distances among other pedestrian while following
largely common and predefined paths like corridors with uni-
directional or bidirectional flows, corners, bottlenecks), we
still lack comprehensive data on way-finding decisions.

3 A Model To Encompass the Pedestrian
Movement and Route Choice

This Section will propose a multi-agent model designed for
the simulation of pedestrian movement and route choice be-
havior. The model of agent is composed of two elements,
respectively dedicated to the low level reproduction of the
movement towards a target (i.e. the operational level, consid-
ering a three level model described in [Michon, 1985]) and to
the decision making activities related to the next destination
to be pursued (i.e. the route choice at the tactical level). The
component dedicated to the operational level behavior of the
agent is not extensively described since, for this purpose, the
model described in [Bandini et al., in press] has been applied.
For a proper understanding of the approaches and mecha-
nisms that will be defined at the tactical level, on the other
hand, a brief description on the representation of the environ-



ment, with different levels of abstractions, is firstly provided
in this Section. More attention will then be dedicated to the
introduction and discussion of the model for the management
of the route choice, which represents the main contribution of
this paper.

3.1 The Representation of the Environment and
the Knowledge of Agents

The adopted agent environment [Weyns et al., 2007] is dis-
crete and modeled with a rectangular grid of 40 cm sided
square cells. The size is chosen considering the average area
occupied by a pedestrian [Weidmann, 1993], and also re-
specting the maximum densities usually observed in real sce-
narios. The cells have a state that informs the agents about
the possibilities for movement: each one can be vacant or oc-
cupied by obstacles or pedestrians (at most two, so as to be
able to manage locally high density situations).

To allow the configuration of a pedestrian simulation sce-
nario, several markers are defined with different purposes.
This set of objects has been introduced to allow the move-
ment at the operational level and the reasoning at the tactical
level, identifying intermediate and final targets:

• start areas , places were pedestrians are generated:
they contain information for pedestrian generation both
related to the type of pedestrians (e.g. the distribution of
their destinations), and to the frequency of generation;

• openings , sets of cells that divide, together with the
obstacles, the environment into regions. These objects
constitutes the decision elements, intermediate destina-
tions, for the route choice activities;

• regions , markers that describe the type of the re-
gion where they are located: with them it is possible to
design particular classes of regions (e.g. stairs, ramps)
and other areas that imply a particular behavior of pedes-
trians;

• final destinations , the ultimate targets of pedestri-
ans;

• obstacles , non-walkable cells defining obstacles
and non-accessible areas.

An example of environment annotated with this set of
markers is proposed in Fig. 1(b). This model uses the floor
fields approach [Burstedde et al., 2001], using the agents’ en-
vironment as a container of information for the management
of the interactions between entities. In this particular model,
discrete potentials are spread from cells of obstacles and des-
tinations, informing about distances to these objects. The two
types of floor fields are denoted as path field, spread from
openings and final destinations (one per destination object),
and obstacle field, a unique field spread from all the cells
marked as obstacle. In addition, a dynamic floor field that
has been denoted as proxemic field is used to reproduce a
proxemic behavior [Hall, 1966] in a repulsive sense, letting
the agents to maintain distances with other agents. This ap-
proach generates a plausible navigation of the environment
as well as an anthropologically founded means of regulating
interpersonal distances among pedestrians.

This framework, on one hand, enables the agents to have
a position in the discrete environment and to perform move-
ment towards a user configured final destination. On the other
hand, the presence of intermediate targets allows choices at
the tactical level of the agent, with the computation of a
graph-like representation of the walkable space, based on the
concept of cognitive map [Tolman, 1948]. The method for
the computation of this environment abstraction has been de-
fined in [Crociani et al., 2014] and it uses the information of
the scenario configuration, together with the floor fields asso-
ciated to openings and final destinations. In this way a data
structure for a complete knowledge of the environment is pre-
computed. Recent approaches explores also the modeling of
partial knowledge of the environment by agents (e.g. [An-
dresen et al., in press]), but this aspect goes beyond the scope
of the current work. The cognitive map identifies regions (e.g.
a room) as nodes of the labeled graph and openings as edges.
An example of the data structure associated to the sample sce-
nario is illustrated in Fig. 1(c). Overall the cognitive map al-
lows the agents to identify their position in the environment
and it constitutes a basis for the generation of an additional
knowledge base, which will enable the reasoning for the route
calculation.

This additional data structure has been called Paths Tree
and it contains the information about plausible paths towards
a final destination, starting from each region of the environ-
ment. The concept of plausibility of a path is encoded in the
algorithm for the computation of the tree, which is discussed
in [Crociani et al., 2015] and only briefly described here. The
procedure starts by defining the destination as the root of the
tree and it recursively adds child nodes, each of them mapped
to an intermediate destination reachable in the region. Nodes
are added if the constraints describing the plausibility of a
path are satisfied: in this way, paths that imply cycles or a
not reasonable usage of the space (e.g. passing inside a room
to reach the exit of a corridor, as illustrated in Fig. 1(a)) are
simply avoided.

The results of the computation is a tree whose nodes are
mapped to targets in the environment and each edge refers to
a particular path between two targets. The root of the tree
is mapped to a final destination, while the underlying nodes
are only mapped to openings. Hence, each branch from the
root to an arbitrary node describes a minimal (i.e. plausible)
path towards the final destination associated to the tree. To
complete the information, each node n is labeled with the
free flow travel time2 associated to the path starting from the
center of the opening associated to n and passing through the
center of all openings mapped by the parent nodes of n, un-
til the final destination. In this way, the agents knows the
possible paths through the environment and their respective
estimated traveling times.

For the choice of their path, agents access the informa-
tion of a Paths Tree generated from a final destination End
with the function Paths(R,End). Given the region R of
the agent, the function returns a set of couples {(Pi, tti)}.
Pi = {Ωk, . . . , End} is the ordered set describing paths

2The travel time that the agent can employ without encountering
any congestion in the path, thus moving at its free flow speed.



(a) (b)

(c) (d)

Figure 1: (a) An example of plausible (continuous line) and implausible (dashed) paths in a simple environment. (b) A simula-
tion scenario with the considered annotation tools and its respective cognitive map (c) and the shortest path tree (d).

which start from Ωk, belonging to Openings(R), and lead
to End. tti is the associated free flow travel time.

3.2 The Route Choice Model of Agents
This aspect of the model is inspired by the behaviors observed
in a experiment performed with human volunteers in Novem-
ber 2015 at the University of Tokyo, aiming at identifying
basic behavior at the wayfinding level. The participants were
put into a trade off scenario, since different paths were avail-
able but the shortest one was quickly congested. Empirical
analysis related to this experiment are not presented in this
paper for lack of space. Qualitatively, it has been observed
that several persons preferred to employ a longer trajectories
for achieving higher walking speed, but this kind of choice
seemed to be taken more frequently and easily after a first
emerging leader had performed it.

By considering these aspects, the objective is to propose an
approach that would enable agents to choose their path con-
sidering distances as well as the evolution of the dynamics. At
the same time, the model must provide a sufficient variability
of the results (i.e. of the paths choices) and a calibration over
possible empirical data.

The discussion of the model must starts with an overview
of the agent life-cycle, in order to understand which activity

is performed and in which order. The workflow of the agent,
encompassing the activities at operational and tactical level
of behavior at each time-step, is illustrated in Figure 2.

First of all, the agent performs a perception of his situation
considering his knowledge of the environment, aimed at un-
derstanding its position in the environment and the markers
perceivable from its region (e.g. intermediate targets). At the
very beginning of its life, the agent does not have any infor-
mation about its location, thus the first assignment to execute
is the localization. This task analyses the values of floor fields
in its physical position and infers the location in the Cognitive
Map. Once the agent knows the region where it is situated, it
loads the Paths Tree and evaluates the possible paths towards
its final destination.

The evaluation has been designed with the concept of path
utility, assigned to each path to successively compute a prob-
ability to be chosen by the agent. The probabilistic choice of
the path outputs a new intermediate target of the agent, used
to update the reference to the floor field followed at the oper-
ational layer with the local movement.

The utility-based approach fits well with the needs to easily
calibrate the model and to achieve a sufficient variability of
the results.

The core functions of the wayfinding model are Evaluate



Figure 2: The life-cycle of the agent, emphasizing the two
components of the model.

Paths and Choose Paths, which will be now discussed.

The Utility and Choice of Paths
The function that computes the probability of choosing a path
is exponential with respect to the utility value associated to it.
This is completely analogous to the choice of movement at
the operational layer:

Prob(P ) = N · eU(P ) (1)

The usage of the exponential function for the computation
of the probability of choosing a path P is a good solution
to emphasize the differences in the perceived utility values
of paths, limiting the choice of relatively bad solutions (that
in this case would lead the agent to employ relatively long
paths). U(P ) comprises the three observed components influ-
encing the route choice decision, which are aggregated with
a weighted sum:

U(P ) = κttEvaltt(P )− κqEvalq(P ) + κfEvalf (P ) (2)

where the first element evaluates the expected travel times;
the second considers the queuing (crowding) conditions
through the considered path and the last one introduces a pos-
itive influence of perceived choices of nearby agents to pur-
sue the associated path P (i.e. imitation of emerging leaders).
All the three functions provide values normalized within the
range [0, 1], thus the value of U(P ) is included in the range
[−κq, κtt + κf ].

In theory, there is no best way to define these three com-
ponents: the usage of very simple functions as well as com-
plicated ones might provide the same quality to the model.
The only way to evaluate the reliability of this model, in fact,
is with a validation procedure over some empirical knowl-
edge. Hence, these three mechanisms have been designed
with the main objective to allow the calibration over empir-
ical datasets, preferring the usage of simple functions where
possible.

The Evaluation of Traveling Times
The evaluation of traveling times is a crucial element of the
model. First of all, the information about the travel time tti of
a path Pi is derived from the Paths Tree with Paths(R,End)
(where End is the agent’s final destination, used to select the
appropriate Paths Tree, andR is the region in which the agent
is situated and it is used to select the relevant path Pi in the
Paths Tree structure) and it is integrated with the free flow
travel time to reach the first opening Ωk described by each
path:

TravelTime(Pi) = tti +
PFΩk

(x, y)

Speedd
(3)

where PFΩk
(x, y) is the value of the path field associated

to Ωk in the position (x, y) of the agent and Speedd is the
desired velocity of the agent, that can be an arbitrary value
(see [Bandini et al., in press] for more details of this aspect of
the model). The value of the traveling time is then evaluated
by means of the following function:

Eval tt(P ) = Ntt ·
min

Pi∈Paths(r)
(TravelTime(Pi))

TravelTime(P )
(4)

where Ntt is the normalization factor, i.e., 1 over the sum
of TravelTime(P ) for all paths. By using the minimum value
of the list of possible paths leading the agent towards its own
destination from the current region, the range of the func-
tion is set to (0,1], being 1 for the path with minimum travel
time and decreasing as the difference with the other paths in-
creases. This modeling choice, makes this function describe
the utility of the route in terms of travel times, instead of its
cost.

This design is motivated by the stability of its values with
the consideration of relatively long path, which might be rep-
resented in the simulation scenario. By using a cost function,
in fact, the presence of very high values of TravelTime(P )
in the list would flatten the differences among cost values of
other choices after the normalization: in particular, in situ-
ations in which most relevant paths have relatively similar
costs, excluding a few outliers (even just one), the normal-
ized cost function would provide very similar values for most
sensible paths, and it would not have a sufficient discriminat-
ing power among them.

The Evaluation of Congestion
The behavior modeled in the agent in this model considers
congestion as a negative element for the evaluation of the
path. This does not completely reflect the reality, since there
could be people who could be attracted by congested paths as
well, showing a mere following behavior. On the other hand,
by acting on the calibration of the parameter κq it is possible
to define different classes of agents with customized behav-
iors, also considering attraction to congested paths with the
configuration of a negative value.

For the evaluation of this component of the route decision
making activity associated to a path P , a function is first in-
troduced for denoting agents a′ that precede the evaluating
agent a in the route towards the opening Ω of a path P :



Forward(Ω, a) = |{a′ ∈ Ag\{a} : Dest(a′) = Ω ∧
PFΩ(Pos(a′)) < PFΩ(Pos(a))}|

(5)

where Pos and Dest indicates respectively the posi-
tion and current destination of the agent; the fact that
PF Ω(Pos(a′)) < PF Ω(Pos(a)) assures that a′ is closer
to Ω than a, due to the nature of floor fields. Each agent is
therefore able to perceive the main direction of the others (its
current destination). This kind of perception is plausible con-
sidering that only preceding agents are counted, but we want
to restrict its application when agents are sufficiently close to
the next passage (i.e. they perceive as important the choice
of continuing to pursue that path or change it). To introduce
a way to calibrate this perception, the following function and
an additional parameter γ is introduced:

PerceiveForward(Ω, a) ={
Forward(Ω, a), if PFΩ(Pos(a)) < γ

0, otherwise
(6)

The function Evalq is finally defined with the normaliza-
tion of PerceiveForward values for all the openings connect-
ing the region of the agent:

Evalq(P ) =

N · PerceiveForward(FirstEl(P ),myself )

width(FirstEl(P ))

(7)

where FirstEl returns the first opening of a path, myself
denotes the evaluating agent and width scales the evaluation
over the width of the door (larger doors sustain higher flows).

Propagation of Choices - Following Behavior
This component of the decision making model aims at repre-
senting the effect of an additional stimulus perceived by the
agents associated to sudden decision changes of other persons
that might have an influence. An additional grid has been in-
troduced to model this kind of event, whose functioning is
similar to the one of a dynamic floor field. The grid, called
ChoiceField, is used to spread a gradient from the positions
of agents that, at a given time-step, change their plan due to
the perception of congestion.

The functioning of this field is described by two parameters
ρc and τc, which defines the diffusion radius and the time
needed by the values to decay. The diffusion of values from
an agent a, choosing a new target Ω′, is performed in the cells
c of the grid with Dist(Pos(a), c) ≤ ρc with the following
function:

Diffuse(c, a) =

{
1/Dist(Pos(a), c) if Pos(a) 6= c

1 otherwise
(8)

The diffused values persist in the ChoiceField grid for τc
simulation steps, then they are simply discarded. The in-
dex of the target Ω′ is stored together with the diffusion val-
ues, thus the grid contains in each cell a vector of couples
{(Ωm, diff Ωm

), . . . , (Ωn, diff Ωn
)}, describing the values of

influence associated to each opening of the region where the
cell is situated. While multiple neighbor agents changes their
choices towards the opening Ω′, the values of the diffusion
are summed up in the respective diff Ω′ . In addition, after
having changed its decision, an agent spreads the gradient in
the grid for a configurable amount of time steps represented
by an additional parameter τa. In this way it influences the
choices of its neighbors for a certain amount of time.

The existence of values diff Ωk
> 0 for some opening Ωk

implies that the agent is influenced in the evaluation phase by
one of these openings, but the probability for which this in-
fluence is effective is, after all, regulated by the utility weight
κf . In case of having multiple diff Ωk

> 0 in the same cell, a
individual influence is chosen with a simple probability func-
tion based on the normalized weights diff associated to the
cell. Hence, for an evaluation performed by an agent a at
time-step t, the utility component Evalf can be equal to 1
only for one path P , between the paths having diff Ωk

> 0 in
the position of a.

4 Evaluation of the Model
The evaluation of the model is here discussed with a simula-
tion of a large scenario, with the aim of verifying the behav-
ior of the model in a real-world environment and to perform a
qualitative comparison of the results with another wayfinding
model from the literature.

All the presented results have been achieved with the cal-
ibration weights of the utility function configured as Ωtt =
100,Ωq = 27; Ωf = 5, while the parameters related to the
ChoiceF ield are set to ρc = 1.2m, τc = 2 time-steps =
0.44s and τd = 4 time-steps = 1s. The desired speed of
agents have been configured with a normal distribution cen-
tered in 1.4 m/s and with standard deviation of 0.2 m/s, in
accordance with the pedestrians speeds usually observed in
the real world (e.g. [Willis et al., 2004]). The distribution
is discretized in classes of 0.1 m/s, and cut by configuring a
minimum velocity of 1.0 m/s and a maximum one of 1.8 m/s
(see the blue boxes in Fig. 3(c)). To allow a maximum speed
of 1.8 m/s —considered plausible in this outflow scenario—
the time-step duration is assumed to τ = 0.22s.

The simulation scenario describes the outflow from a por-
tion of the Düsseldorf Arena, as described in [Wagoum et al.,
2012]. The annotated environment used for the simulation
with the discussed model is illustrated in Fig. 3(a): 4 start-
ing areas models the bleachers of the stadium and generates
the agents in the simulation, whose aim is to reach the outside
area indicated with the blue object. Cyan objects are the inter-
mediate targets describing the wayfinding decisions of agents.
250 agents are generated at the beginning of the simulation
from each start area, producing a total of 1000 pedestrians.

The heat map shown in Figure 3(b) provides information
about the usage of the space during the simulation, by de-
scribing the average local densities perceived by the agents
(so-called cumulative mean density). The major congested ar-
eas are located in front of the exit doors, given their relatively
small width of 1.2 m. An interesting point that comes out
from this analysis (also visible in the screen-shot in Fig. 3(a))
is that the present configuration of the environment implies



(a) (b)
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Figure 3: (a) A screenshot of the simulation of the Düsseldorf Arena. Spatial markers are also displayed and the colors of the
agents identifies their current target. (b) Cumulative mean density map and (c) average speed distributions configured (blue)
and achieved (red).

that several exits receive an incoming flow from more sources
(i.e. corridors), while there are 3 exits in the upper right cor-
ner of the environment which are not employed at all by the
agents during the simulation. In addition, the usage of the ex-
its is unbalanced, causing the level of density to be higher in
some of them. The evaluation of this evidence would require
empirical data that could be used either to support the model-
ing choices or to confute these results and lead to a different
calibration (e.g. adopting a lower weight for the considera-
tion of travel time, that would lead to an increased usage of
the far exits).

The corridors connecting each bleacher to the atrium are
affected as well by high densities (around 2.5–3 persons/m2)
but their widths guarantee a sensibly higher flow, causing
smoother congestion —and so higher speeds— inside the
starting regions.

The red boxes of Fig. 3(c) shows the distribution of desired
walking speeds compared to the achieved average walking
speeds of agents during the simulation. The congestion arisen
in the exit doors of the atrium sensibly affected the travel time
of the agents. This caused that a small portion of the simu-
lated population succeeded in maintaining its desired speed
(the agents generated in positions closer to the exit), while

most of them experienced a significant delay during their way.

5 Conclusions
The present paper has introduced a general model for deci-
sion making activities related to pedestrian route choices. The
model encompasses three aspects influencing these choices,
as observed in an experimental observation: expected travel
time, perceived level of congestion on the chosen path, and
decisions of other preceding pedestrian to pursue a different
path. Achieved results are both plausible and encouraging,
though a proper validation of the model would require addi-
tional results but also the acquisition of empirical evidences
on human wayfinding decisions in congested situations.
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1993.

[Weyns et al., 2007] Danny Weyns, Andrea Omicini, and
James Odell. Environment as a first class abstraction in
multiagent systems. Autonomous Agents Multi-Agent Sys-
tems, 14(1):5–30, 2007.

[Willis et al., 2004] Alexandra Willis, Nathalia Gjersoe,
Catriona Havard, Jon Kerridge, and Robert Kukla. Hu-
man movement behaviour in urban spaces: implications
for the design and modelling of effective pedestrian en-
vironments. Environment and Planning B: Planning and
Design, 31(6):805–828, 2004.


	Introduction
	Related Works
	A Model To Encompass the Pedestrian Movement and Route Choice
	The Representation of the Environment and the Knowledge of Agents
	The Route Choice Model of Agents

	Evaluation of the Model
	Conclusions

