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Abstract

Route choice is an important stage in transport
planning and modeling. Most of the existing ap-
proaches do not consider that road users can nowa-
days consult new technologies to plan their routes.
In this paper, we combine multi-agent reinforce-
ment learning (MARL) and car-to-infrastructure
communication (C2I) to deal with route choice.
The agents (road users) and the infrastructure in-
teract with each other to exchange traffic infor-
mation about the road network. The agents send
the travel cost of the edges they crossed to the in-
frastructure. The infrastructure uses these costs to
compute shortest paths, which are transmitted to
the agents when requested. The agents use such
received shortest path to update their knowledge
base. The obtained results are compared against
a classical MARL approach that does not use C2I
communication. Experimental results show that
our approach overcomes the compared method in
terms of average travel cost.

1 Introduction

Route choice is an important stage in the classical trans-
port planning and modeling [Ortizar and Willumsen, 2011].
Route choice methods select routes and assign them to road
users, aiming to connect their individual origins with their
destinations. The output of these methods describes the state
of the transportation system, which is a relevant input for test-
ing the consequences of changes in the physical infrastructure
of the network. Most of the methods found in the literature
assume the existence of a central authority that computes and
allocates routes for the road users. In real scenarios, such
assumption is not valid because a system manager cannot di-
rectly control the behavior of the road users in terms of route
choice.

The rapid diffusion of intelligent transportation systems
(ITS) enables road users to take into account the traffic infor-
mation available on ITS to help them in their route choice pro-
cess. Such information can be acquired from several sources
such as inductive loops, video vehicle detection, GPS de-
vices, etc. From this information, it is possible to compute
estimated shortest routes, which are then recommended to

road users. If many road users decide to follow the recom-
mended routes, they may overload those routes causing jams
and increased travel times. This problem gets even worse
when there are several ITS (e.g., route guidance systems, car-
to-infrastructure-based systems, etc.) recommending routes
to road users. Such systems have no control over the total
flow that will be redirected to the suggested routes because
the real-world road users have their own beliefs about which
route they should follow. Therefore, the correct use of avail-
able traffic information is still an open problem.

The present work combines multi-agent reinforcement
learning (MARL) and car-to-infrastructure (C2I) communi-
cation to model the behavior of modern road users (agents),
which may use traffic information provided by an ITS to plan
their routes. The ITS assumes the existence of communi-
cation devices installed over the network. The communi-
cation devices and agents can exchange traffic information
with each other. Traffic information represents the cost of
traveling some path over the road network. The agents are
implemented as independent learners and behave competi-
tively in the system, i.e., each agent attempts to minimize his
own travel cost, regardless of the consequences his actions on
other agents. The agents have full autonomy to decide which
route to follow. However, they can count on traffic informa-
tion provided by the infrastructure to support their decision-
making process. The infrastructure uses the travel costs ob-
served by the agents during their trip to estimate the shortest
paths that can be transmitted to the agents. We compared our
approach to a MARL one that does not assume the exchang-
ing of traffic information provided by a C2I model. Experi-
mental results showed that present approach overcomes other
method in terms of average travel cost.

This paper is organized as follows. The route choice prob-
lem is defined in Section 2. The related works is presented
in Section 3. In Section 4, we present the infrastructure mod-
eling (Section 4.1) and agent modeling (Section 4.2). The
experimental results are discussed and analysed in Section 5.
Final remarks and future directions are presented in Section 6.

2 Route Choice in Transportation Systems

A transportation system is composed of two parts: demand
and supply. The demand represents the users of the in-
frastructure (referred to road users, trips or vehicles). The
demand can be represented by an origin-destination matrix



(OD-matrix). An OD-matrix 7" contains I lines (origin zones)
and J columns (destination zones). Each element T;; repre-
sents the amount of trips from vertex ¢ to j in a given time
interval. It is said that s € I and j € J is an OD-pair.

The second part of the transportation system, the supply,
represents the road network and can be modeled as a directed
graph G = (V, E), where V is a collection of nodes, and E is
a collection of directed edges. An edge e € E is represented
as a two-element subset of V' : e = {u, v} for some u,v € V,
where u is the origin and v is the destination node of e. The
set of incoming edges of node v € V is defined by the set of
edges E~ (v) : {e € Ele = {u,v} Au € V}. Each edge
e has a travel cost ¢, associated to its crossing—for instance,
the cost can be travel time, fuel spent, travel distance, and so
on. As route choice is usually done in a macroscopic way
due to the simplicity of implementation, the cost of crossing
an edge is abstracted by a function. Volume-delay functions
(VDF) are well-known abstractions for this purpose. An ex-
ample of a VDF is the one suggested by Bureau of Public
Roads (BPR) [Bureau, 1964] in Equation 1, where c, repre-
sents the travel time, in minutes, for traveling edge e; cg is the
travel time per unit of time under free-flow conditions (free-
flow travel time); f. is the volume of vehicles (in vehicles
per unit of time) using the edge e; C. is the edge capacity;
and a and b are parameters specifically defined for each edge.
A path (or route) p = {v;,v2, v3} is defined by a set of con-
nected edges. The cost of p is the sum of the costs of all edges

of p.
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Route choice (or, alternatively, route/traffic assignment)
methods connect supply and demand, respecting the re-
strictions of origin and destinations present on OD-matrices
[Ortiizar and Willumsen, 2011]. In studies of route choice,
network equilibrium models are commonly used for the esti-
mation of traffic patterns on scenarios that are subject to con-
gestion. Wardrop’s first principle [Wardrop, 1952] is one of
the most accepted principles of equilibrium, and states that:
“no road user can unilaterally reduce his/her travel costs by
shifting to another route”. This is also known as user equilib-
rium (UE). In this paper, the UE is used to assess the quality

of the solutions obtained by our approach.
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3 Related Work

Route choice is an extensively studied field of research. The
Frank-Wolfe algorithm [Frank and Wolfe, 1956] is a classical
algorithm still often used to deal with optimization problems
where the objective function is convex and the constraints of
the problem are linear. The adaptation of the Frank-Wolfe al-
gorithm for the calculation of UE in route choice problems
is originally presented in [LeBlanc er al., 1975]. This algo-
rithm focuses on the computing of UE in large-scale scenar-
i0s. They consider the existence of a central authority respon-
sible for computing and assigning routes for the road users.
This approach does not assume the road drivers can change
their route along the trip. The present paper focuses on mod-

eling the individual decision-making of the road users under
the presence of traffic information.

Multi-agent systems are often used in decentralized ap-
proaches for route choice [Ramos and Grunitzki, 2015;
Dia and Panwai, 2007; Kliigl and Bazzan, 2004]. In these
approaches, road users have the autonomy to decide which
route to take. In [Tumer er al., 2008], a MARL approach
that stimulates the cooperation between agents is presented.
The agent’s task is to learn the best route from a set of pre-
computed routes. In the present work, the agents learn their
route during the trip (en-route mechanism). This makes the
learning task harder because the search space is significantly
increased. A MARL approach that stimulates cooperation
between road users, but in an en-route perspective is pre-
sented in [Grunitzki et al., 2014]. In each of these MARL
approaches mentioned here, the exchanging of traffic infor-
mation is not considered. The agents learn their routes ac-
cording to the knowledge they acquire during the episodes.
The present paper uses a C2I-based system to simulate the
behavior of real road users that use traffic information to sup-
port their decision-making process.

Existing route guidance systems provide only route guid-
ance after congestions happen. Some approaches that prop-
agate the traffic flow in the route guidance system according
to route intentions of the agents are presented [Claes et al.,
2011; Wang et al., 2014]. In [Wang er al., 2014], the authors
propose a C2I system in an en-route perspective for shortest
routes. In [Cao er al., 2016], there are agents situated over
the network junctions collecting the road users’ intentions, in
order to update the route guidance system. These approaches
assume that agents follow the requested route, which is used
to propagate the flows of road users on the network. However,
in practice, this cannot be assumed because each road user
has his own motivations to make his choices. The present pa-
per focuses on modeling the behavior of modern road users,
which makes use of available traffic information only to sup-
port their decisions.

4 Approach

MARL C2I-based approach is composed of two kinds of enti-
ties: agents and communication devices, as illustrated in Fig-
ure 1. The agents represent cars, whilst the communication
devices represent the infrastructure. During the execution of
the method, agents and infrastructure can interact with each
other in order to exchange traffic information.

The learning is organized in episodes and time steps. A
time step represents the time needed by the agent to execute
an action, in this case, traveling a given edge. An episode
represents one trial, in which all agents start their learning
process in their initial state and make successive interactions
with the environment until reaching their final state (destina-
tion). An episode ends when all agents have reached their
final state. These two concepts, episodes and time steps, are
important to understanding the moment in which the entities
can interact with each other. In the following sections, the
modeling of agents and infrastructure is presented in detail.
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Figure 1: Interaction scheme between agent and infrastructure.

4.1 Infrastructure Modeling

The infrastructure is composed of a set of communication de-
vices, D, distributed over the network. Each node v € V
is associated with one communication device d,, € D. As
shown in Figure 1, every node (junction) has a communica-
tion device physically installed. One of the communication
devices is called central communication device (communica-
tion device I, in Figure 1) because it has the extra responsi-
bility of: i) concentrating traffic information for all edges; ii)
computing all shortest paths; and iii) transmitting the com-
puted shortest paths back to other devices.

In present work, the word agent is not used to refer to the
communication devices. This avoids possible confusion be-
tween: learning agents (road users) and nonlearning agents
(communication devices). For this reason, whenever the word
agent is used, it will be refering to a road user.

The communication between agents and communication
devices is modeled as a two-way dedicated short-range com-
munication system (DSRCS). Note that there are two kinds
of interactions, represented by dashed and full lines in Fig-
ure 1. These lines represent the sending of a message from
a sender to a receiver entity. Full lines represent the commu-
nication between agents and communication devices. This
kind of interaction can occur once at each time step of an
episode, as illustrated in Figure 1. In a single message, an
agent can send traffic information and also request a shortest
path. On the other hand, the dashed lines represent the inter-
actions between the communication devices and the central
communication device. These interactions always occur at
the beginning of each episode, before agents start their trips.

The communication between agents and infrastructure is
only possible when they (agents and infrastructure) are topo-
logically close. Agents cannot communicate with each other.
This makes the system simple because it dispenses the need
for a channel between an agent and a central authority that

represents an infrastructure.

In short, a communication device d plays the following
roles: 1) storing local information about the travel cost of all
incoming edges of the node in which d is situated; ii) comput-
ing the estimated shortest paths from its node to all other node
of the network; iii) exchanging travel information to agents.
In the following we detail these roles.

Information Storing

Each communication device d is responsible for storing traffic
information about the incoming edges of a node v,4. The traf-
fic information is communicated to the agents that cross the
edges with destination node vy. When an agent has crossed
an edge e = {u, v}, he perceives the travel cost ¢, on e. This
cost is communicated to the communication device d,, when
the agent arrives at node v. The communication device d up-
dates its knowledge base with this traffic information about
e. During the execution, many vehicles cross the incoming
edges of a given node. So, the communication device of this
node needs to update its knowledge very often throughout the
episode’s steps.

The C2I communication enables the communication be-
tween agent and infrastructure when they are nearby. Besides
that, the agent can measure the travel cost of the edges he
crossed. The traffic information is measured by the agents in-
stead of the one provided by sensors in order to make the sys-
tem simpler. The use of local sensors, such as inductive loops
or cameras, has the disadvantage to need physical mecha-
nisms distributed along the edges. Besides that, they require
a specific communication channel to transmit the observed
traffic information to the communication device.

Computing estimated shortest paths

Each communication device can send to the agents the es-
timated shortest path from its current node to the destination
node of the agents, as illustrated by the communication device



I, in Figure 1. The weights of the edges are estimated based
on travel cost the communication devices have in their knowl-
edge base. At the end of each episode—when all agents finish
their trip—, all communication devices transmit their traffic
information to the central communication device. The central
communication device (communication device I, in Figure 1)
uses the Floyd-Warshall algorithm [Warshall, 1962] for find-
ing the shortest paths of the network. In a single execution,
the algorithm finds the costs of the shortest paths between all
pairs of nodes. The output of this algorithm is used to recur-
sively compute the set of edges that represents each shortest
path. After that, the central communication device sends to
all other communication devices the estimated shortest paths.
The term estimated is used because the real travel cost, in a
next episode, may change due to the actual actions performed
by the agents.

Exchanging traffic information

When an agent is close to a communication device, he can re-
quest traffic information. In Figure 1, the agent A requests a
shortest path to his destination node vs, € V. The communi-
cation device finds a route r = {eq, ..., e, } in its knowledge
base, where e(’s origin node is vq4 € V; and e,’s destina-
tion node is the agent’s destination vz, . This route is then
transmitted to the agent. Every time such information is re-
quested, the communication device sends it to the agent. How
the information is used by the agent is explained in the next
section. Here, the interest is in showing how the iterations
between agent and communication device work.

4.2 Agents Modeling

The learning agents (vehicles/road users) are implemented
as independent learners, through multiple independent learn-
ers technique [Busoniu er al, 2008]. Consequently, the
agent’s decision-making process ignores the existence of
other agents. This is needed because transportation systems
may have thousands or millions of agents interacting. In such
condition, the use of join-action learners is infeasible, as re-
marked by [Tuyls and Weiss, 2012].

The learning task of each agent is to build a route
that connects its origin to its destination and minimizes
its travel costs. The routes are built dynamically along
the trip (en-route learning). Compared to approaches that
use pre-established sets of precomputed routes that connect
agent’s origin to destination (route-based learning) [Tumer
and Agogino, 2006], the current formulation is harder to be
handled by the MARL. In route-based approaches, the search
space is restricted by the number of routes presents in the
precomputed set of routes. In en-route approaches, as in the
current paper, the search space is restricted by the set of valid
routes between one OD-pair, which grows according to the
size and topology of the network. However, compared to
route-based learning approaches, the en-route approach has
the following advantages: i) it does not require the input of
the initial subset of routes; and ii) it does not restrict the agent
search space, enabling them to explore any feasible route (not
only those pre-given).

The decision-making process of agents is modeled as a fi-
nite Markov decision process (MDP), which is composed of

a set of states S and a set of actions A. For each pair state-
action @ (s, a) there is a Q-value associated to it. The Q-
values represent how good the expected future reward is fol-
lowing a given state-action transition. The goal in an MDP
is to find the sequence of transitions (policy) that maximizes
the reward of the agent over its lifetime. In our approach, an
agent’s state s € S represents the node v € V, in which he
is situated. The set of actions A represents the edges e € F.
The set of actions in a state s, A (s), is represented by the set
of outgoing edges ET (v;). The reward function is defined
by R(s,a) = —c,,, which represents the travel cost of edge
e. The reinforcement learning algorithm used to update the
Q-values Q (s, a) is Q-Learning [Watkins and Dayan, 1992],
given in Equation 2, where « is the learning rate; -y is the dis-
count factor; and s’ is the resulting state of being in state s
and taking the action a.

Q (s,a) + Q(s,a) + (r—l—’ymaa/xQ(s’,a’) - Q(s,a))
2)

At each time step, agents can interact with the infrastruc-
ture aiming at: i) send traffic information about their crossed
edges to a communication device; and ii) request the short-
est path from their current node to their destination. When
an agent crosses an edge, he observes its travel cost and au-
tomatically communicates it to the infrastructure (item i), as
illustrated by the agent B, in Figure 1. The shortest path re-
quest (item ii), can be realized at each time step, with a prob-
ability 0 < 7 < 1, as illustrated by the agent A. A high value
of communication rate, 7 — 1, makes the agents update their
MDP very often along the episode, while low values, 7 — 0,
makes the agents not update their MDP with the traffic infor-
mation provided by the infrastructure.

When an agent requests a route, he transmits his destina-
tion node to a given communication device. The commu-
nication device returns to the agent a shortest path p. This
shortest path connects the node in which the communication
device is installed to the destination of the agent. When the
agent receives a shortest path, he needs to update his MDP
according to the travel cost of p. This cost must be com-
parable with the other (Q-values of the MDP, which repre-
sent the expected discounted reward that the agent may re-
ceive following a given pair state-action. In the present route
choice approach, Q-values represent the expected discounted
travel cost from a given node to a destination node. The travel
cost is discounted by ~y, according to ()-learning update rule.
Thus, we use the Bellman equation [Bellman, 1957], pre-
sented in Equation 3, to evaluate the (-value of a given route
p = {vo, Vi, .. ,vn}, where s represents the vertex vg; a is
the action that represents the edge e = {wvg, v }; s’ is the state
that represents vertex v1; and a’ the action that represents the
edge ¢/ = {v1, v141}. This equation expresses a relationship
between the value of the edges that connect the nodes of a
given route.

Q" (s,a) =71 (s,a) + Q" (s, a’) 3)

In this en-route mechanism, even if an agent receives a
shortest path, he only will follow it if the action selection



strategy select it. The action selection is given by the e-
decreasing strategy given by Equation 4, where the explo-
ration probability is initialized by ¢y and exponentially de-
creases along the episodes A € A, by a factor D. In this man-
ner, agents choose actions randomly (exploration) with prob-
ability ¢, and greedly (exploitation) with probability 1 — e.
The selection of random actions is used to stimulate agents to
explore the travel time of other possible routes. Once such ac-
tions detect attractive edges, this information could be propa-
gated to the other agents through the infrastructure.

€\ — €0D)\ (4)

S Experiments

5.1 Scenario

We evaluate our approach in a well-known transportation
problem presented in the literature, called scenario Sioux
Falls (SF). Although it is inspired by the city of Sioux
Falls, USA, it is not considered a realistic scenario. All
data sets containing network, demand, and cost function
are available at https://github.com/bstabler/
TransportationNetworks. The demand is comprised
by 360600 trips distributed among 528 OD-pairs. The road
network, presented in Figure 2, has 24 vertices and 76 edges.
The numbers in the edges represent their travel time under
free-flow condition, in both directions. The cost function of
this scenario is defined by the VDF proposed by the Bureau
of Public Road[Bureau, 1964], shown in Equation 1. The pa-
rameters a and b are defined in 0.15 and 4, respectively, as
suggested by [LeBlanc et al., 1975].
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Figure 2: Road network topology of scenario SF.

Relevant aspects of the SF scenario are summarized in Ta-
ble 1. The presented average travel time (ATT) under user
equilibrium were obtained using the Frank-Wolfe algorithm.
It is important to remark that the algorithm produces an ap-
proximation to the UE. This is used in this paper to assess
how close to the UE the proposed approach can get.

Table 1: Relevant aspects of scenario SF.

Feature Scenario SF
trips 360600
OD-pairs 528
vertices 24
edges 76
cost function VDF-BPR
ATT under UE ~ 20.76

5.2 Numerical Results

The Q-Learning algorithm has some parameters to be set: the
learning rate (), the discount factor (), and the exploration
rate (¢).

The learning rate and the discount factor used in all exper-
iments of present work were empirically found: o = 0.9 and
v = 0.99. The discount factor plays a major role than the
learning rate in route choice. This can be explained by the
fact that action selection (outgoing edges) are very important
in this problem since learning aims at minimizing the travel
cost in the whole route. For this reason, a high discount fac-
tor must be used. The learning rate is also high due to the
stochastic characteristics of the environment. This makes the
agent override the old information with a greater proportion
of the most recent information.

The exploration strategy used in this work starts with a
high probability of exploration which is reduced along the
episodes in order to enable agents to exploit more and more.
The exploration rate starts at €y and decreases exponential by
a factor D at each learning episode. The multiplicative factor
must be set to fit the simulation horizon. In this paper, we
used 1000 episodes, ¢g = 1.0, and A = 0.99. As will be
shown, not all combinations of parameters need to be run for
1000 episodes because the convergence for some route choice
pattern is reached much earlier. However, for uniformity, the
same value for episodes (1000), initial exploration (1.0) and
multiplicative factor (0.99) are used in all cases.

Our approach has an extra parameter to be defined, the
communication rate (7). This parameter represents the prob-
ability of an agent to request an information from the in-
frastructure during his decision-making process. As men-
tioned before, the (Q-Learning performance is directly related
to the balance between exploration and exploitation defined
for the action selection rule. In our approach, the key pa-
rameter that must be set is the communication rate (7). We
tested some combination of values for 7 in order to find
the best one. The space of possible values is discretized in
7 =1{0,0.25,0.5,0.75,1}. Thus, we can evaluate the effects
of zero (0%), low (25%), medium (50%), high (75%), and
full (100%) communication during the action selection. All



result presented in this paper represent the average of 30 rep-
etitions.

The results for the scenario SF are presented in Table 2.
The baseline used for the sake of comparison is the 7 = 0
configuration. This is equivalent to the application of Q-
Learning for the route choice problem, without C2I commu-
nication. The obtained results for 7 = 0 show that the base-
line cannot converge to the approximate UE (= 20.76 min-
utes). The baseline solution is 1.14 minutes worse than the
UE condition. In the presence of no communication with the
infrastructure, agents have no way to identify whether an ac-
tion is good nor not, except through experimenting it. As the
environment is highly dynamic due to the large number of
agents who take actions simultaneously and generating noise
in the MDP of the other agents, this is difficult to the MARL
algorithm to converge to most appropriated policies.

Table 2: Average travel time (ATT) and standard deviation
(SD) for different values of 7.

T 0 0.25 0.5 0.75 1
ATT 219 21.265 21.337 21.358 33.941
SD 0.131 0.053 0.075 0.066 2.759

The results for 7 > 0 represent the obtained solutions of
the present approach. Our approach yields better results when
0.25 < 7 < 0.75. For 7 = 1, the MARL converges to inad-
equate solutions. High values of 7 make agents update their
knowledge base quite often. As consequence, every agent has
the information about the most attractive route known by the
infrastructure. Even if the route’ cost are based on histori-
cal information, each agent will have a high probability to
choose the route that is known by the other agents as the most
attractive one. In congested scenarios like the SF one, such
behavior makes agents compete for the edges of most attrac-
tive paths. Consequently, they overload some routes, whereas
others are being underutilized. Low values of 7 reduce the
competition by the most attractive edges and enables agents
to better utilize the knowledge they acquire by experiencing
the environment. It reduces the noisy knowledge present in
their MDP and allows them to better balance their experi-
enced knowledge with the knowledge acquired from infras-
tructure.

A t-test with 95% of confidence interval was conducted for
all distributions present in Table 2. The conclusion is that the
proposed approach is better than the baseline for values of
7 ={0.25,0.5,0.75}. The best ATT yield by our approach is
obtained with 7 = 0.25, which is 0.63 minutes better than the
baseline. Note that even for 7 = .75, the proposed approach
yields an ATT better than the baseline. In the baseline, agents
receive only the feedback from the environment (reward) and
it is related to the action they choose. It is hard for them to
make good decisions when there are too many agents gener-
ating noise in their MDP and due to the high probability they
have to select random actions in the early episodes. Such
noise can make the agent understand that a given action is
bad, when actually it is convenient for reaching his objective.
In the proposed approach, the traffic information provided by
the infrastructure is able to be fixed in the upcoming episodes,
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Figure 3: Performance vs. time on scenario SF

making the agent reconsider such action while building his
behavior. On the other hand, the excess of traffic information
provided by 7 = 1.0 can result in poor performance for the
system.

In the next experiment, we demonstrate the convergence
speed of the proposed approach compared to the baseline.
Figure 3 shows the performance (in terms of ATT) along the
episode for each value of 7 evaluated. Note that for 7 > 0.25
all curves have a similar shape. In initial episodes, our ap-
proach presents learning curves steeper than the baseline.
This is explained by the traffic information that the agents
receive, which is capable of guiding them to their destination
faster. In the baseline, the agents may drive in a looping man-
ner due to the bad actions they take.

The ATT in the initial episodes is quite high due to the char-
acteristics of the cost function. Since the travel time grows
exponentially according to the flow (see Equation 1), when
the flow exceeds the edge capacity, the travel time of the edge
grows rapidly. This condition, associated with the large de-
mand taking suboptimal actions in the early episodes, makes
the ATT be high in early episodes of all cases.

6 Conclusions and Future Work

This paper combines MARL and car-to-infrastructure (C2I)
communication in an approach for route choice. Road users
(agents) and infrastructure can interact with each other in or-
der to exchange traffic information about the road network.
The traffic information is provided by a C2I intelligent trans-
portation system, in which agents can request traffic informa-
tion whenever they want.

We evaluated our approach on a classic scenario present in
the literature. The obtained results were compared against a
MARL approach for route choice, without C2I communica-
tion. The obtained results show the proposed approach can



overcome the compared method when the frequency of use
of traffic information is properly set. In the experiments, the
agents that use the traffic information very often may impair
their travel time due to the large flow allocated in the most at-
tractive routes. Reducing the frequency of use of traffic infor-
mation allows the agents better exploit the knowledge gained
on previous episodes, regardless of whether it has been ac-
quired via C2I communication or experiencing the environ-
ment.

The present work focused on the combination of MARL
and C2I communication. However, for its implementation be
feasible in the real word, limitations as the following must
be addressed. The demand used in this paper is homoge-
neous in terms of individual preferences, i.e., all road users
goal is to minimize their travel cost. However, in the real
world, they also have personal preferences/restrictions asso-
ciated with the trip, such as the avoidance of large roads,
tolls or even the exposure of their trip information. Besides
this, the road users exchange traffic information from a single
source. However, in the real world, they may use multiple
sources. In this kind of system, the traffic information may
differ from one system to other according to the mechanisms
they use to get and manipulate it. The effects of multiple traf-
fic information systems interacting with the agents must be
investigated. The evaluation of different strategies to balance
exploration and exploitation, such as the ones that weight the
random actions according to its quality, must be conducted
in order to speed up the convergence. Finally, a comparison
against communication-based approaches available on litera-
ture must be conducted.
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